51
|
Adcock I. Oxidative stress and inflammation: The link between COPD and lung cancer. Toxicol Lett 2012. [DOI: 10.1016/j.toxlet.2012.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
52
|
Janka-Junttila M, Hasala H, Adcock I, Moilanen E, Kankaanranta H. Dexamethasone and RU24858 Induce Survival and Growth Factor Receptor Bound Protein 2, Leukotriene B4 Receptor 1 and Annexin-1 Expression in Primary Human Neutrophils. J Cell Death 2012; 5:21-9. [PMID: 26448690 PMCID: PMC4583096 DOI: 10.4137/jcd.s9097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glucocorticoids are widely used anti-inflammatory medication in diseases like asthma and chronic obstructive pulmonary disease. Glucocorticoids can either activate (transactivation) or inhibit (transrepression) transcription. RU24858 was introduced as a “dissociated” glucocorticoid and it has been reported to transrepress but not to transactivate. The aim of this study was to compare the effects of RU24858 and dexamethasone in human neutrophils. RU24858 delayed spontaneous neutrophil apoptosis and further enhanced GM-CSF- induced neutrophil survival to a similar extent as dexamethasone. Like dexamethasone RU24858 also reduced CXCL8 and MIP-1α. Unexpectedly however, RU24858 increased the expression of the glucocorticoid-inducible genes BLT-1, Annexin-1 and Grb-2 in neutrophils to a similar level as seen with dexamethasone. We have shown here that dexamethasone and RU24858 both increase Grb-2, BLT1 and Annexin-1 expression and inhibit CXCL8 and MIP-1α production. This suggests that RU24858 was not able to dissociate between transactivation and transrepression in human neutrophils but enhanced neutrophil survival.
Collapse
|
53
|
Ngkelo A, Meja K, Yeadon M, Adcock I, Kirkham PA. LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and Giα dependent PI-3kinase signalling. J Inflamm (Lond) 2012; 9:1. [PMID: 22239975 PMCID: PMC3293082 DOI: 10.1186/1476-9255-9-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/12/2012] [Indexed: 11/10/2022] Open
Abstract
COPD is a disease of innate immunity and bacterial infections are a dominant cause of exacerbations in the later stages resulting in poor health and high mortality. The pathogen-associated molecular pattern (PAMP) lipopolysaccharide (LPS) is sensed by immune cells through activation of the toll-like receptor 4 (TLR4). This leads to the activation of NADPH oxidase (NOX) and NF-κB which together drive COPD inflammation. In this study we show in human PBMCs that LPS stimulated proinflammatory cytokine release (CXCL8 and IL6) was inhibited by approximately 50% by the broad specificity phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin. Our results also demonstrate that activation of PI3K following LPS stimulation is mediated by a NOX4 dependent mechanism releasing endogenous H2O2, as the NOX4 inhibitor apocynin blocked LPS induced AKT phosphorylation. Moreover, LPS-induced PI3K activation was inhibited by the anti-oxidant N-acetylcysteine in a concentration dependent manner (IC50 ~100 μM). In addition, our data demonstrated that inhibition of small G proteins, by pre-treatment with pertussis toxin, inhibited LPS-induced AKT phosphorylation. Furthermore, the G-protein inhibitors pertussis toxin and mastoparan both inhibited LPS-induced CXCL8 and IL-6 release by approximately 50%. Together, these data indicate there is a mechanism in human PBMCs where TLR4 activation by LPS leads to ROS generation through NOX4 and activation of the PI3K pathway. This effect is apparently mediated through small G proteins facilitating the release of pro-inflammatory cytokines.
Collapse
|
54
|
Perry MM, Hui CK, Whiteman M, Wood ME, Adcock I, Kirkham P, Michaeloudes C, Chung KF. Hydrogen sulfide inhibits proliferation and release of IL-8 from human airway smooth muscle cells. Am J Respir Cell Mol Biol 2011; 45:746-52. [PMID: 21297080 PMCID: PMC3577139 DOI: 10.1165/rcmb.2010-0304oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hydrogen sulfide (H(2)S) is synthesized intracellularly by the enzymes cystathionine-γ-lyase and cystathionine-β-synthase (CBS), and is proposed to be a gasotransmitter with effects in modulating inflammation and cellular proliferation. We determined a role of H(2)S in airway smooth muscle (ASM) function. ASM were removed from resection or transplant donor lungs and were placed in culture. Proliferation of ASM was induced by FCS and the proinflammatory cytokine, IL-1β. Proliferation of ASM and IL-8 release were measured by bromodeoxyuridine incorporation and ELISA, respectively. Exposure of ASM to H(2)S "donors" inhibited this proliferation and IL-8 release. Methemoglobin, a scavenger of endogenous H(2)S, increased DNA synthesis induced by FCS and IL-1β. In addition, methemoglobin increased IL-8 release induced by FCS, but not by IL-1β, indicating a role for endogenous H(2)S in these systems. Inhibition of CBS, but not cystathionine-γ-lyase, reversed the inhibitory effect of H(2)S on proliferation and IL-8 release, indicating that this is dependent on CBS. CBS mRNA and protein expression were inhibited by H(2)S donors, and were increased by methemoglobin, indicating that CBS is the main enzyme responsible for endogenous H(2)S production. Finally, we found that exogenous H(2)S inhibited the phosphorylation of extracellular signal-regulated kinase-1/2 and p38, which could represent a mechanism by which H(2)S inhibited cellular proliferation and IL-8 release. In summary, H(2)S production provides a novel mechanism for regulation of ASM proliferation and IL-8 release. Therefore, regulation of H(2)S may represent a novel approach to controlling ASM proliferation and cytokine release that is found in patients with asthma.
Collapse
|
55
|
Caramori G, Casolari P, Cavallesco GN, Giuffrè S, Adcock I, Papi A. Mechanisms involved in lung cancer development in COPD. Int J Biochem Cell Biol 2011; 43:1030-44. [DOI: 10.1016/j.biocel.2010.08.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/07/2010] [Accepted: 08/13/2010] [Indexed: 11/16/2022]
|
56
|
Caramori G, Casolari P, Giuffrè S, Barczyk A, Adcock I, Papi A. COPD pathology in the small airways. Panminerva Med 2011; 53:51-70. [PMID: 21346704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the last quarter of century, the analysis of small airways specimens obtained from chronic obstructive pulmonary disease (COPD) patients compared with those from a control group of age-matched smokers with normal lung function has provided novel insights on the potential role of the different inflammatory and structural cells, pro/anti-inflammatory mediators and intracellular signalling pathways, contributing to a better knowledge of the pathogenesis of stable COPD. This also has provided a scientific rationale for new drugs discovery and targeting to the small airways. This review summarizes and discusses the pathology of small airways of stable COPD patients, of different severity, compared with control smokers with normal lung function.
Collapse
|
57
|
Triantaphyllopoulos K, Hussain F, Pinart M, Zhang M, Li F, Adcock I, Kirkham P, Zhu J, Chung KF. A model of chronic inflammation and pulmonary emphysema after multiple ozone exposures in mice. Am J Physiol Lung Cell Mol Physiol 2011; 300:L691-700. [PMID: 21355040 DOI: 10.1152/ajplung.00252.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress plays a role in the pathophysiology of emphysema through the activation of tissue proteases and apoptosis. We examined the effects of ozone exposure by exposing BALB/c mice to either a single 3-h exposure or multiple exposures over 3 or 6 wk, with two 3-h exposures per week. Compared with air-exposed mice, the increase in neutrophils in bronchoalveolar lavage fluid and lung inflammation index was greatest in mice exposed for 3 and 6 wk. Lung volumes were increased in 3- and 6-wk-exposed mice but not in single-exposed. Alveolar space and mean linear intercept were increased in 6- but not 3-wk-exposed mice. Caspase-3 and apoptosis protease activating factor-1 immunoreactivity was increased in the airway and alveolar epithelium and macrophages of 3- and 6-wk-exposed mice. Interleukin-13, keratinocyte chemoattractant, caspase-3, and IFN-γ mRNA were increased in the 6-wk-exposed group, but heme oxygenase-1 (HO-1) mRNA decreased. matrix metalloproteinase-12 (MMP-12) and caspase-3 protein expression increased in lungs of 6-wk-exposed mice. Collagen area increased and epithelial area decreased in airway wall at 3- and 6-wk exposure. Exposure of mice to ozone for 6 wk induced a chronic inflammatory process, with alveolar enlargement and damage linked to epithelial apoptosis and increased protease expression.
Collapse
|
58
|
Price L, Caramori G, Dorfmuller P, Perros F, Zhu J, Shao D, Humbert M, Adcock I, Wort S. P29 Endothelial cell NF-kB activation is increased in human idiopathic PAH. Thorax 2010. [DOI: 10.1136/thx.2010.150961.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
59
|
Price LC, Wort SJ, Montani D, Tcherakian C, Dorfmuller P, Souza R, Shao D, Simonneau G, Howard LS, Adcock I, Humbert M, Perros F. S152 Dexamethasone reverses established monocrotaline-induced pulmonary hypertension in rats and increases pulmonary BMPR2 expression. Thorax 2010. [DOI: 10.1136/thx.2010.150953.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
60
|
Varani K, Caramori G, Vincenzi F, Tosi A, Barczyk A, Contoli M, Casolari P, Triggiani M, Hansel T, Leung E, Maclennan S, Barnes PJ, Chung KF, Adcock I, Papi A, Borea PA. Oxidative/nitrosative stress selectively altered A(2B) adenosine receptors in chronic obstructive pulmonary disease. FASEB J 2009; 24:1192-204. [PMID: 20008542 DOI: 10.1096/fj.09-139485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The primary aim of this study was to investigate adenosine receptors (ARs) in bronchoalveolar lavage (BAL) macrophages from patients with chronic obstructive pulmonary disease (COPD) and age-matched healthy smokers. A(2B)ARs were significantly decreased in BAL macrophages from patients with COPD when compared with healthy smokers. The effect of proinflammatory cytokines and oxidative/nitrosative stress on AR expression and function in U937 cells before and after PMA treatment was evaluated. IL-1beta and TNF-alpha treatment up-regulated A(2A)- and A(3)ARs but not A(1)- or A(2B)ARs, whereas IL-6 did not modify AR expression. In contrast, oxidative/nitrosative stress selectively decreased A(2B)AR expression, which was associated with a reduction in the potency of the adenosine agonist 5'-N-ethylcarboxamideadenosine (NECA) to induce cAMP. Further, the ability of NECA to enhance cell proliferation was increased after oxidative/nitrosative stress. The specific involvement of A(2B)ARs was investigated by using potent and selective A(2B)AR antagonist and by A(2B)AR knockdown using siRNA and demonstrated responses similar to those obtained with oxidative/nitrosative stress. N-acetylcysteine (NAC), an antioxidant agent, counteracted the decrease in A(2B)AR expression, as well as the altered NECA effects on cAMP and cell proliferation. These findings highlight the central role of A(2B)ARs in alveolar macrophages, suggesting that their modulation could represent an innovative pharmacological strategy to manage COPD.-Varani, K., Caramori, G., Vincenzi, F., Tosi, A., Barczyk, A., Contoli, M., Casolari, P., Triggiani, M., Hansel, T., Leung, E., MacLennan, S., Barnes, P. J., Fan Chung, K., Adcock, I., Papi, A., Borea, P. A. Oxidative/nitrosative stress selectively altered A(2B) adenosine receptors in chronic obstructive pulmonary disease.
Collapse
|
61
|
Di Stefano A, Caramori G, Gnemmi I, Contoli M, Vicari C, Capelli A, Magno F, D'Anna SE, Zanini A, Brun P, Casolari P, Chung KF, Barnes PJ, Papi A, Adcock I, Balbi B. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin Exp Immunol 2009; 157:316-24. [PMID: 19604272 PMCID: PMC2730858 DOI: 10.1111/j.1365-2249.2009.03965.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2009] [Indexed: 01/12/2023] Open
Abstract
There are increased numbers of activated T lymphocytes in the bronchial mucosa of stable chronic obstructive pulmonary disease (COPD) patients. T helper type 17 (Th17) cells release interleukin (IL)-17 as their effector cytokine under the control of IL-22 and IL-23. Furthermore, Th17 numbers are increased in some chronic inflammatory conditions. To investigate the expression of interleukin (IL)-17A, IL-17F, IL-21, IL-22 and IL-23 and of retinoic orphan receptor RORC2, a marker of Th17 cells, in bronchial biopsies from patients with stable COPD of different severity compared with age-matched control subjects. The expression of IL-17A, IL-17F, IL-21, IL-22, IL-23 and RORC2 was measured in the bronchial mucosa using immunohistochemistry and/or quantitative polymerase chain reaction. The number of IL-22(+) and IL-23(+) immunoreactive cells is increased in the bronchial epithelium of stable COPD compared with control groups. In addition, the number of IL-17A(+) and IL-22(+) immunoreactive cells is increased in the bronchial submucosa of stable COPD compared with control non-smokers. In all smokers, with and without disease, and in patients with COPD alone, the number of IL-22(+) cells correlated significantly with the number of both CD4(+) and CD8(+) cells in the bronchial mucosa. RORC2 mRNA expression in the bronchial mucosa was not significantly different between smokers with normal lung function and COPD. Further, we report that endothelial cells express high levels of IL-17A and IL-22. Increased expression of the Th17-related cytokines IL-17A, IL-22 and IL-23 in COPD patients may reflect their involvement, and that of specific IL-17-producing cells, in driving the chronic inflammation seen in COPD.
Collapse
MESH Headings
- Aged
- Analysis of Variance
- Bronchi/immunology
- Case-Control Studies
- DNA Primers/genetics
- Female
- Humans
- Immunohistochemistry
- Interleukin-17/immunology
- Interleukin-23/genetics
- Interleukin-23/immunology
- Interleukins/genetics
- Interleukins/immunology
- Male
- Middle Aged
- Mucous Membrane/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Polymerase Chain Reaction
- Pulmonary Disease, Chronic Obstructive/immunology
- RNA, Messenger/analysis
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/immunology
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/immunology
- Respiratory Function Tests
- Smoking/adverse effects
- Statistics, Nonparametric
- T-Lymphocytes, Helper-Inducer/immunology
- Interleukin-22
Collapse
|
62
|
Nawrot TS, Adcock I. The detrimental health effects of traffic-related air pollution: a role for DNA methylation? Am J Respir Crit Care Med 2009; 179:523-4. [PMID: 19318540 DOI: 10.1164/rccm.200812-1900ed] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
63
|
Enesa K, Ito K, Luong LA, Thorbjornsen I, Phua C, To Y, Dean J, Haskard DO, Boyle J, Adcock I, Evans PC. Hydrogen Peroxide Prolongs Nuclear Localization of NF-κB in Activated Cells by Suppressing Negative Regulatory Mechanisms. J Biol Chem 2008; 283:18582-90. [DOI: 10.1074/jbc.m801312200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
64
|
Bhavsar P, Hew M, Khorasani N, Torrego A, Barnes PJ, Adcock I, Chung KF. Relative corticosteroid insensitivity of alveolar macrophages in severe asthma compared with non-severe asthma. Thorax 2008; 63:784-90. [PMID: 18492738 DOI: 10.1136/thx.2007.090027] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND About 5-10% of patients with asthma suffer from poorly controlled disease despite corticosteroid (CS) treatment, which may indicate the presence of CS insensitivity. A study was undertaken to determine whether relative CS insensitivity is present in alveolar macrophages from patients with severe asthma and its association with p38 mitogen-activated protein kinase (MAPK) activation and MAPK phosphatase-1 (MKP-1). METHODS Fibreoptic bronchoscopy and bronchoalveolar lavage (BAL) were performed in 20 patients with severe asthma and 19 with non-severe asthma and, for comparison, in 14 normal volunteers. Alveolar macrophages were exposed to lipopolysaccharide (LPS, 10 mug/ml) and dexamethasone (10(-8) and 10(-6) M). Supernatants were assayed for cytokines using an ELISA-based method. p38 MAPK activity and MKP-1 messenger RNA expression were assayed in cell extracts. RESULTS The inhibition of LPS-induced interleukin (IL)1beta, IL6, IL8, monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein (MIP)-1alpha release by dexamethasone (10(-6) M) was significantly less in macrophages from patients with severe asthma than in macrophages from patients with non-severe asthma. There was increased p38 MAPK activation in macrophages from patients with severe asthma. MKP-1 expression induced by dexamethasone and LPS, expressed as a ratio of LPS-induced expression, was reduced in severe asthma. CONCLUSION Alveolar macrophages from patients with severe asthma demonstrate CS insensitivity associated with increased p38 MAPK activation that may result from impaired inducibility of MKP-1.
Collapse
|
65
|
Abstract
Resolution of inflammatory responses is the regulatory process that prevents prolonged inflammation, thus avoiding diseases such as atherosclerosis, rheumatoid arthritis and transplant rejection. There are various different aspects to this process which are discussed briefly here and in the accompanying papers from this Focused Meeting.
Collapse
|
66
|
Mortaz E, Adcock I, Ito K, Nijkamp FP. CPG potentiates the effects of cigarette smoke on releases of IL-8 in neutrophils (B55). THE JOURNAL OF IMMUNOLOGY 2007. [DOI: 10.4049/jimmunol.178.supp.b55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Smoking is considered the major cause of the disease. All smokers develop airway inflammation through oxidative stress with macrophages, neutrophiles and mediators (such as IL-8) involved. Previous studies have implicated a role of bacterial DNA(CpG, in the initiation of inflammation. In this study we investigated the capacity of cigarette smoke extracts (CSE) and CpG-DNA to trigger and modulate IL-8 responses in human neutrophils. A human isolated neutrophils, were exposed to the CSE, CpG, or in combination. Supernatants were isolated and analyzed for IL-8 by ELISA. The NF-B and AP-1/c-Fos activities were monitored by Western blot by using antibodies. CSE and CpG induced the release of IL-8. When co-administered release of IL-8 synergically increased which was correspondence with degradation of IB- in cytoplasm. CpG and CSE evoked concomitant increases in intracellular NO levels and consequently, nuclear accumulation of c-Fos and NF-B. Pharmacological inhibition of NF-B activity or using of N-acetylcysteine (NAC) attenuated IL-8 release. These results identify reactive oxygen dependent activation of NF-B and c-Fos as an important mechanism to CSE and CpG. In conclusion, this study show that the combination of CSE and CpG provide a substantial release of IL-8 which may accounts to exacerbation of lung in COPD patients when they are exposed to bacterium infections.
κκκακακκ
Collapse
|
67
|
Caramori G, Adcock I. Gene–environment interactions in the development of chronic obstructive pulmonary disease. Curr Opin Allergy Clin Immunol 2006; 6:323-8. [PMID: 16954784 DOI: 10.1097/01.all.0000244791.18486.f7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Genetic factors influence the variable development of chronic obstructive pulmonary disease in response to smoking and are likely to vary between populations. Recent studies have begun to shed some light on these gene-environment interactions. RECENT FINDINGS A variety of approaches has been used to identify novel susceptibility genes for chronic obstructive pulmonary disease. These studies have provided evidence for the possible role of many inflammatory mediators and their receptors, proteases, antiproteases, and antioxidant and xenobiotic genes in chronic obstructive pulmonary disease pathophysiology. However, ethnic differences and subtle phenotype differences often make replication of these studies difficult. SUMMARY The completion of the Human Genome Project, the HapMap project, technological advances in single-nucleotide-polymorphism genotyping and the potential of genome-wide association analysis will allow the identification of susceptibility genes for chronic obstructive pulmonary disease. The challenge is to understand the influence of multiple genetic factors and multiple environmental factors as well as gene-gene and gene-environment interactions. Careful clinical characterization of phenotypes for chronic obstructive pulmonary disease is essential and this will include comparison of biomarkers of distinct pathologies including radiological assessment to separate the components of pulmonary emphysema and small-airway disease.
Collapse
|
68
|
Janka-Junttila M, Moilanen E, Hasala H, Zhang X, Adcock I, Kankaanranta H. The glucocorticoid RU24858 does not distinguish between transrepression and transactivation in primary human eosinophils. JOURNAL OF INFLAMMATION-LONDON 2006; 3:10. [PMID: 16834783 PMCID: PMC1559619 DOI: 10.1186/1476-9255-3-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 07/12/2006] [Indexed: 11/10/2022]
Abstract
Background Glucocorticoids are used to treat chronic inflammatory diseases such as asthma. Induction of eosinophil apoptosis is considered to be one of the main mechanisms behind the anti-asthmatic effect of glucocorticoids. Glucocorticoid binding to its receptor (GR) can have a dual effect on gene transcription. Activated GR can activate transcription (transactivation), or by interacting with other transcription factors such as NF-κB suppress transcription (transrepression). RU24858 has been reported to transrepress but to have little or no transactivation capability in other cell types. The dissociated properties of RU24858 have not been previously studied in non-malignant human cells. As the eosinophils have a very short lifetime and many of the modern molecular biological methods cannot be used, a "dissociated steroid" would be a valuable tool to evaluate the mechanism of action of glucocorticoids in human eosinophils. The aim of this study was to elucidate the ability of RU24858 to activate and repress gene expression in human eosinophils in order to see whether it is a dissociated steroid in human eosinophils. Methods Human peripheral blood eosinophils were isolated under sterile conditions and cultured in the presence and/or absence RU24858. For comparison, dexamethasone and mometasone were used. We measured chemokine receptor-4 (CXCR4) and Annexin 1 expression by flow cytometry and cytokine production by ELISA. Apoptosis was measured by DNA fragmentation and confirmed by morphological analysis. Results RU24858 (1 μM) increased CXCR4 and Annexin 1 expression on eosinophils to a similar extent as mometasone (1 μM) and dexamethasone (1 μM). Like dexamethasone and mometasone, RU24858 did suppress IL-8 and MCP-1 production in eosinophils. RU24858 also increased spontaneous eosinophil apoptosis to a similar degree as dexamethasone and mometasone, but unlike dexamethasone and mometasone it did not reverse IL-5- or GM-CSF-induced eosinophil survival. Conclusion Our results suggest that in human eosinophils RU24858 acts as transactivator and transrepressor like classical glucocorticoids. Thus, RU24858 seems not to be a "dissociated steroid" in primary human eosinophils in contrast to that reported in animal cells. In addition, functionally RU24858 seems to be a less potent glucocorticoid as it did not reverse IL-5- and GM-CSF-afforded eosinophil survival similarly to dexamethasone and mometasone.
Collapse
|
69
|
Tang HF, Chen JQ, Xie QM, Zheng XY, Zhu YL, Adcock I, Wang X. The role of PDE4 in pulmonary inflammation and goblet cell hyperplasia in allergic rats. Biochim Biophys Acta Mol Basis Dis 2006; 1762:525-32. [PMID: 16469485 DOI: 10.1016/j.bbadis.2005.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/16/2005] [Indexed: 11/18/2022]
Abstract
Phosphodiesterase 4 (PDE4) has been suggested to a critical factor in the pathogenesis of inflammation by metabolizing cAMP in human leukocytes, endothelium and epithelium. The present study aimed at evaluating the PDE4 activity and expression, the relationship between the inflammation and cAMP- activity in the lungs, and potential interventions of PDE inhibitors and antiinflammatory drugs in the reduction of lung inflammation and goblet cell hyperplasia in allergic rats. The total leukocyte number and eosinophil number in bronchoalveolar lavegar fluid and infiltration of inflammatory cells in the perivascular and peribronchial spaces, structure changes and goblet cell hyperplasia in the OVA-sensitized and challenged allergic rats. A significant correlation was observed between the increases in cAMP-PDE activity and inflammation in the lung. Those OVA-induced changes were prevented by pretreatment with PDE inhibitor in a dose-related patterns and with glucocorticosteriod. We found an increase in the proportion of PDE4 and PDE4 gene expression, while a decrease in the proportion of PDE3 in the lung of the allergic rats. Incubation with different PDE inhibitors down-regulated OVA-induced cAMP hydrolysis. Our data suggest that PDE4C may play an important role in the airway inflammation, remodeling and goblet cell hyperplasia after repeated challenge of sensitized rats.
Collapse
|
70
|
Hew M, Bhavsar P, Torrego A, Meah S, Khorasani N, Barnes PJ, Adcock I, Chung KF. Relative corticosteroid insensitivity of peripheral blood mononuclear cells in severe asthma. Am J Respir Crit Care Med 2006; 174:134-41. [PMID: 16614347 PMCID: PMC2662905 DOI: 10.1164/rccm.200512-1930oc] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE AND OBJECTIVES Patients with severe asthma have a poor therapeutic response to corticosteroid therapy, and corticosteroid responsiveness cannot be easily measured in these patients. We hypothesized that this poor response is associated with a reduced effect of corticosteroids to inhibit cytokine release from activated peripheral blood mononuclear cells (PBMCs). METHODS Patients with severe asthma were defined by American Thoracic Society criteria. We compared the suppression of LPS-induced cytokine release (monocyte chemotactic protein-1 [MCP-1], macrophage inflammatory protein [MIP] 1alpha, RANTES, tumor necrosis factor alpha, interleukin 1beta (IL-1beta), IL-8, IFN-gamma, IL-6, IL-10, and granulocyte-macrophage colony-stimulating factor [GM-CSF]) by dexamethasone from PBMCs of patients with severe asthma (n = 16), patients with nonsevere asthma (n = 19), and normal volunteers (n = 10). RESULTS There was no difference in baseline spontaneous or stimulated release of these cytokines among groups. LPS-induced release of 10 cytokines was less suppressed by dexamethasone (10(-6) M) in patients with severe asthma compared with patients with nonsevere asthma, with statistical significance achieved for IL-1beta (p < 0.03), IL-8 (p < 0.03), and MIP-1alpha (p < 0.003), and borderline significance for IL-6 (p = 0.054). There was less difference between the two groups for dexamethasone at 10(-8) M. Nuclear histone deacetylase (HDAC) and histone acetyltransferase activities were reduced in patients with severe asthma compared with patients with nonsevere asthma (p < 0.01). HDAC activity reduction correlated directly to the degree of steroid insensitivity of GM-CSF (r = 0.57, p < 0.01) and IFN-gamma (r = 0.56, p < 0.05) release. Reduction in histone acetyltransferase activity related to corticosteroid use rather than asthma severity. CONCLUSIONS Patients with severe asthma have diminished corticosteroid sensitivity of PBMCs when compared with patients with nonsevere asthma, associated with a reduction in HDAC activity that parallels the impaired corticosteroid sensitivity.
Collapse
|
71
|
Xie S, Issa R, Sukkar MB, Oltmanns U, Bhavsar PK, Papi A, Caramori G, Adcock I, Fan Chung K. Induction and regulation of matrix metalloproteinase-12 in human airway smooth muscle cells. Respir Res 2005; 6:148. [PMID: 16359550 PMCID: PMC1363355 DOI: 10.1186/1465-9921-6-148] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 12/16/2005] [Indexed: 11/12/2022] Open
Abstract
Background The elastolytic enzyme matrix metalloproteinase (MMP)-12 has been implicated in the development of airway inflammation and remodeling. We investigated whether human airway smooth muscle cells could express and secrete MMP-12, thereby participating in the pathogenesis of airway inflammatory diseases. Methods Laser capture microdissection was used to collect smooth muscle cells from human bronchial biopsy sections. MMP-12 mRNA expression was analysed by quantitative real-time RT-PCR. MMP-12 protein expression and secretion from cultured primary airway smooth muscle cells was further analysed by Western blot. MMP-12 protein localization in bronchial tissue sections was detected by immunohistochemistry. MMP-12 activity was determined by zymography. The TransAM AP-1 family kit was used to measure c-Jun activation and nuclear binding. Analysis of variance was used to determine statistical significance. Results We provide evidence that MMP-12 mRNA and protein are expressed by in-situ human airway smooth muscle cells obtained from bronchial biopsies of normal volunteers, and of patients with asthma, COPD and chronic cough. The pro-inflammatory cytokine, interleukin (IL)-1β, induced a >100-fold increase in MMP-12 gene expression and a >10-fold enhancement in MMP-12 activity of primary airway smooth muscle cell cultures. Selective inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphatidylinositol 3-kinase reduced the activity of IL-1β on MMP-12, indicating a role for these kinases in IL-1β-induced induction and release of MMP-12. IL-1β-induced MMP-12 activity and gene expression was down-regulated by the corticosteroid dexamethasone but up-regulated by the inflammatory cytokine tumour necrosis factor (TNF)-α through enhancing activator protein-1 activation by IL-1β. Transforming growth factor-β had no significant effect on MMP-12 induction. Conclusion Our findings indicate that human airway smooth muscle cells express and secrete MMP-12 that is up-regulated by IL-1β and TNF-α. Bronchial smooth muscle cells may be an important source of elastolytic activity, thereby participating in remodeling in airway diseases such as COPD and chronic asthma.
Collapse
|
72
|
Varani K, Caramori G, Vincenzi F, Adcock I, Casolari P, Leung E, Maclennan S, Gessi S, Morello S, Barnes PJ, Ito K, Chung KF, Cavallesco G, Azzena G, Papi A, Borea PA. Alteration of adenosine receptors in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005; 173:398-406. [PMID: 16322645 DOI: 10.1164/rccm.200506-869oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of mortality worldwide. Adenosine is an inflammatory regulator that acts through four distinct receptors to mediate pro- and antiinflammatory effects. OBJECTIVES The primary aim of this study was to investigate the expression, affinity, and density of adenosine receptors in peripheral lung parenchyma from age-matched smokers with COPD (n = 14) and smokers with normal lung function (control group; n = 20). METHODS Adenosine receptors were analyzed by immunohistochemistry and saturation binding assays using typical antagonist radioligands. RESULTS A(1), A(2A), A(2B), and A(3) receptors were expressed in different cells in peripheral lung parenchyma. The affinity of A(1), A(2A), and A(3) receptors was significantly decreased in patients with COPD compared with the control group (K(D)[A(1)] = 3.15 +/- 0.19 vs. 1.70 +/- 0.14 nM; K(D)[A(2A)] = 7.88 +/- 0.68 vs. 1.87 +/- 0.09 nM; K(D)[A(3)] = 9.34 +/- 0.27 vs. 4.41 +/- 0.25 nM; p < 0.01), whereas their density was increased (Bmax[A(1)] = 53 +/- 4 vs. 32 +/- 3 fmol/mg protein; Bmax[A(2A)] = 852 +/- 50 vs. 302 +/- 12 fmol/mg protein; Bmax[A(3)] = 2,078 +/- 108 vs. 770 +/- 34 fmol/mg protein; p < 0.01). The affinity of A(2B) receptors was not altered, but the density was significantly decreased in patients with COPD compared with the control group (Bmax = 66 +/- 5 vs. 189 +/- 16 fmol/mg protein; p < 0.01). A significant correlation was found between the affinity and density of the adenosine receptors and the FEV(1)/FVC ratio. CONCLUSIONS This is the first report showing the presence of adenosine receptors in lung parenchyma in subjects with COPD compared with control smokers. These novel findings strengthen the hypothesis of a potential role played by adenosine receptors in the pathogenesis of COPD.
Collapse
|
73
|
Ricciardolo FLM, Caramori G, Ito K, Capelli A, Brun P, Abatangelo G, Papi A, Chung KF, Adcock I, Barnes PJ, Donner CF, Rossi A, Di Stefano A. Nitrosative stress in the bronchial mucosa of severe chronic obstructive pulmonary disease. J Allergy Clin Immunol 2005; 116:1028-35. [PMID: 16275371 DOI: 10.1016/j.jaci.2005.06.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/16/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Reactive nitrogen species, formed via the reaction of nitric oxide (NO) with superoxide anion and via (myelo)peroxidase-dependent oxidation of NO(2)(-), have potent proinflammatory and oxidizing actions. Reactive nitrogen species formation and nitrosative stress are potentially involved in chronic obstructive pulmonary disease (COPD) pathogenesis. OBJECTIVES To investigate the expression of markers of nitrosative stress, including nitrotyrosine (NT), inducible NO synthase (iNOS), endothelial NO synthase (eNOS), myeloperoxidase (MPO), and xanthine oxidase (XO) in bronchial biopsies and bronchoalveolar lavage from patients with mild to severe stable COPD compared with control groups (smokers with normal lung function and nonsmokers). METHODS The expression of NT, iNOS, eNOS, MPO and XO in the bronchial mucosa and bronchoalveolar lavage of patients was measured by using immunohistochemistry, Western blotting, and ELISA and correlated with the inflammatory cell profile. RESULTS Patients with severe COPD in stable phase had higher numbers of NT(+) and MPO(+) cells in their bronchial submucosa compared with mild/moderate COPD, smokers with normal lung function, and nonsmokers (P < .01). iNOS(+) and eNOS(+) but not XO(+) cells were significantly increased in smokers with COPD or normal lung function compared with nonsmokers (P < .05 and P < .01, respectively). In patients with COPD, the number of MPO(+) cells was significantly correlated with the number of neutrophils (r = +0.61; P < .0025) in the bronchial submucosa. Furthermore, the number of NT(+) and MPO(+) cells was negatively correlated with postbronchodilator FEV(1). CONCLUSION These data suggest that nitrosative stress, mainly mediated by MPO and neutrophilic inflammation, may contribute to the pathogenesis of severe COPD.
Collapse
|
74
|
Caramori G, Adcock I. Anti-inflammatory mechanisms of glucocorticoids targeting granulocytes. ACTA ACUST UNITED AC 2005; 4:455-63. [PMID: 16101522 DOI: 10.2174/1568010054526331] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asthmatic inflammation involves the recruitment and activation of inflammatory cells, and changes in the structural cells of the lung and asthma are characterized by an increased expression of components of the inflammatory cascade including cytokines, chemokines, growth factors, enzymes, receptors and adhesion molecules. The increased expression of these proteins seen in asthma is generally the result of enhanced gene transcription, since many of the genes are not expressed in normal cells but are induced in a cell-specific manner during the inflammatory process. There is clear evidence that neutrophils, long thought of as being transcriptionally inert, can respond to stimuli to induce inflammatory genes. Glucocorticoids are very effective in controlling the inflammation seen in asthmatic airways. Beyond their recognized actions on eosinophil and neutrophil apoptosis, glucocorticoids have profound effects on the chemotaxis, activation and release of mediators from granulocytes (eosinophils, neutrophils and basophils). Few mechanistic studies are available in these cells, but it appears that in granulocytes, glucocorticoids target the same signaling pathways, such as nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1), that are important in other cells. We summarize these known mechanisms at the end of this review.
Collapse
|
75
|
Jarai G, Sukkar M, Garrett S, Duroudier N, Westwick J, Adcock I, Chung KF. Effects of interleukin-1beta, interleukin-13 and transforming growth factor-beta on gene expression in human airway smooth muscle using gene microarrays. Eur J Pharmacol 2005; 497:255-65. [PMID: 15336943 DOI: 10.1016/j.ejphar.2004.06.055] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 06/23/2004] [Accepted: 06/29/2004] [Indexed: 11/17/2022]
Abstract
Inflammatory gene expression in airway smooth muscle may be influenced by its inflammatory milieu. We analysed the gene expression profile of airway smooth muscle cells cultured from human airways exposed to a pro-inflammatory cytokine, interleukin-1beta, a T helper-2 cytokine, interleukin-13, and to a growth factor, transforming growth factor (TGF)beta1 (10 ng/ml each) after 4 and 24 h using the Affymetrix GeneChip 95A array which detects approximately 12,500 genes and expression sequence tags (ESTs). Airway smooth muscle cells were responsive to each cytokine with distinctive patterns of gene expression for cytokines, chemokines, adhesion and signalling proteins, and transcription factors. Interleukin-1beta induced the highest number of genes such as cytokines/chemokines including interleukin-8, growth-related oncogene (GRO)-alpha, -beta and -gamma, epithelial neutrophil activating protein (ENA)-78, monocyte chemotactic protein (MCP)-1, -2 and -3 and eotaxin. Using quantitative real-time reverse transcription-polymerase chain reaction, the expression of GRO-alpha, -beta and -gamma, interleukin-8 and eotaxin by interleukin-1beta was confirmed, with good correlation with microarray data. Transforming growth factor (TGF)beta1 induced other growth factors such as connective tissue growth factor (CTGF), vascular endothelial growth factor (VEGF), insulin growth factor (IGF) and many structural and extracellular matrix proteins. Interleukin-13 was the weakest inducer, with stimulation of eotaxin and genes of unknown function. While many genes were co-regulated at 4 and 24 h, there were also differences in expression patterns. Interleukin-1beta induces a predominantly pro-inflammatory profile while TGFbeta1 can be linked to proliferative and matrix changes. The rich profile of mediators, growth factors and signalling molecules released from airway smooth muscle depends on the inflammatory milieu.
Collapse
|