1
|
Singh RP, Chidambara Murthy KN, Jayaprakasha GK. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:81-86. [PMID: 11754547 DOI: 10.1021/jf010865b] [Citation(s) in RCA: 656] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Antioxidant-rich fractions were extracted from pomegranate (Punica granatum) peels and seeds using ethyl acetate, methanol, and water. The extracts were screened for their potential as antioxidants using various in vitro models, such as beta-carotene-linoleate and 1,1-diphenyl-2-picryl hydrazyl (DPPH) model systems. The methanol extract of peels showed 83 and 81% antioxidant activity at 50 ppm using the beta-carotene-linoleate and DPPH model systems, respectively. Similarly, the methanol extract of seeds showed 22.6 and 23.2% antioxidant activity at 100 ppm using the beta-carotene-linoleate and DPPH model systems, respectively. As the methanol extract of pomegranate peel showed the highest antioxidant activity among all of the extracts, it was selected for testing of its effect on lipid peroxidation, hydroxyl radical scavenging activity, and human low-density lipoprotein (LDL) oxidation. The methanol extract showed 56, 58, and 93.7% inhibition using the thiobarbituric acid method, hydroxyl radical scavenging activity, and LDL oxidation, respectively, at 100 ppm. This is the first report on the antioxidant properties of the extracts from pomegranate peel and seeds. Owing to this property, the studies can be further extended to exploit them for their possible application for the preservation of food products as well as their use as health supplements and neutraceuticals.
Collapse
|
|
23 |
656 |
2
|
Negi PS, Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK. Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 1999; 47:4297-300. [PMID: 10552805 DOI: 10.1021/jf990308d] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Curcumin, the yellow color pigment of turmeric, is produced industrially from turmeric oleoresin. The mother liquor after isolation of curcumin from oleoresin contains approximately 40% oil. The oil was extracted from the mother liquor using hexane at 60 degrees C, and the hexane extract was separated into three fractions using silica gel column chromatography. These fractions were tested for antibacterial activity by pour plate method against Bacillus cereus, Bacillus coagulans, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Fraction II eluted with 5% ethyl acetate in hexane was found to be most active fraction. The turmeric oil, fraction I, and fraction II were analyzed by GC and GC-MS. ar-Turmerone, turmerone, and curlone were found to be the major compounds present in these fractions along with other oxygenated compounds.
Collapse
|
|
26 |
295 |
3
|
Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK. Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:3668-3672. [PMID: 12059141 DOI: 10.1021/jf025506a] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Commercially available curcumin, a bright orange-yellow color pigment of turmeric, consists of a mixture of three curcuminoids, namely, curcumin, demethoxycurcumin, and bisdemethoxycurcumin. These were isolated by column chromatography and identified by spectroscopic studies. The purity of the curcuminoids was analyzed by an improved HPLC method. HPLC separation was performed on a C(18) column using three solvents, methanol, 2% AcOH, and acetonitrile, with detection at 425 nm. Four different commercially available varieties of turmeric, namely, Salem, Erode, Balasore, and local market samples, were analyzed to detect the percentage of these three curcuminoids. The percentages of curcumin, demethoxycurcumin, and bisdemethoxycurcumin as estimated using their calibration curves were found to be 1.06 +/- 0.061 to 5.65 +/- 0.040, 0.83 +/- 0.047 to 3.36 +/- 0.040, and 0.42 +/- 0.036 to 2.16 +/- 0.06, respectively, in four different samples. The total percentages of curcuminoids are 2.34 +/- 0.171 to 9.18 +/- 0.232%.
Collapse
|
|
23 |
235 |
4
|
Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 2010; 109:515-527. [PMID: 20163489 DOI: 10.1111/j.1365-2672.2010.04677.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This study investigated the quorum sensing, biofilm and type three secretion system (TTSS) inhibitory properties of citrus flavonoids. METHODS AND RESULTS Flavonoids were tested for their ability to inhibit quorum sensing using Vibrio harveyi reporter assay. Biofilm assays were carried out in 96-well plates. Inhibition of biofilm formation in Escherichia coli O157:H7 and V. harveyi by citrus flavonoids was measured. Furthermore, effect of naringenin on expression of V. harveyi TTSS was investigated by semi-quantitative PCR. Differential responses for different flavonoids were observed for different cell-cell signalling systems. Among the tested flavonoids, naringenin, kaempferol, quercetin and apigenin were effective antagonists of cell-cell signalling. Furthermore, these flavonoids suppressed the biofilm formation in V. harveyi and E. coli O157:H7. In addition, naringenin altered the expression of genes encoding TTSS in V. harveyi. CONCLUSION The results of the study indicate a potential modulation of bacterial cell-cell communication, E. coli O157:H7 biofilm and V. harveyi virulence, by flavonoids especially naringenin, quercetin, sinensetin and apigenin. Among the tested flavonoids, naringenin emerged as potent and possibly a nonspecific inhibitor of autoinducer-mediated cell-cell signalling. Naringenin and other flavonoids are prominent secondary metabolites present in citrus species. Therefore, citrus, being a major source of some of these flavonoids and by virtue of widely consumed fruit, may modulate the intestinal microflora. SIGNIFICANCE AND IMPACT OF THE STUDY Currently, a limited number of naturally occurring compounds have demonstrated their potential in inhibition of cell-cell communications; therefore, citrus flavonoids may be useful as lead compounds for the development of antipathogenic agents.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
205 |
5
|
Patil BS, Jayaprakasha GK, Chidambara Murthy KN, Vikram A. Bioactive compounds: historical perspectives, opportunities, and challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:8142-8160. [PMID: 19719126 DOI: 10.1021/jf9000132] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mom's conventional wisdom of eating fruits and vegetables to lead a healthy life has evolved with scientific, fact-finding research during the past four decades due to advances in science of "Foods for Health". Epidemiological and prospective studies have demonstrated the vital role of fruits, vegetables, and nuts in reducing the risk of cancer and cardiovascular diseases. In recent years, several meta-analyses strongly suggested that by adding one serving of fruits and vegetables to daily diet, the risk of cardiovascular diseases will be decreased up to 7%. The multidisciplinary and partnership efforts of agriculture and medical scientists across the globe stimulated interest in establishing certain interdisciplinary centers and institutes focusing on "Foods for Health". While the consumption of various healthy foods continues, several questions about toxicity, bioavailability, and food-drug interactions of bioactive compounds are yet to be fully understood on the basis of scientific evidence. Recent research on elucidation of the molecular mechanisms to understand the "proof of the concept" will provide the perfect answer when consumers are ready for a "consumer-to-farm" rather than the current "farm-to-consumer" approach. The multidisciplinary research and educational efforts will address the role of healthy foods to improve eye, brain, and heart health while reducing the risk of cancer. Through this connection, this review is an attempt to provide insight and historical perspectives on some of the bioactive compounds from the day of discovery to their current status. The bioactive compounds discussed in this review are flavonoids, carotenoids, curcumin, ascorbic acid, and citrus limonoids.
Collapse
|
Historical Article |
16 |
151 |
6
|
Jena BS, Jayaprakasha GK, Singh RP, Sakariah KK. Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:10-22. [PMID: 11754536 DOI: 10.1021/jf010753k] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
(-)-Hydroxycitric acid [(-)-HCA] is the principal acid of fruit rinds of Garcinia cambogia, Garcinia indica, and Garcinia atroviridis. (-)-HCA was shown to be a potent inhibitor of ATP citrate lyase (EC 4.1.3.8), which catalyzes the extramitochondrial cleavage of citrate to oxaloacetate and acetyl-CoA: citrate + ATP + CoA --> acetyl-CoA + ADP + P(i) + oxaloacetate. The inhibition of this reaction limits the availability of acetyl-CoA units required for fatty acid synthesis and lipogenesis during a lipogenic diet, that is, a diet high in carbohydrates. Extensive animal studies indicated that (-)-HCA suppresses the fatty acid synthesis, lipogenesis, food intake, and induced weight loss. In vitro studies revealed the inhibitions of fatty acid synthesis and lipogenesis from various precursors. However, a few clinical studies have shown controversial findings. This review explores the literature on a number of topics: the source of (-)-HCA; the discovery of (-)-HCA; the isolation, stereochemistry, properties, methods of estimation, and derivatives of (-)-HCA; and its biochemistry, which includes inhibition of the citrate cleavage enzyme, effects on fatty acid synthesis and lipogenesis, effects on ketogenesis, other biological effects, possible modes of action on the reduction of food intake, promotion of glycogenesis, gluconeogenesis, and lipid oxidation, (-)-HCA as weight-controlling agent, and some possible concerns about (-)-HCA, which provides a coherent presentation of scattered literature on (-)-HCA and its plausible mechanism of action and is provocative of further research.
Collapse
|
Review |
23 |
139 |
7
|
Jayaprakasha GK, Jaganmohan Rao L, Sakariah KK. Antioxidant activities of flavidin in different in vitro model systems. Bioorg Med Chem 2004; 12:5141-6. [DOI: 10.1016/j.bmc.2004.07.028] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Revised: 07/13/2004] [Accepted: 07/14/2004] [Indexed: 11/26/2022]
|
|
21 |
126 |
8
|
Jayaprakasha GK, Jena BS, Negi PS, Sakariah KK. Evaluation of antioxidant activities and antimutagenicity of turmeric oil: a byproduct from curcumin production. Z NATURFORSCH C 2002; 57:828-35. [PMID: 12440720 DOI: 10.1515/znc-2002-9-1013] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Curcumin removed turmeric oleoresin (CRTO) was extracted with hexane concentrated to get turmeric oil, and that was fractionated using silica gel column chromatography to obtain three fractions. These fractions were analyzed by GC and GC-MS. Turmeric oil contained aromatic turmerone (31.32%), turmerone (15.08%) and curlone (9.7%), whereas fractions III has aromatic turmerone (44.5%), curlone (19.22%) and turmerone (10.88%) as major compounds Also, oxygenated compounds (5,6,8-10) were enriched in fraction III. Turmeric oil and its fractions were tested for antioxidant activity using the beta-carotene-linoleate model system and the phosphomolybdenum method. The fraction III showed maximum antioxidant capacity. These fractions were also used to determine their protective effect against the mutagenicity of sodium azide by means of the Ames test. All the fractions and turmeric oil exhibited a markedly antimutagenicity but fraction III was the most effective. The antioxidant effects of turmeric oil and its fractions may provide an explanation for their antimutagenic action.
Collapse
|
|
23 |
125 |
9
|
Jayaprakasha GK, Girennavar B, Patil BS. Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems. BIORESOURCE TECHNOLOGY 2008; 99:4484-4494. [PMID: 17935981 DOI: 10.1016/j.biortech.2007.07.067] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/25/2007] [Accepted: 07/25/2007] [Indexed: 05/25/2023]
Abstract
Antioxidant fractions from two different citrus species such as Rio Red (Citrus paradise Macf.) and Sour orange (Citrus aurantium L.) were extracted with five different polar solvents using Soxhlet type extractor. The total phenolic content of the extracts was determined by Folin-Ciocalteu method. Ethyl acetate extract of Rio Red and Sour orange was found to contain maximum phenolics. The dried fractions were screened for their antioxidant activity potential using in vitro model systems such as 1,1-diphenyl-2-picryl hydrazyl (DPPH), phosphomolybdenum method and nitroblue tetrazolium (NBT) reduction at different concentrations. The methanol:water (80:20) fraction of Rio Red showed the highest radical scavenging activity 42.5%, 77.8% and 92.1% at 250, 500 and 1000 ppm, respectively, while methanol:water (80:20) fraction of Sour orange showed the lowest radical scavenging activity at all the tested concentrations. All citrus fractions showed good antioxidant capacity by the formation of phosphomolybdenum complex at 200 ppm. In addition, superoxide radical scavenging activity was assayed using non-enzymatic (NADH/phenaxine methosulfate) superoxide generating system. All the extracts showed variable superoxide radical scavenging activity. Moreover, methanol:water (80:20) extract of Rio Red and methanol extract of Sour orange exhibited marked reducing power in potassium ferricyanide reduction method. The data obtained using above in vitro models clearly establish the antioxidant potential of citrus fruit extracts. However, comprehensive studies need to be conducted to ascertain the in vivo bioavailability, safety and efficacy of such extracts in experimental animals. To the best of our knowledge, this is the first report on antioxidant activity of different polar extracts from Rio Red and Sour oranges.
Collapse
|
|
17 |
119 |
10
|
Singh J, Metrani R, Shivanagoudra SR, Jayaprakasha GK, Patil BS. Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations in the Bioaccessibility of Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9124-9138. [PMID: 30969768 DOI: 10.1021/acs.jafc.8b07306] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bile acids are cholesterol-derived steroid molecules that serve various metabolic functions, particularly in the digestion of lipids. Gut microbes produce unconjugated and secondary bile acids through deconjugation and dehydroxylation reactions, respectively. Alterations in the gut microbiota have profound effects on bile acid metabolism, which can result in the development of gastrointestinal and metabolic diseases. Emerging research shows that diets rich in dietary fiber have substantial effects on the microbiota and human health. Plant-based foods are primary sources of bioactive compounds and dietary fiber, which are metabolized by microbes to produce different metabolites. However, the bioaccessibility of these compounds are not well-defined. In this review, we discuss the interaction of bile acids with dietary fiber, the gut microbiota, and their role in the bioaccessibility of bioactive compounds. To understand the possible mechanism by which bile acids bind fiber, molecular docking was performed between different dietary fiber and bile salts.
Collapse
|
Review |
6 |
109 |
11
|
Patil JR, Chidambara Murthy KN, Jayaprakasha GK, Chetti MB, Patil BS. Bioactive compounds from Mexican lime ( Citrus aurantifolia ) juice induce apoptosis in human pancreatic cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:10933-42. [PMID: 19919125 DOI: 10.1021/jf901718u] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lime (Citrus aurantifolia Swingle) is one of the major citrus fruits and widely consumed, but there is limited evidence about its health-promoting properties. Hence, an investigation was conducted to understand the chemopreventive effects of lime juice on pancreatic cancer cells and the possible mechanism for induction of apoptosis using Panc-28 cells. Freeze-dried lime juice was extracted with different solvents, such as chloroform, acetone, MeOH, and MeOH/water (8:2). The chloroform extract showed the highest (85.4 and 90%) radical-scavenging activity by 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) methods at 624 microg/mL, whereas the MeOH/water extract showed the lowest (<20%) activity. The active components were identified by high-performance liquid chromatography (HPLC) using a C-18 column as rutin, neohesperidin, hesperidin, and hesperitin. Furthermore, the limonoids identified are limonexic acid, isolimonexic acid, and limonin. All of the extracts of lime juice inhibited Panc-28 cancer cell growth. The MeOH extract exhibited the maximum activity, with an IC50 value of 81.20 microg/mL after 72 h. The inhibition of Panc-28 cells was in the range of 73-89%, at 100 microg/mL at 96 h. The involvement of apoptosis in induction of cytotoxicity was confirmed by expression of Bax, Bcl-2, casapase-3, and p53. The results of the present study clearly indicate that antioxidant activity is proportionate to the content of flavonoids and proliferation inhibition ability is proportionate to the content of both flavonoids and limonoids.
Collapse
|
|
16 |
89 |
12
|
Chidambara Murthy KN, Singh RP, Jayaprakasha GK. Antioxidant activities of grape (Vitis vinifera) pomace extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:5909-5914. [PMID: 12358458 DOI: 10.1021/jf0257042] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Antioxidant-rich fractions were extracted from grape (Vitis vinifera) pomace using ethyl acetate, methanol, and water. The extracts were screened for their potential as antioxidants in different models. The ethyl acetate, methanol, and water extracts showed 76, 87.1, and 21.7% antioxidant activities at 100 ppm, respectively, using the 1,1-diphenyl-2-picrylhydrazyl model system. As the methanol extract of grape pomace showed maximum antioxidant activity among all of the extracts, it was selected to determine its effect on lipid peroxidation, hydroxyl radical scavenging activity, and human low-density lipoprotein (LDL) oxidation. The methanol extract showed 71.7, 73.6, and 91.2% inhibition using the thiobarbituric acid method, hydroxyl radical scavenging activity, and LDL oxidation, respectively, at 200 ppm. Treatment of albino rats of the Wistar strain with a single dose of CCl(4) at 1.25 mL/kg of body weight decreases the activities of catalase, superoxide dismutase (SOD), and peroxidase by 81, 49, and 89%, respectively, whereas the lipid peroxidation value increased nearly 3-fold. Pretreatment of the rats with the methanolic extract of grape pomace at 50 mg/kg (in terms of catechin equivalents) followed by CCl(4) treatment causes restoration of catalase, SOD, and peroxidase by 43.6, 73.2, and 54%, respectively, as compared with control, whereas lipid peroxidation was restored to values comparable with the control. Histopathological studies of the liver of different groups also support the protective effects exhibited by the methanol extract of grape pomace by restoring the normal hepatic architecture. Owing to this property, the studies on grape pomace can be further extended to exploit its possible application for the preservation of food products as well as a health supplement and neutraceutical.
Collapse
|
|
23 |
86 |
13
|
Girennavar B, Poulose SM, Jayaprakasha GK, Bhat NG, Patil BS. Furocoumarins from grapefruit juice and their effect on human CYP 3A4 and CYP 1B1 isoenzymes. Bioorg Med Chem 2006; 14:2606-12. [PMID: 16338240 DOI: 10.1016/j.bmc.2005.11.039] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 11/17/2005] [Accepted: 11/21/2005] [Indexed: 11/20/2022]
Abstract
Bioactive compounds present in grapefruit juice are known to increase the bioavailability of certain medications by acting as potent CYP 3A4 inhibitors. An efficient technique has been developed for isolation and purification of three furocoumarins. The isolated compounds have been tested for the inhibition of human CYP 1B1 isoform using specific substrates. Grapefruit juice was extracted with ethyl acetate (EtOAc) and the dried extract was loaded onto silica gel column chromatography. Further, column fractions were subjected to preparative HPLC to obtain three compounds. The purity of these compounds was analyzed by HPLC and structures were determined by NMR studies. The identified compounds, bergamottin, 6',7'-dihydroxybergamottin (DHB), and paradisin-A, were tested for their inhibitory effects on hydroxylase and O-dealkylase activities of human cytochrome P450 isoenzymes CYP 3A4 and CYP 1B1. Paradisin-A was found to be a potent CYP 3A4 inhibitor with an IC50 of 1.2 microM followed by DHB and bergamottin. All three compounds showed a substantial inhibitory effect on CYP 3A4 below 10 microM. Inhibitory effects on CYP 1B1 exhibited a greater variation due to the specificity of substrates. Paradisin A showed an IC50 of 3.56+/-0.12 microM for the ethoxy resorufin O-dealkylase (EROD) activity and 33.56+/-0.72 microM for the benzyloxy resorufin (BROD). DHB and bergamottin showed considerable variations for EROD and BROD activities with an IC50 of 7.17 microM and 13.86 microM, respectively.
Collapse
|
|
19 |
85 |
14
|
Jayaprakasha GK, Ohnishi-Kameyama M, Ono H, Yoshida M, Jaganmohan Rao L. Phenolic constituents in the fruits of Cinnamomum zeylanicum and their antioxidant activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:1672-9. [PMID: 16506818 DOI: 10.1021/jf052736r] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Defatted cinnamon fruit powder was successively extracted with benzene ethyl acetate, acetone, MeOH, and water. The concentrated water extract contained the maximum amount of phenolics and showed the highest antioxidant activities. Hence, it was fractionated by Diaion HP-20SS, Diaion HP-20, and Sephadex LH-20 column chromatographies. It gave five purified compounds, the purities of which were analyzed by HPLC. Compounds 1-5 were identified as 3,4-dihydroxybenzoic acid (protocatechuic acid), epicatechin-(2beta-->O-7,4beta-->8)-epicatechin-(4beta-->8)-epicatechin (cinnamtannin B-1), 4-[2,3-dihydro-3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-(methoxy)benzofuranyl]-2-methoxyphenyl beta-d-glucopyranoside (urolignoside), quercetin-3-O-(6-O-alpha-l-rhamnopyranosyl)-beta-d-glucopyranoside (rutin), and quercetin-3-O-alpha-l-rhamnopyranoside by using extensive spectral studies. The antioxidant activities of purified compounds were screened for their antioxidative potential using beta-carotene-linoleate and 1,1-diphenyl-2-picrylhydrazyl model systems. All of the compounds showed antioxidant and radical scavenging activities. This is the first report of the isolation and identification of nonvolatile constituents and as well as antioxidant activities from cinnamon fruits.
Collapse
|
|
19 |
83 |
15
|
Jayaprakasha GK, Mandadi KK, Poulose SM, Jadegoud Y, Nagana Gowda GA, Patil BS. Inhibition of colon cancer cell growth and antioxidant activity of bioactive compounds from Poncirus trifoliata (L.) Raf. Bioorg Med Chem 2007; 15:4923-32. [PMID: 17512744 DOI: 10.1016/j.bmc.2007.04.044] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/23/2007] [Accepted: 04/25/2007] [Indexed: 12/01/2022]
Abstract
Recently several plant derived natural compounds have been screened for their anticancer activity in order to identify putative compounds with novel structures or mechanism of action. In the present study, fruits of Poncirus trifoliata were extracted with acetone and loaded onto silica gel column chromatography. The column was eluted with different solvents to obtain two bioactive compounds. The purity of compounds was analyzed by HPLC and their structures were identified by 1H and 13C NMR experiments as beta-sitosterol and 2-hydroxy-1,2,3-propanetricarboxylic acid 2-methyl ester (HPCME). beta-Sitosterol, HPCME, and trolox were tested for their antioxidant capacity by oxygen radical absorbance capacity (ORAC) measurement. Further, these compounds were tested for their inhibition of cancer cell proliferation and apoptosis using human colon cancer cell line (HT-29). These results were compared with the corresponding activity on non-cancerous (COS-1 fibroblast) cells. Cell proliferation and induction of apoptosis were determined by MTT assay and nuclear staining. The MTT assay indicated that both the compounds exhibited differential inhibition at various concentrations. Significant arrest of cell growth was observed with beta-sitosterol even at low concentration such as 0.63 microM in 48 h and none of the compounds exerted any apparent cytostatic effects on the non-cancerous COS-1 fibroblast cells. Growth inhibition assay suggested the potential use of bioactive compounds as cancer chemopreventive and therapeutic agents. This is the first report on HPCME isolation and identification from Rutaceae family and beta-sitosterol from P. trifoliata.
Collapse
|
|
18 |
80 |
16
|
Jayaprakasha GK, Rao LJ. Phenolic constituents from the lichen Parmotrema stuppeum (Nyl.) Hale and their antioxidant activity. Z NATURFORSCH C 2000; 55:1018-22. [PMID: 11204179 DOI: 10.1515/znc-2000-11-1227] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lichen, Parmotrema stuppeum (P. stuppeum) was successively extracted with benzene and acetone. Both the extracts were fractionated on 1% oxalic acid impregnated silica gel column to obtain four phenolic compounds. The structures of compounds were identified by 1H and 13C NMR spectra as methyl orsenillate, orsenillic acid, atranorin and lecanoric acid respectively. Antioxidant activity of benzene extract, acetone extract and isolated compounds were evaluated in a beta-carotene-linoleate model system. The pure compounds showed moderate antioxidant activity. This is the first report on the isolation and characterisation of compounds from the lichen P. stuppeum as well as on their antioxidant activity.
Collapse
|
|
25 |
77 |
17
|
Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK. Volatile constituents from Cinnamomum zeylanicum fruit stalks and their antioxidant activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:4344-4348. [PMID: 12848508 DOI: 10.1021/jf034169i] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cinnamomum zeylanicum Blume is an important spice and aromatic crop having wide applications in flavoring, perfumery, beverages, and medicines. The steam-distilled volatile oil from cinnamon fruit stalks was analyzed with GC and GC-MS. It showed the presence of hydrocarbons (44.7%) and oxygenated compounds (52.6%). Twenty-seven compounds constituting ca. 95.98% of the volatile oil were characterized. (E)-Cinnamyl acetate (36.59%) and (E)-caryophyllene (22.36%) are found to be major compounds. The volatile oil was screened for its potential as an antioxidant by using in vitro models, such as the beta-carotene-linoleate and phosphomolybdenum complex method. The volatile oil showed 55.94% and 66.9% antioxidant activity at 100 and 200 ppm concentration, respectively. Also, the volatile oil showed good antioxidant capacity, using the formation of the phosphomolybdenum complex. A comparison of the chemical composition of the volatile oil was made with that of buds, flowers, and fruits. This is the first report on the chemical composition of volatile oil of the fruit stalks of this species and its antioxidant activity.
Collapse
|
|
22 |
77 |
18
|
Vikram A, Jesudhasan PR, Jayaprakasha GK, Pillai SD, Patil BS. Citrus limonoids interfere with Vibrio harveyi cell-cell signalling and biofilm formation by modulating the response regulator LuxO. MICROBIOLOGY-SGM 2010; 157:99-110. [PMID: 20864476 DOI: 10.1099/mic.0.041228-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Citrus limonoids are unique secondary metabolites, characterized by a triterpenoid skeleton with a furan ring. Studies have demonstrated beneficial health properties of limonoids. In addition, certain citrus limonoids play a role in plant defence against insect pests. In the present study, five limonoids were purified from sour orange and evaluated for their ability to inhibit cell-cell signalling. The purified limonoids were tested for their ability to interfere with cell-cell signalling and biofilm formation in Vibrio harveyi. Isolimonic acid, deacetylnomilinic acid glucoside and ichangin demonstrated significant inhibition of autoinducer-mediated cell-cell signalling and biofilm formation. Furthermore, isolimonic acid and ichangin treatment resulted in induced expression of the response regulator gene luxO. In addition, luxR promoter activity was not affected by isolimonic acid or ichangin. Therefore, the ability of isolimonic acid and ichangin to interfere with cell-cell signalling and biofilm formation seems to stem from the modulation of luxO expression. The results suggest that isolimonic acid and ichangin are potent modulators of bacterial cell-cell signalling.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
77 |
19
|
Chidambara Murthy KN, Jayaprakasha GK, Kumar V, Rathore KS, Patil BS. Citrus limonin and its glucoside inhibit colon adenocarcinoma cell proliferation through apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2314-2323. [PMID: 21338095 DOI: 10.1021/jf104498p] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The current study was an attempt to elucidate the mechanism of human colon cancer cell proliferation inhibition by limonin and limonin glucoside (LG) isolated from seeds of Citrus reticulata. The structures of purified compounds were confirmed by NMR and quantified using HPLC. These compounds of more than 95% purity were subjected to proliferation inhibition assay using human colon adenocarcinoma (SW480) cells. The IC50 value of 54.74 and 37.39 μM was observed for limonin and LG, respectively at 72 h. Following confirmation of proliferation inhibition, pattern of DNA fragmentation and activation of caspase-3 of the cells treated with limonoids suggest involvement of apoptosis. Furthermore, reduction in the transcription ratio of bcl2/bax and induction of cytochrome c release from mitochondria to cytosol with treatment of limonoids confirm the activation of intrinsic apoptosis pathway. The activity of Bax and Bcl2 was confirmed through analysis of mitochondrial membrane potential and intracellular calcium in the cells treated with limonin and LG; the net content of caspase-8 was not affected by limonoids. Results of the current study provide compelling evidence on the induction of mitochondria mediated intrinsic apoptosis by both limonin and LG in cultured SW480 cells for the first time.
Collapse
|
|
14 |
64 |
20
|
Chidambara Murthy KN, Jayaprakasha GK, Patil BS. The natural alkaloid berberine targets multiple pathways to induce cell death in cultured human colon cancer cells. Eur J Pharmacol 2012; 688:14-21. [DOI: 10.1016/j.ejphar.2012.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/22/2012] [Accepted: 05/04/2012] [Indexed: 02/03/2023]
|
|
13 |
58 |
21
|
Joseph GS, Jayaprakasha GK, Selvi AT, Jena BS, Sakariah KK. Antiaflatoxigenic and antioxidant activities of Garcinia extracts. Int J Food Microbiol 2005; 101:153-60. [PMID: 15862877 DOI: 10.1016/j.ijfoodmicro.2004.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 10/20/2004] [Accepted: 11/12/2004] [Indexed: 11/30/2022]
Abstract
The effect of hexane and chloroform extracts from the fruit rinds of Garcinia cowa and Garcinia pedunculata on the growth and aflatoxin production in Aspergillus flavus was studied using peanut powder as a model food system. The growth of A. flavus was completely inhibited by the hexane and chloroform extracts from G. cowa and chloroform extract from G. pedunculata at 3000 ppm concentration, which was considered as the minimum inhibitory concentration (MIC). The MIC for the hexane extract of G. pedunculata was at 4000 ppm. Both the extracts from G. cowa inhibited aflatoxin B1 production upto 100% at a lower concentration of 2000 ppm. It was observed that, at lower concentration of the extracts from G. cowa and G. pedunculata, the degree of inhibition of aflatoxin production was much higher than the inhibition of fungal growth. The hexane and chloroform extracts from G. cowa and G. pedunculata were also studied for their antioxidant capacity by the formation of phosphomolybdenum complex at 100 ppm concentration and reducing power by potassium ferricyanide reduction method at various concentrations. Hexane and chloroform extracts from G. cowa showed higher antioxidant capacity than G. pedunculata extracts. Similarly, both the extracts from G. cowa showed higher reducing power than the extracts from G. pedunculata. The antiaflatoxigenic activities of the extracts from G. cowa and G. pedunculata may be due to their effective antioxidative properties, which could suppress the biosynthesis of aflatoxin.
Collapse
|
|
20 |
58 |
22
|
Jayaprakasha GK, Negi PS, Sikder S, Rao LJ, Sakariah KK. Antibacterial activity of Citrus reticulata peel extracts. Z NATURFORSCH C 2000; 55:1030-4. [PMID: 11204182 DOI: 10.1515/znc-2000-11-1230] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Citrus peels were successively extracted with hexane, chloroform and acetone using a soxhlet extractor. The hexane and chloroform extracts were fractionated into alcohol-soluble and alcohol-insoluble fractions. These fractions were tested against different gram positive and gram negative bacteria. The EtOH-soluble fraction was found to be most effective. Fractionation of EtOH-soluble fraction on silica gel column yielded three polymethoxylated flavones, namely desmethylnobiletin, nobiletin and tangeretin. Their structures were confirmed by UV, 1H, 13C NMR and mass spectral studies. The findings indicated a potential of these natural compounds as biopreservatives in food applications.
Collapse
|
Comparative Study |
25 |
55 |
23
|
Vikram A, Jayaprakasha GK, Patil BS. Simultaneous determination of citrus limonoid aglycones and glucosides by high performance liquid chromatography. Anal Chim Acta 2007; 590:180-6. [PMID: 17448343 DOI: 10.1016/j.aca.2007.03.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/12/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
High performance liquid chromatography (HPLC) method has been developed for simultaneous quantification of limonoid aglycones and glucosides on a reversed phase C18 column using a binary solvent system, coupled with diode array detector. Seven limonoids such as limonin, nomilin, isolimonic acid, ichangin, isoobacunoic acid, limonin 17-beta-D glucopyranoside and deacetyl nomilinic acid 17-beta-D glucopyranoside were separated and detected at 210 nm. Furthermore, limonoids were separated, identified and quantified in four varieties of citrus fruits and seeds using developed method. Limonin and limonin glucoside were found to be the predominant limonoid aglycone and glucoside, respectively, in all tested samples. The sensitivity of the method was found to be 0.25-0.50 microg for tested limonoids.
Collapse
|
|
18 |
49 |
24
|
Jayaprakasha GK, Negi PS, Anandharamakrishnan C, Sakariah KK. Chemical composition of turmeric oil--a byproduct from turmeric oleoresin industry and its inhibitory activity against different fungi. Z NATURFORSCH C 2001; 56:40-4. [PMID: 11302211 DOI: 10.1515/znc-2001-1-207] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Curcumin, the yellow coloring pigment of turmeric is produced industrially from turmeric oleoresin. The mother liquor after isolation of curcumin from oleoresin known as curcumin removed turmeric oleoresin (CRTO) was extracted three times with n-hexane at room temperature for 30 min to obtain turmeric oil. The turmeric oil was subjected to fractional distillation under vacuum to get two fractions. These fractions were tested for antifugal activity against Aspergillus flavus, A. parasiticus, Fusarium moniliforme and Penicillium digitatum by spore germination method. Fraction II was found to be more active. The chemical constituents of turmeric oil, fraction I and fraction II were determined by GC and identified by GC-MS. Aromatic turmerone, turmerone and curlone were major compounds present in fraction II along with other oxygenated compounds.
Collapse
|
|
24 |
45 |
25
|
Jayaprakasha GK, Jadegoud Y, Nagana Gowda GA, Patil BS. Bioactive compounds from sour orange inhibit colon cancer cell proliferation and induce cell cycle arrest. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:180-186. [PMID: 20000570 DOI: 10.1021/jf9027816] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Epidemiological studies suggest that dietary limonoids and phytosterols offer protection from certain types of cancers. Potential cancer preventive constituents of sour orange (Citrus aurantium L.) were isolated and identified from ethyl acetate extract. The structures of the compounds were identified by one-dimensional (1H or 13C) and two-dimensional (1H-H and 1H-13C) nuclear magnetic resonance experiments as limonexic acid and beta-sitosterol glucoside (SG). The identified compounds were tested for the potential inhibition of human colon cancer cell (HT-29) proliferation, apoptosis, and also noncancerous cells (COS-1). Cell proliferation, arrest of the cell cycle, and induction of apoptosis were assessed by MTT assay, flow cytometry, and nuclear staining methods, respectively. The MTT assay indicated that both compounds exhibited significant inhibition at various concentrations. These compounds did not show any toxic effects on noncancerous cells. These compounds caused 4-5-fold increases in the counts of G2/M stage cells at 50 microM, indicating a potential role in cell cycle arrest. These findings support the hypothesis that limonoids and phytosterols are effective apoptosis-promoting agents and incorporation of enriched fractions of these compounds in the diet may serve to prevent colon cancer. To the best of our knowledge, this is the first report of the isolation, identification, and cell proliferation assay for limonexic acid and SG from sour orange.
Collapse
|
|
15 |
45 |