51
|
Meevissen MHJ, Wuhrer M, Doenhoff MJ, Schramm G, Haas H, Deelder AM, Hokke CH. Structural Characterization of Glycans on Omega-1, a MajorSchistosoma mansoniEgg Glycoprotein That Drives Th2 Responses. J Proteome Res 2010; 9:2630-42. [DOI: 10.1021/pr100081c] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
15 |
45 |
52
|
Naus CWA, van Remoortere A, Ouma JH, Kimani G, Dunne DW, Kamerling JP, Deelder AM, Hokke CH. Specific antibody responses to three schistosome-related carbohydrate structures in recently exposed immigrants and established residents in an area of Schistosoma mansoni endemicity. Infect Immun 2003; 71:5676-81. [PMID: 14500488 PMCID: PMC201069 DOI: 10.1128/iai.71.10.5676-5681.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By the use of surface plasmon resonance spectroscopy, immunoglobulin G (IgG) subclass and IgM antibodies against three schistosome-derived carbohydrate structures, FLDN (Fucalpha1-3GalNAcbeta1-4GlcNAcbeta1-3Galalpha1), LDN-DF [GalNAcbeta1-4(Fucalpha1-2Fucalpha1-3)GlcNAcbeta1], and LDNF [GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galalpha1], were measured in 184 previously unexposed Kenyan immigrants who moved into the Masongaleni area, where Schistosoma mansoni is endemic. They were sampled within their first year of exposure and again 2 years later. A cohort selected out of the original residents of the area, who had been exposed for many years, served as controls. Associations with responses to S. mansoni worm, egg (SEA), and cercarial (CERC) antigens were examined. In addition, we measured responses to keyhole limpet hemocyanin, a glycoprotein which carries glycan epitopes that are also expressed by schistosomes. Specific IgG1 responses were most pronounced against FLDN and LDN-DF and strongly associated with those previously measured to SEA and CERC. Similarly to previously published age profiles of IgG1 and IgG2 responses to SEA, levels of IgG1 against LDN-DF decreased with age. In contrast, specific IgM responses against the three schistosome-derived carbohydrate structures were most marked against LDNF. Our results indicate that, of the three glycan structures tested, the acute response against schistosome glycoconjugate antigens in young children is mainly directed against the LDN-DF epitope. The response to LDN-DF in older individuals and the responses to the two other epitopes were similar in the two cohorts, suggesting that these antigens are recognized in the early stages of infection and that the immune response persists. The biological significance of these observations needs further elucidation.
Collapse
|
Journal Article |
22 |
43 |
53
|
Dewalick S, Bexkens ML, van Balkom BWM, Wu YP, Smit CH, Hokke CH, de Groot PG, Heck AJR, Tielens AGM, van Hellemond JJ. The proteome of the insoluble Schistosoma mansoni eggshell skeleton. Int J Parasitol 2011; 41:523-32. [PMID: 21236260 DOI: 10.1016/j.ijpara.2010.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 11/19/2022]
Abstract
In schistosomiasis, the majority of symptoms of the disease is caused by the eggs that are trapped in the liver. These eggs elicit an immune reaction that leads to the formation of granulomas. The eggshell, which is a rigid insoluble structure built from cross-linked proteins, is the site of direct interaction between the egg and the immune system. However, the exact protein composition of the insoluble eggshell was previously unknown. To identify the proteins of the eggshell of Schistosoma mansoni we performed LC-MS/MS analysis, immunostaining and amino acid analysis on eggshell fragments. For this, eggshell protein skeleton was prepared by thoroughly cleaning eggshells in a four-step stripping procedure of increasing strength including urea and SDS to remove all material that is not covalently linked to the eggshell itself, but is part of the inside of the egg, such as Reynold's layer, von Lichtenberg's envelope and the miracidium. We identified 45 proteins of which the majority are non-structural proteins and non-specific for eggs, but are house-keeping proteins that are present in large quantities in worms and miracidia. Some of these proteins are known to be immunogenic, such as HSP70, GST and enolase. In addition, a number of schistosome-specific proteins with unknown function and no homology to any known annotated protein were found to be incorporated in the eggshell. Schistosome-specific glycoconjugates were also shown to be present on the eggshell protein skeleton. This study also confirmed that the putative eggshell protein p14 contributes largely to the eggshell. Together, these results give new insights into eggshell composition as well as eggshell formation. Those proteins that are present at the site and time of eggshell formation are incorporated in the cross-linked eggshell and this cross-linking does no longer occur when the miracidium starts secreting proteins.
Collapse
|
Journal Article |
14 |
42 |
54
|
van Roon AMM, Pannu NS, de Vrind JPM, van der Marel GA, van Boom JH, Hokke CH, Deelder AM, Abrahams JP. Structure of an Anti-Lewis X Fab Fragment in Complex with Its Lewis X Antigen. Structure 2004; 12:1227-36. [PMID: 15242599 DOI: 10.1016/j.str.2004.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 04/28/2004] [Accepted: 05/02/2004] [Indexed: 11/25/2022]
Abstract
The Lewis X trisaccharide is pivotal in mediating specific cell-cell interactions. Monoclonal antibody 291-2G3-A, which was generated from mice infected with schistosomes, has been shown to recognize the Lewis X trisaccharide. Here we describe the structure of the Fab fragment of 291-2G3-A, with Lewis X, to 1.8 A resolution. The crystallographic analysis revealed that the antigen binding site is a rather shallow binding pocket, and residues from all six complementary determining regions of the antibody contact all sugar residues. The high specificity of the binding pocket does not result in high affinity; the K(D) determined by isothermal calorimetry is 11 microM. However, this affinity is in the same range as for other sugar-antibody complexes. The detailed understanding of the antibody-Lewis X interaction revealed by the crystal structure may be helpful in the design of better diagnostic tools for schistosomiasis and for studying Lewis X-mediated cell-cell interactions by antibody interference.
Collapse
|
|
21 |
41 |
55
|
Hokke CH, van Diepen A. Helminth glycomics - glycan repertoires and host-parasite interactions. Mol Biochem Parasitol 2016; 215:47-57. [PMID: 27939587 DOI: 10.1016/j.molbiopara.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 01/12/2023]
Abstract
Glycoproteins and glycolipids of parasitic helminths play important roles in biology and host-parasite interaction. This review discusses recent helminth glycomics studies that have been expanding our insights into the glycan repertoire of helminths. Structural data are integrated with biological and immunological observations to highlight how glycomics advances our understanding of the critical roles that glycans and glycan motifs play in helminth infection biology. Prospects and challenges in helminth glycomics and glycobiology are discussed.
Collapse
|
Review |
9 |
41 |
56
|
van Remoortere A, Vermeer HJ, van Roon AM, Langermans JA, Thomas AW, Wilson RA, van die I, van den Eijnden DH, Agoston K, Kérèkgyarto J, Vliegenthart JFG, Kamerling JP, van dam GJ, Hokke CH, Deelder AM. Dominant antibody responses to Fucα1-3GalNAc and Fucα1-2Fucα1-3GlcNAc containing carbohydrate epitopes in Pan troglodytes vaccinated and infected with Schistosoma mansoni. Exp Parasitol 2003; 105:219-25. [PMID: 14990315 DOI: 10.1016/j.exppara.2003.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2003] [Revised: 11/05/2003] [Accepted: 12/11/2003] [Indexed: 11/27/2022]
Abstract
The development of the humoral anti-glycan immune response of chimpanzees, either or not vaccinated with radiation-attenuated Schistosoma mansoni cercariae, was followed during 1 year after infection with S. mansoni. During the acute phase of infection both the vaccinated and the control chimpanzees produce high levels of immunoglobulin G (IgG) antibodies against carbohydrate structures that are characteristic for schistosomes carrying the Fucalpha1-3GalNAc and Fucalpha1-2Fucalpha1-3GlcNAc motifs, but not to the more widespread occurring structures GalNAcbeta1-4GlcNAc, GalNAcbeta1-4(Fucalpha1-3)GlcNAc, and Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis(x)). In addition, high levels of IgM antibodies were found against the trimeric Lewis(x) epitope. Apparently, the schistosome-characteristic carbohydrate structures are dominant epitopes in the anti-glycan humoral immune response of the chimpanzees. All chimpanzees showed an increase in the level of antibodies against most of the carbohydrate structures tested directly after vaccination, peaking at challenge time and during the acute phase of infection. With the exception of anti-F-LDN antibody responses, the anti-carbohydrate antibody responses upon schistosome infection of the vaccinated animals were muted in comparison to the control animals.
Collapse
|
|
22 |
39 |
57
|
Wuhrer M, Balog CIA, Koeleman CAM, Deelder AM, Hokke CH. New features of site-specific horseradish peroxidase (HRP) glycosylation uncovered by nano-LC-MS with repeated ion-isolation/fragmentation cycles. Biochim Biophys Acta Gen Subj 2005; 1723:229-39. [PMID: 15814299 DOI: 10.1016/j.bbagen.2005.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 02/18/2005] [Accepted: 02/22/2005] [Indexed: 11/18/2022]
Abstract
Horseradish peroxidase (HRP) is widely used in biomedical research as a reporter enzyme in diagnostic assays. In addition, it is of considerable interest as a model glycoprotein with core-xylosylated and -(alpha1-3)-fucosylated N-glycans that form antigenic elements of plant allergens and parasitic helminths. Using a combination of techniques comprising (1) nano-liquid chromatography (LC)-mass spectrometry (MS)/MS with multiple selection/fragmentation cycles of HRP tryptic (glyco-)peptides, (2) nano-electrospray MS of intact HRP, and (3) carbohydrate linkage analysis, it was revealed that most of the HRP N-glycosylation sites can be occupied with an alternative Fuc(1-3)GlcNAc-disaccharide. Two main variants of HRP occur: The major population (approximately 60%) has eight glycosylation sites carrying core(1-3)fucosylated, xylosylated, trimannosyl N-glycans, with the ninth potential N-glycosylation site Asn316 not occupied. Another group of HRP carries seven of the above-mentioned N-glycans, with an eighth N-glycosylation site carrying the alternative Fuc(1-3)GlcNAc-unit (approximately 35%). In addition, minor subsets of HRP were found to contain a xylosylated, trimannosyl N-glycan lacking core-fucosylation as a ninth N-glycan attached to Asn316, which has hitherto been assumed to be unoccupied. The finding of these new features of glycosylation of an already exceptionally well-studied glycoprotein underscores the potential of the nano-LC-MS(n) based analytical approach followed.
Collapse
|
|
20 |
39 |
58
|
Van de Vijver KK, Deelder AM, Jacobs W, Van Marck EA, Hokke CH. LacdiNAc- and LacNAc-containing glycans induce granulomas in an in vivo model for schistosome egg-induced hepatic granuloma formation. Glycobiology 2005; 16:237-43. [PMID: 16282603 DOI: 10.1093/glycob/cwj058] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Schistosomes, major parasitic helminths, express numerous glycoconjugates that provoke humoral and cellular immune responses in the infected human host. The main pathology in schistosomiasis is due to the formation of granulomas around tissue-trapped eggs and the resulting organ damage. By using a mouse model of induction of granulomas by hepatic implantation of antigen-coated beads, it has been determined that the glycan part of schistosomal soluble egg antigens (SEA) initiates granulomogenesis. To identify which individual glycan elements in this complex SEA mixture are granulomogenic, we have tested in the same mouse model conjugates of various synthetic oligosaccharides characteristic for schistosome eggs, including GalNAcbeta1-4GlcNAc (LacdiNAc, LDN), Galbeta1-4(Fucalpha1-3)GlcNAc (Lewisx), Fucalpha1-2Fucalpha1-3GlcNAc (DF-Gn), and Fucalpha1-3GalNAcbeta1-4(Fucalpha1-3)GlcNAc (F-LDN-F). Ribonuclease (RNase) A and B, and different fetuin glycoforms were included as controls. Only beads that carry glycoconjugates with terminal LacdiNAc or Galbeta1-4GlcNAc (LacNAc, LN) elements gave rise to granulomas, with macrophage, lymphocyte, and eosinophil levels similar to the granulomatous lesions caused by schistosome eggs in a natural infection. Uncoated beads, and beads coated with fucosylated glycoconjugates or glycoconjugates lacking terminally exposed Gal or GalNAc, only attracted a monolayer of macrophages. These results indicate that the formation of hepatic granulomas is triggered specifically by glycoconjugates which carry terminal LacNAc or LacdiNAc, both constituents of the schistosome egg.
Collapse
|
|
20 |
38 |
59
|
Meevissen MHJ, Yazdanbakhsh M, Hokke CH. Schistosoma mansoni egg glycoproteins and C-type lectins of host immune cells: molecular partners that shape immune responses. Exp Parasitol 2011; 132:14-21. [PMID: 21616068 DOI: 10.1016/j.exppara.2011.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/13/2023]
Abstract
Schistosome eggs and egg-derived molecules are potent immunomodulatory agents. There is increasing evidence that the interplay between egg glycoproteins and host C-type lectins plays an important role in shaping immune responses during schistosomiasis. As most experiments in this field so far have been performed using complex protein/glycoprotein mixtures or synthetic model glycoconjugates, it is still largely unclear which individual moieties of schistosome eggs are immunologically active. In this review we will discuss molecular aspects of Schistosoma mansoni egg glycoproteins, their interactions with C-type lectins, and the relevance to schistosome egg immunobiology.
Collapse
|
Review |
14 |
38 |
60
|
Hokke CH, Damm JB, Kamerling JP, Vliegenthart JF. Structure of three acidic O-linked carbohydrate chains of porcine zona pellucida glycoproteins. FEBS Lett 1993; 329:29-34. [PMID: 8354402 DOI: 10.1016/0014-5793(93)80186-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Structural analysis by 1D and 2D 1H NMR spectroscopy of three acidic O-linked oligosaccharide alditols, released from porcine zona pellucida glycoproteins by alkaline borohydride treatment, afforded the following structures: Gal beta 1-4(6SO4)GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-3GalNAc- ol Neu5Gc alpha 2-3Gal beta 1-4(6SO4-)GlcNAc beta 1-3Gal beta 1- 4GlcNAc beta 1-3Gal beta 1-3GalNAc-ol Neu5Ac alpha 2-3Gal beta 1-4(6SO4-)GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1- 3Gal beta 1-3GalNAc-ol These oligosaccharides are the smallest compounds that contain the structural elements which are present in the acidic, high-molecular mass O-linked carbohydrate chains of porcine zona pellucida glycoproteins.
Collapse
|
|
32 |
38 |
61
|
Pongracz T, Nouta J, Wang W, van Meijgaarden KE, Linty F, Vidarsson G, Joosten SA, Ottenhoff THM, Hokke CH, de Vries JJC, Arbous SM, Roukens AHE, Wuhrer M. Immunoglobulin G1 Fc glycosylation as an early hallmark of severe COVID-19. EBioMedicine 2022; 78:103957. [PMID: 35334306 PMCID: PMC8938159 DOI: 10.1016/j.ebiom.2022.103957] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immunoglobulin G1 (IgG1) effector functions are impacted by the structure of fragment crystallizable (Fc) tail-linked N-glycans. Low fucosylation levels on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein-specific IgG1 has been described as a hallmark of severe coronavirus disease 2019 (COVID-19) and may lead to activation of macrophages via immune complexes thereby promoting inflammatory responses, altogether suggesting involvement of IgG1 Fc glycosylation modulated immune mechanisms in COVID-19. METHODS In this prospective, observational single center cohort study, IgG1 Fc glycosylation was analyzed by liquid chromatography-mass spectrometry following affinity capturing from serial plasma samples of 159 SARS-CoV-2 infected hospitalized patients. FINDINGS At baseline close to disease onset, anti-S IgG1 glycosylation was highly skewed when compared to total plasma IgG1. A rapid, general reduction in glycosylation skewing was observed during the disease course. Low anti-S IgG1 galactosylation and sialylation as well as high bisection were early hallmarks of disease severity, whilst high galactosylation and sialylation and low bisection were found in patients with low disease severity. In line with these observations, anti-S IgG1 glycosylation correlated with various inflammatory markers. INTERPRETATION Association of low galactosylation, sialylation as well as high bisection with disease severity and inflammatory markers suggests that further studies are needed to understand how anti-S IgG1 glycosylation may contribute to disease mechanism and to evaluate its biomarker potential. FUNDING This project received funding from the European Commission's Horizon2020 research and innovation program for H2020-MSCA-ITN IMforFUTURE, under grant agreement number 721815, and supported by Crowdfunding Wake Up To Corona, organized by the Leiden University Fund.
Collapse
|
Observational Study |
3 |
37 |
62
|
Ravidà A, Aldridge AM, Driessen NN, Heus FAH, Hokke CH, O’Neill SM. Fasciola hepatica Surface Coat Glycoproteins Contain Mannosylated and Phosphorylated N-glycans and Exhibit Immune Modulatory Properties Independent of the Mannose Receptor. PLoS Negl Trop Dis 2016; 10:e0004601. [PMID: 27104959 PMCID: PMC4841591 DOI: 10.1371/journal.pntd.0004601] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/11/2016] [Indexed: 11/19/2022] Open
Abstract
Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. Like other helminths, F. hepatica employs mechanisms of immune suppression in order to evade its host immune system. In this study the N-glycosylation of F. hepatica’s tegumental coat (FhTeg) and its carbohydrate-dependent interactions with bone marrow derived dendritic cells (BMDCs) were investigated. Mass spectrometric analysis demonstrated that FhTeg N-glycans comprised mainly of oligomannose and to a lesser extent truncated and complex type glycans, including a phosphorylated subset. The interaction of FhTeg with the mannose receptor (MR) was investigated. Binding of FhTeg to MR-transfected CHO cells and BMDCs was blocked when pre-incubated with mannan. We further elucidated the role played by MR in the immunomodulatory mechanism of FhTeg and demonstrated that while FhTeg’s binding was significantly reduced in BMDCs generated from MR knockout mice, the absence of MR did not alter FhTeg’s ability to induce SOCS3 or suppress cytokine secretion from LPS activated BMDCs. A panel of negatively charged monosaccharides (i.e. GlcNAc-4P, Man-6P and GalNAc-4S) were used in an attempt to inhibit the immunoregulatory properties of phosphorylated oligosaccharides. Notably, GalNAc-4S, a known inhibitor of the Cys-domain of MR, efficiently suppressed FhTeg binding to BMDCs and inhibited the expression of suppressor of cytokine signalling (SOCS) 3, a negative regulator the TLR and STAT3 pathway. We conclude that F. hepatica contains high levels of mannose residues and phosphorylated glycoproteins that are crucial in modulating its host’s immune system, however the role played by MR appears to be limited to the initial binding event suggesting that other C-type lectin receptors are involved in the immunomodulatory mechanism of FhTeg. Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. These worms infect the liver and can survive for many years in its animal or human host because they supress the host’s immune system that is important in clearing worm infection. Worms are similar to humans in that they are made of proteins, fats and sugars, and while there are many studies on worm proteins, few studies have examined the sugars. We are interested in the sugars because we believe that they help the parasite survive for many years within its host. To examine this, we have used a technique called mass spectrometric analysis to characterise the sugars present in F. hepatica. We also have developed systems in the laboratory to test if these sugars can suppress the host’s immune system. We conclude that F. hepatica sugars are crucial in suppressing its host’s immune system; however, the exact way the sugars can do this requires further studies. These studies are important for the development of worm vaccines or therapies.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
36 |
63
|
Kuipers ME, Nolte-'t Hoen ENM, van der Ham AJ, Ozir-Fazalalikhan A, Nguyen DL, de Korne CM, Koning RI, Tomes JJ, Hoffmann KF, Smits HH, Hokke CH. DC-SIGN mediated internalisation of glycosylated extracellular vesicles from Schistosoma mansoni increases activation of monocyte-derived dendritic cells. J Extracell Vesicles 2020; 9:1753420. [PMID: 32489529 PMCID: PMC7241508 DOI: 10.1080/20013078.2020.1753420] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Helminths like Schistosoma mansoni release excretory/secretory (E/S) products that modulate host immunity to enable infection. Extracellular vesicles (EVs) are among these E/S products, yet molecular mechanisms and functionality of S. mansoni EV interaction with host immune cells is unknown. Here we demonstrate that EVs released by S. mansoni schistosomula are internalised by human monocyte-derived dendritic cells (moDCs). Importantly, we show that this uptake was mainly mediated via DC-SIGN (CD209). Blocking DC-SIGN almost completely abrogated EV uptake, while blocking mannose receptor (MR, CD206) or dendritic cell immunoreceptor (DCIR, CLEC4A) had no effect on EV uptake. Mass spectrometric analysis of EV glycans revealed the presence of surface N-glycans with terminal Galβ1-4(Fucα1-3)GlcNAc (LewisX) motifs, and a wide array of fucosylated lipid-linked glycans, including LewisX, a known ligand for DC-SIGN. Stimulation of moDCs with schistosomula EVs led to increased expression of costimulatory molecules CD86 and CD80 and regulatory surface marker PD-L1. Furthermore, schistosomula EVs increased expression of IL-12 and IL-10 by moDCs, which was partly dependent on the interaction with DC-SIGN. These results provide the first evidence that glycosylation of S. mansoni EVs facilitates the interaction with host immune cells and reveals a role for DC-SIGN and EV-associated glycoconjugates in parasite-induced immune modulation.
Collapse
|
Journal Article |
5 |
36 |
64
|
Yoshino TP, Wu XJ, Gonzalez LA, Hokke CH. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates. Exp Parasitol 2013; 133:28-36. [PMID: 23085445 PMCID: PMC3647354 DOI: 10.1016/j.exppara.2012.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 11/21/2022]
Abstract
Host lectin-like recognition molecules may play an important role in innate resistance in Biomphalaria glabrata snails to larval schistosome infection, thus implicating parasite-expressed glycans as putative ligands for these lectin receptors. While host lectins may utilize specific glycan structures for parasite recognition, it also has been hypothesized that the parasite may use this system to evade immune detection by mimicking naturally-expressed host glycans, resulting in reduced immunorecognition capacity. By employing immunocytochemical (ICC) and Western blot assays using schistosome glycan-specific monoclonal antibodies (mABs) we sought to identify specific glycan epitopes (glycotopes) shared in common between larval Schistosoma mansoni and B. glabrata hemocytes, the primary immune effector cells in snails. Results confirmed the presence of selected larval glycotopes on subpopulations of hemocytes by ICC and association with numerous hemocyte proteins by Western blot analyses, including a trimannosyl core N-glycan (TriMan), and two fucosylated lacdiNAc (LDN) variants, F-LDN and F-LDN-F. Snail strain differences were seen in the prevalence of constitutively expressed F-LDN on hemocytes, and in the patterns of protein immunoreactivity with these mABs. In contrast, there was little to no hemocyte reactivity with mABs for Lewis X (LeX), LDN, LDN-F or LDN-DF. When intact hemocytes were exposed to larval transformation products (LTPs), distinct cell subpopulations displayed weak (LeX, LDN-DF) to moderate (LDN, LDN-F) glycotope reactivity by ICC, including snail strain differences in the prevalence of LDN-reactive cellular subsets. Far-Western blot analyses of the hemocytes following exposure to larval transformation proteins (LTPs) also revealed multiple mAB-reactive hemocyte protein bands for LeX, LDN, LDN-F, and LDN-DF. These results demonstrate the existence of complex patterns of shared larval glycan constitutively expressed on hemocytes and their proteins, as well as the ability of hemocytes to acquire shared glycans by the selective binding of parasite-released LTP. Unraveling the functional significance of these naturally expressed and acquired shared glycans on specific hemocyte populations represents an important challenge for future investigations.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
35 |
65
|
Yoshino TP, Brown M, Wu XJ, Jackson CJ, Ocadiz-Ruiz R, Chalmers IW, Kolb M, Hokke CH, Hoffmann KF. Excreted/secreted Schistosoma mansoni venom allergen-like 9 (SmVAL9) modulates host extracellular matrix remodelling gene expression. Int J Parasitol 2014; 44:551-63. [PMID: 24859313 PMCID: PMC4079936 DOI: 10.1016/j.ijpara.2014.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 12/31/2022]
Abstract
Schistosoma mansoni VAL9 (SmVAL9) is a secreted N-linked glycoprotein containing a unique, difucosyl modification. SmVAL9 is found throughout miracidia/sporocyst parenchymal cell inclusions/vesicles and germinal cells. SmVAL9 differentially regulates murine and snail matrix metalloproteinases.
The Schistosoma mansoni venom allergen-like (SmVAL) protein family consists of 29 members, each possessing a conserved α-β-α sandwich tertiary feature called the Sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) domain. While the SmVALs have been found in both excretory/secretory (E/S) products and in intra/sub-tegumental (non-E/S) fractions, the role(s) of this family in host/parasite relationships or schistosome developmental processes remains poorly resolved. In order to begin quantifying SmVAL functional diversity or redundancy, dissecting the specific activity (ies) of individual family members is necessary. Towards this end, we present the characterisation of SmVAL9; a protein previously found enriched in both miracidia/sporocyst larval transformation proteins and in egg secretions. While our study confirms that SmVAL9 is indeed found in soluble egg products and miracidia/sporocyst larval transformation proteins, we find it to be maximally transcribed/translated in miracidia and subsequently down-regulated during in vitro sporocyst development. SmVAL9 localisation within sporocysts appears concentrated in parenchymal cells/vesicles as well as associated with larval germinal cells. Furthermore, we demonstrate that egg-derived SmVAL9 carries an N-linked glycan containing a schistosome-specific difucosyl element and is an immunogenic target during chronic murine schistosomiasis. Finally, we demonstrate that recombinant SmVAL9 affects the expression of extracellular matrix, remodelling matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinase (TIMP) gene products in both Biomphalaria glabrata embryonic cell (BgMMP1) and Mus musculus bone marrow-derived macrophage (MmMMP2, MmMMP9, MmMMP12, MmMMP13, MmMMP14, MmMMP28, TIMP1 and TIMP2) in vitro cultures. These findings importantly suggest that excreted/secreted SmVAL9 participates in tissue reorganisation/extracellular matrix remodelling during intra-mammalian egg translocation, miracidia infection and intra-molluscan sporocyst development/migration.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
34 |
66
|
Balog CIA, Mayboroda OA, Wuhrer M, Hokke CH, Deelder AM, Hensbergen PJ. Mass spectrometric identification of aberrantly glycosylated human apolipoprotein C-III peptides in urine from Schistosoma mansoni-infected individuals. Mol Cell Proteomics 2010; 9:667-81. [PMID: 20071361 DOI: 10.1074/mcp.m900537-mcp200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schistosomiasis is a parasitic infection caused by Schistosoma flatworms, prime examples of multicellular parasites that live in the mammalian host for many years. Glycoconjugates derived from the parasite have been shown to play an important role in many aspects of schistosomiasis, and some of them are present in the circulation of the host. The aim of this study was to identify novel glycoconjugates related to schistosomiasis in urine of Schistosoma mansoni-infected individuals using a combination of glycopeptide separation techniques and in-depth mass spectrometric analysis. Surprisingly, we characterized a heterogeneous population of novel aberrantly O-glycosylated peptides derived from the C terminus of human apolipoprotein C-III (apoC-III) in urine of S. mansoni-infected individuals that were not detected in urine of non-infected controls. The glycan composition of these glycopeptides is completely different from what has been described previously for apoC-III. Most importantly, they lack sialylation and display a high degree of fucosylation. This study exemplifies the potential of mass spectrometry for the identification and characterization of O-glycopeptides without prior knowledge of either the glycan or the peptide sequence. Furthermore, our results indicate for the first time that as a result of S. mansoni infection the glycosylation of a host protein is altered.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
33 |
67
|
Bergwerff AA, van Oostrum J, Asselbergs FA, Bürgi R, Hokke CH, Kamerling JP, Vliegenthart JF. Primary structure of N-linked carbohydrate chains of a human chimeric plasminogen activator K2tu-PA expressed in Chinese hamster ovary cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:639-56. [PMID: 8462541 DOI: 10.1111/j.1432-1033.1993.tb17702.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A recombinant human plasminogen activator hybrid variant K2tu-PA, expressed in Chinese hamster ovary cells, is partially glycosylated at Asn12 (A chain, kringle-2 domain) and completely glycosylated at Asn247 (B chain, protease domain). After release of the N-linked carbohydrate chains by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F, the oligosaccharides were separated from the protein by gel permeation chromatography, then fractionated by FPLC on Mono Q, followed by HPLC on Lichrosorb-NH2, and analysed by 500-MHz 1H-NMR spectroscopy. The following types of carbohydrates occur: monosialylated diantennary (8%), disialylated diantennary (45%), disialylated tri- and tri'-antennary (1%), trisialylated tri- and tri'-antennary (28%), and tetrasialylated tetra-antennary (18%) structures, all having fucose in alpha(1-6)-linkage at the Asn-bound N-acetylglucosamine. Sialic acid occurred exclusively in alpha(2-3)-linkage to galactose, and consisted of N-acetylneuraminic acid (94%), N-glycolylneuraminic acid (3%), and N-acetyl-9-O-acetylneuraminic acid (3%). In addition, glycopeptide fragments corresponding with the A or B chain of K2tu-PA were analysed. The oligosaccharides attached to Asn12 are less processed than those attached to Asn247. Comparison of the glycosylation pattern of K2tu-PA with that of tissue-type plasminogen activator from different biological sources showed significant differences. Profiling studies on different K2tu-PA production batches demonstrated that the structures of N-linked oligosaccharides were identical, but that relative amounts vary with the applied isolation procedure of the chimeric glycoprotein.
Collapse
|
|
32 |
32 |
68
|
Meevissen MHJ, Balog CIA, Koeleman CAM, Doenhoff MJ, Schramm G, Haas H, Deelder AM, Wuhrer M, Hokke CH. Targeted glycoproteomic analysis reveals that kappa-5 is a major, uniquely glycosylated component of Schistosoma mansoni egg antigens. Mol Cell Proteomics 2011; 10:M110.005710. [PMID: 21372247 DOI: 10.1074/mcp.m110.005710] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycans present on glycoproteins from the eggs of the parasite Schistosoma mansoni are mediators of various immune responses of the human host, including T-cell modulation and granuloma formation, and they are the target of glycan-specific antibodies. Here we have analyzed the glycosylation of kappa-5, a major glycoprotein antigen from S. mansoni eggs using a targeted approach of lectin purification followed by mass spectrometry of glycopeptides as well as released glycans. We demonstrate that kappa-5 has four fully occupied N-glycosylation sites carrying unique triantennary glycans composed of a difucosylated and xylosylated core region, and immunogenic GalNAcβ1-4GlcNAc (LDN) termini. Furthermore, we show that the kappa-5 specific IgE antibodies in sera of S. mansoni-infected individuals are directed against the core region of the kappa-5 glycans. Whereas two previously analyzed immunomodulatory egg glycoproteins, IPSE/alpha-1 and omega-1, both express diantennary N-glycans with a difucosylated core and one or two Galβ1-4(Fucα1-3)GlcNAc (Lewis X) antennae, the kappa-5 glycosylation appears unique among the major soluble egg antigens of S. mansoni. The distinct structural and antigenic properties of kappa-5 glycans suggest a specific role for kappa-5 in schistosome egg immunogenicity.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
32 |
69
|
Tong M, Jacobi CE, van de Rijke FM, Kuijper S, van de Werken S, Lowary TL, Hokke CH, Appelmelk BJ, Nagelkerke NJD, Tanke HJ, van Gijlswijk RPM, Veuskens J, Kolk AHJ, Raap AK. A multiplexed and miniaturized serological tuberculosis assay identifies antigens that discriminate maximally between TB and non-TB sera. J Immunol Methods 2005; 301:154-63. [PMID: 15979638 DOI: 10.1016/j.jim.2005.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 03/07/2005] [Accepted: 04/20/2005] [Indexed: 11/23/2022]
Abstract
We have developed a multiplexed and miniaturized TB serological assay with the aim of identifying (combinations of) antigens that maximally discriminate between TB and non-TB patients. It features a microarray accommodating 54 TB antigens, less than 1 microl serum consumption and an indirect immunofluorescence detection protocol. With a panel of 20 TB and 80 non-TB sera we ranked combinations of TB antigens with respect to sensitivity and specificity of TB detection by means of logistic step-forward regression analysis. The highest-ranking TB antigen combination had an area-under-the-curve of the receiver-operator-characteristics (ROC) of 0.95. We also identified an antigen that on its own provided good specificity and sensitivity of TB detection (Ara6-BSA; area-under-the-ROC curve: 0.90). These area-under-the-ROC curve values are exceptionally high for a serological TB assay. We conclude that TB antigen microarrays permit rapid identification of TB antigens that, either alone or in combination, discriminate maximally between TB and non-TB patients and that such identification provides an excellent starting point for developing point-of-care diagnostic assays.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
31 |
70
|
Nicolardi S, van der Burgt YEM, Codée JDC, Wuhrer M, Hokke CH, Chiodo F. Structural Characterization of Biofunctionalized Gold Nanoparticles by Ultrahigh-Resolution Mass Spectrometry. ACS NANO 2017; 11:8257-8264. [PMID: 28686409 PMCID: PMC5616101 DOI: 10.1021/acsnano.7b03402] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/07/2017] [Indexed: 05/24/2023]
Abstract
Biofunctionalized gold nanoparticles (AuNPs) enable innovative translational research and development in biomedicine. Biomolecules such as peptides, proteins, lipids, and carbohydrates can be assembled onto AuNPs to yield nanomaterials with unique properties for applications in imaging, photothermal therapy, vaccination strategies, and drug delivery. The characterization of functionalized AuNPs still remains an analytical challenge that normally requires the combination of multiple techniques. Laser desorption/ionization (LDI) and matrix-assisted LDI (MALDI) have been applied successfully in combination with time-of-flight (TOF) mass spectrometry (MS) for the analysis of the surface chemistry of AuNPs functionalized with synthetic ligands, however only for ligands with a molecular mass limited to 1000 Da. TOF-MS-based approaches in addition exhibit limited performance in terms of mass resolution and MS/MS possibilities. To overcome these limitations, we designed an approach for the analysis of AuNPs based on ultrahigh resolution Fourier transform ion cyclotron resonance (FTICR) MS and a combination of LDI and MALDI. To illustrate the performance of the method, we present a comprehensive characterization of the surface chemistry of AuNPs conjugated via a thiol-ending linker to either the ovalbumin peptide (OVA 323-339), the Lewis X antigen (Galβ1-4[Fucα1-3]GlcNAcβ1) trisaccharide, the tetramannoside Manα1-2Manα1-2Manα1-3Manα1, or a mixture of both carbohydrates. Collision-induced dissociation (CID) was used to characterize the structure of pseudomolecular ions generated by LDI/MALDI in-depth. These included [M + H]+ and [M + Na]+, and importantly also [M + Au]+ and [M + 2Au-H]+ ions. This first observation of gold-containing pseudomolecular ions provides direct evidence for the Au-conjugation of ligands. In addition, we show the applicability of the method to monitor proteolytic cleavage of peptides that are conjugated to the AuNP surface. The presented LDI/MALDI-FTICR-MS and MS/MS approach will be applicable to the characterization of a wide range of functionalized AuNPs.
Collapse
|
research-article |
8 |
31 |
71
|
Hokke CH, Neeleman AP, Koeleman CA, van den Eijnden DH. Identification of an alpha3-fucosyltransferase and a novel alpha2-fucosyltransferase activity in cercariae of the schistosome Trichobilharzia ocellata: biosynthesis of the Fucalpha1-->2Fucalpha1-->3[Gal(NAc)beta1-->4]GlcNAc sequence. Glycobiology 1998; 8:393-406. [PMID: 9499387 DOI: 10.1093/glycob/8.4.393] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fucose is a major constituent of the protein- and lipid-linked glycans of the various life-cycle stages of schistosomes. These fucosylated glycans are highly antigenic and seem to play a role in the pathology of schistosomiasis. In this article we describe the identification and characterization of two fucosyltransferases (FucTs) in cercariae of the avian schistosome Trichobilharzia ocellata, a GDP-Fuc:[Galbeta1-->4]GlcNAcbeta-R alpha1-->3-FucT and a novel GDP-Fuc:Fucalpha-R alpha1-->2-FucT. Triton X-100 extracts of cercariae were assayed for FucT activity using a variety of acceptor substrates. Type 1 chain (Galbeta1-->3GlcNAc) based compounds were poor acceptors, whereas those based on a type 2 chain (Galbeta1-->4GlcNAc), whether alpha2'-fucosylated, alpha3'-sialylated, or unsubstituted, and whether present as oligosaccharide or contained in a glycopeptide or glycoprotein, all served as acceptor substrates. In this respect the schistosomal alpha3-FucT resembles human FucT V and VI rather than other known FucTs. N-ethylmaleimide, an inhibitor of several human FucTs, had no effect on the activity of the schistosomal alpha3-FucT, whereas GDP-beta-S was strongly inhibitory. Large scale incubations were carried out with Galbeta1-->4GlcNAc, GalNAcbeta1-->4GlcNAcbeta-O -(CH2)8COOCH3 and Fucalpha1-->3GlcNAcbeta1-->2Man as acceptor substrates and the products of the incubations were isolated using a sequence of chromatographic techniques. By methylation analysis and 2D-TOCSY and ROESY1H-NMR spectroscopy the products formed were shown to be Galbeta1-->4[Fucalpha1-->2Fucalpha1-->3]GlcNAc, GalNAcbeta1-->4[Fucalpha1-->2Fucalpha1-->3]GlcNAcbe ta-O-(CH2)8COOCH3, and Fucalpha1-->2Fucalpha1-->3GlcNAcbeta1-->2Man, respectively. It is concluded that the alpha2-FucT and alpha3-FucT are involved in the biosynthesis of the (oligomeric) Lewisx sequences and the Fucalpha1-->2Fucalpha1-->3GlcNAc structural element that have been described on schistosomal glycoconjugates.
Collapse
|
|
27 |
30 |
72
|
van Diepen A, van der Plas AJ, Kozak RP, Royle L, Dunne DW, Hokke CH. Development of a Schistosoma mansoni shotgun O-glycan microarray and application to the discovery of new antigenic schistosome glycan motifs. Int J Parasitol 2015; 45:465-75. [PMID: 25819714 DOI: 10.1016/j.ijpara.2015.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/05/2023]
Abstract
Upon infection with Schistosoma, antibody responses are mounted that are largely directed against glycans. Over the last few years significant progress has been made in characterising the antigenic properties of N-glycans of Schistosoma mansoni. Despite also being abundantly expressed by schistosomes, much less is understood about O-glycans and antibody responses to these have not yet been systematically analysed. Antibody binding to schistosome glycans can be analysed efficiently and quantitatively using glycan microarrays, but O-glycan array construction and exploration is lagging behind because no universal O-glycanase is available, and release of O-glycans has been dependent on chemical methods. Recently, a modified hydrazinolysis method has been developed that allows the release of O-glycans with free reducing termini and limited degradation, and we applied this method to obtain O-glycans from different S. mansoni life stages. Two-dimensional HPLC separation of 2-aminobenzoic acid-labelled O-glycans generated 362 O-glycan-containing fractions that were printed on an epoxide-modified glass slide, thereby generating the first shotgun O-glycan microarray containing naturally occurring schistosome O-glycans. Monoclonal antibodies and mass spectrometry showed that the O-glycan microarray contains well-known antigenic glycan motifs as well as numerous other, potentially novel, antibody targets. Incubations of the microarrays with sera from Schistosoma-infected humans showed substantial antibody responses to O-glycans in addition to those observed to the previously investigated N- and glycosphingolipid glycans. This underlines the importance of the inclusion of these often schistosome-specific O-glycans in glycan antigen studies and indicates that O-glycans contain novel antigenic motifs that have potential for use in diagnostic methods and studies aiming at the discovery of vaccine targets.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
30 |
73
|
Robijn MLM, Koeleman CAM, Wuhrer M, Royle L, Geyer R, Dwek RA, Rudd PM, Deelder AM, Hokke CH. Targeted identification of a unique glycan epitope of Schistosoma mansoni egg antigens using a diagnostic antibody. Mol Biochem Parasitol 2007; 151:148-61. [PMID: 17188765 DOI: 10.1016/j.molbiopara.2006.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 09/05/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
The eggs of Schistosoma mansoni express a plethora of glycoconjugate antigens. A specific subset of these antigens can be detected in the serum or urine of infected individuals by a diagnostic sandwich ELISA using the anti-carbohydrate monoclonal antibody (mAb) 114-4D12-A [Nourel Din MS, Nibbeling R, Rotmans JP, Polderman AM, Krijger FW, Deelder AM. Quantitative determination of circulating soluble egg antigen in urine and serum of Schistosoma mansoni-infected individuals using a combined two-site enzyme-linked immunosorbent assay. Am J Trop Med Hyg 1994;50:585-94]. We used affinity chromatography to isolate the 114-4D12-binding glycoprotein subset from soluble egg antigens (SEA) of S. mansoni. SEA and the isolated SEA-subset (SEA-4D12) were subjected to reductive beta-elimination and hydrazinolysis to release intact glycans and glycan fragments, respectively, from the protein backbones. The released glycans were characterised by matrix-assisted laser-desorption-ionisation time-of-flight (MALDI-TOF) mass spectrometry (MS), liquid-chromatography (LC)-MS and gas chromatography (GC)-MS linkage analysis. Glycans released by reductive beta-elimination from SEA-4D12 were larger and more heavily fucosylated than glycans released from SEA. Most SEA-4D12 glycans contained a branched O-glycan core structure carrying up to 4 N-acetylhexosamines per chain which were substituted with maximum 12 fucose residues. Hydrazinolysis of SEA-4D12 resulted in the release of fucosylated antenna fragments. After 2-aminobenzamide (2AB)-labelling these fragments were subjected to 114-4D12-affinity purification. Normal phase (NP)-LC analysis of the flow-through and retained fractions indicated that the Fucalpha1-2Fucalpha1-3GalNAcbeta1-4(Fucalpha1-2Fucalpha1-3)GlcNAcbeta1- element forms the epitope of mAb 114-4D12. Most O-glycans from SEA-4D12 contain this structural element. Epitope-bearing N-glycans have not been found. In terms of abundance in total SEA, only a minority of all glycans possesses the epitope. This multifucosylated motif has so far only been found in schistosomes, providing a structural basis for the high specificity of the diagnostic antibody.
Collapse
|
|
18 |
30 |
74
|
Echeverria B, Serna S, Achilli S, Vivès C, Pham J, Thépaut M, Hokke CH, Fieschi F, Reichardt NC. Chemoenzymatic Synthesis of N-glycan Positional Isomers and Evidence for Branch Selective Binding by Monoclonal Antibodies and Human C-type Lectin Receptors. ACS Chem Biol 2018; 13:2269-2279. [PMID: 29894153 DOI: 10.1021/acschembio.8b00431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here, we describe a strategy for the rapid preparation of pure positional isomers of complex N-glycans to complement an existing array comprising a larger number of N-glycans and smaller glycan structures. The expanded array was then employed to study context-dependent binding of structural glycan fragments by monoclonal antibodies and C-type lectins. A partial enzymatic elongation of semiprotected core structures was combined with the protecting-group-aided separation of positional isomers by preparative HPLC. This methodology, which avoids the laborious chemical differentiation of antennae, was employed for the preparation of eight biantennary N-glycans with Galβ1,4GlcNAc (LN), GalNAcβ1,4GlcNAc (LDN), and GalNAcβ1,4[Fucα1,3]GlcNAc (LDNF) motifs presented on either one or both antennae. Screening of the binding specificities of three anti-LeX monoclonal IgM antibodies raised against S. mansoni glycans and three C-type lectin receptors of the innate immune system, namely DC-SIGN, DC-SIGNR, and LSECtin, revealed a surprising context-dependent fine specificity for the recognition of the glycan motifs. Moreover, we observed a striking selection of one individual positional isomer over the other by the C-type lectins tested, underscoring the biological relevance of the structural context of glycan elements in molecular recognition.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
28 |
75
|
Yoshino TP, Wu XJ, Liu H, Gonzalez LA, Deelder AM, Hokke CH. Glycotope sharing between snail hemolymph and larval schistosomes: larval transformation products alter shared glycan patterns of plasma proteins. PLoS Negl Trop Dis 2012; 6:e1569. [PMID: 22448293 PMCID: PMC3308936 DOI: 10.1371/journal.pntd.0001569] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/04/2012] [Indexed: 12/19/2022] Open
Abstract
Recent evidence supports the involvement of inducible, highly diverse lectin-like recognition molecules in snail hemocyte-mediated responses to larval Schistosoma mansoni. Because host lectins likely are involved in initial parasite recognition, we sought to identify specific carbohydrate structures (glycans) shared between larval S. mansoni and its host Biomphalaria glabrata to address possible mechanisms of immune avoidance through mimicry of elements associated with the host immunoreactivity. A panel of monoclonal antibodies (mABs) to specific S. mansoni glycans was used to identify the distribution and abundance of shared glycan epitopes (glycotopes) on plasma glycoproteins from B. glabrata strains that differ in their susceptibilities to infection by S. mansoni. In addition, a major aim of this study was to determine if larval transformation products (LTPs) could bind to plasma proteins, and thereby alter the glycotopes exposed on plasma proteins in a snail strain-specific fashion. Plasma fractions (< 100 kDa/> 100 kDa) from susceptible (NMRI) and resistant (BS-90) snail strains were subjected to SDS-PAGE and immunoblot analyses using mAB to LacdiNAc (LDN), fucosylated LDN variants, Lewis X and trimannosyl core glycans. Results confirmed a high degree of glycan sharing, with NMRI plasma exhibiting a greater distribution/abundance of LDN, F-LDN and F-LDN-F than BS-90 plasma (< 100 kDa fraction). Pretreatment of blotted proteins with LTPs significantly altered the reactivity of specific mABs to shared glycotopes on blots, mainly through the binding of LTPs to plasma proteins resulting in either glycotope blocking or increased glycotope attachment to plasma. Many LTP-mediated changes in shared glycans were snail-strain specific, especially those in the < 100 kDa fraction for NMRI plasma proteins, and for BS-90, mainly those in the > 100 kDa fraction. Our data suggest that differential binding of S. mansoni LTPs to plasma proteins of susceptible and resistant B. glabrata strains may significantly impact early anti-larval immune reactivity, and in turn, compatibility, in this parasite-host system.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
28 |