51
|
Petkau-Milroy K, Ianiro A, Ahn MML, Magana JR, Vleugels MEJ, Lamers BAG, Tuinier R, Voets IK, Palmans ARA, Meijer EW. Architecture-Dependent Interplay between Self-Assembly and Crystallization in Discrete Block Co-Oligomers. ACS Macro Lett 2020; 9:38-42. [PMID: 35638657 DOI: 10.1021/acsmacrolett.9b00814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Access to versatile and stable nanostructures formed by the self-assembly of block copolymers in water is essential for biomedical applications. These applications require control over the stability, morphology, and size of the formed nanostructures. Here, we study the self-assembly in water of a library of fully discrete and sequence-controlled AB-type block co-oligomers (BCOs) of oligo(l-lactic acid)-b-oligo(ethylene glycol). In this series, we eliminate all the inherent uncertainty associated with molar mass, ratio, and compositional dispersity, but vary the ratio between the water-soluble and water-insoluble parts. The BCO library is designed in such a way that vesicles, spherical micelles, and cylindrical micelles are generated in solution, hereby covering a variety of common morphologies. With the help of self-consistent field (SCF) computations, the thermodynamic structures in water are predicted for all structures. The morphologies formed were experimentally analyzed using a combination of calorimetry and scattering techniques. When comparing the experimentally found structures with those predicted, we find an excellent agreement. Intriguingly, calorimetry showed the presence of crystallized l-lactic acid (LLA) units in the bilayer of the lamellar forming BCO. Despite this crystallinity, there is no mismatch between the predicted and observed bilayer thicknesses upon self-assembly in water. In this case, phase separation driven by the hydrophobic LLA block coincides with crystallization, resulting in stable morphologies. Thus, SCF guided library design and sample preparation can lead toward robust formulations of nanoparticles.
Collapse
|
52
|
Vleugels MEJ, de Zwart ME, Magana JR, Lamers BAG, Voets IK, Meijer EW, Petkau-Milroy K, Palmans ARA. Effects of crystallinity and dispersity on the self-assembly behavior of block co-oligomers in water. Polym Chem 2020. [DOI: 10.1039/d0py01161d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dispersity and crystallinity affect the dimensions of lamellar structures formed by amphiphilic block co-oligomers in water as well as the reproducibility of sample formation; spherical and cylindrical morphologies are less affected.
Collapse
|
53
|
Surís-Valls R, Voets IK. Peptidic Antifreeze Materials: Prospects and Challenges. Int J Mol Sci 2019; 20:E5149. [PMID: 31627404 PMCID: PMC6834126 DOI: 10.3390/ijms20205149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Necessitated by the subzero temperatures and seasonal exposure to ice, various organisms have developed a remarkably effective means to survive the harsh climate of their natural habitats. Their ice-binding (glyco)proteins keep the nucleation and growth of ice crystals in check by recognizing and binding to specific ice crystal faces, which arrests further ice growth and inhibits ice recrystallization (IRI). Inspired by the success of this adaptive strategy, various approaches have been proposed over the past decades to engineer materials that harness these cryoprotective features. In this review we discuss the prospects and challenges associated with these advances focusing in particular on peptidic antifreeze materials both identical and akin to natural ice-binding proteins (IBPs). We address the latest advances in their design, synthesis, characterization and application in preservation of biologics and foods. Particular attention is devoted to insights in structure-activity relations culminating in the synthesis of de novo peptide analogues. These are sequences that resemble but are not identical to naturally occurring IBPs. We also draw attention to impactful developments in solid-phase peptide synthesis and 'greener' synthesis routes, which may aid to overcome one of the major bottlenecks in the translation of this technology: unavailability of large quantities of low-cost antifreeze materials with excellent IRI activity at (sub)micromolar concentrations.
Collapse
|
54
|
Vázquez-González V, Mayoral MJ, Chamorro R, Hendrix MMRM, Voets IK, González-Rodríguez D. Noncovalent Synthesis of Self-Assembled Nanotubes through Decoupled Hierarchical Cooperative Processes. J Am Chem Soc 2019; 141:16432-16438. [DOI: 10.1021/jacs.9b07868] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
55
|
Surís-Valls R, Voets IK. The Impact of Salts on the Ice Recrystallization Inhibition Activity of Antifreeze (Glyco)Proteins. Biomolecules 2019; 9:biom9080347. [PMID: 31390745 PMCID: PMC6724029 DOI: 10.3390/biom9080347] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022] Open
Abstract
Antifreeze (glyco)proteins (AF(G)Ps) have received increasing attention as potential cryopreservation agents since their discovery in the 1970s. While cryopreservation strategies for specific cells (such as red blood cells) are successful and widely implemented, preservation of other cell types, tissues and whole organs remains challenging. This is due to the multifactorial nature of the freeze-thaw damage, the complexity of preserving biological matter and the (country-to-country) variability of the employed procedures and regulations. AF(G)Ps are well-known for their ability to modulate ice crystal growth morphology and ice recrystallization inhibition (IRI), both of which are considered key contributors to freeze-thaw damage. To date, however, the impact of AF(G)Ps on cell survival remains at best partially understood as conflicting results on the benefits or disadvantages of including AF(G)P in cryopreservation strategies remain unelucidated. We hypothesize that variability in the additives in the cryopreservation media contributes to the observed discrepancies. To critically examine this idea, we monitored the inhibition of ice recrystallization by AF(G)P in the presence of various salts using a quantitative analysis of optical microscopy images via the Lifshitz-Slyozov-Wagner (LSW) theory for Oswald ripening. We found that the addition of salts, which are used in culture and cryopreservation media, enhances the IRI activity of AF(G)Ps, and that the magnitude of the enhancement was in line with the Hofmeister series. The size of ice crystals grown in AFGP1–5 and type III AFP samples containing chloride, phosphate and citrate ions were statistically smaller after 90 min of incubation than crystals grown in the absence of these salts. The ice recrystallization rates (kd) of AFGP1–5 and type III AFP samples prepared at a fixed overall ionic strength of 100 mM progressively decreased following the Hofmeister series for anions. Our results demonstrate that the performance of AF(G)Ps is significantly influenced by additives present in common cryopreservation media. It is thus important to conduct excipient compatibility experiments to identify potential incompatibilities between additives and AF(G)Ps in cryopreservation formulations.
Collapse
|
56
|
Koshkina O, Lajoinie G, Bombelli FB, Swider E, Cruz LJ, White PB, Schweins R, Dolen Y, van Dinther EAW, van Riessen NK, Rogers SE, Fokkink R, Voets IK, van Eck ERH, Heerschap A, Versluis M, de Korte CL, Figdor CG, de Vries IJM, Srinivas M. Multicore Liquid Perfluorocarbon-Loaded Multimodal Nanoparticles for Stable Ultrasound and 19F MRI Applied to In Vivo Cell Tracking. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1806485. [PMID: 32132881 PMCID: PMC7056356 DOI: 10.1002/adfm.201806485] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 05/22/2023]
Abstract
Ultrasound is the most commonly used clinical imaging modality. However, in applications requiring cell-labeling, the large size and short active lifetime of ultrasound contrast agents limit their longitudinal use. Here, 100 nm radius, clinically applicable, polymeric nanoparticles containing a liquid perfluorocarbon, which enhance ultrasound contrast during repeated ultrasound imaging over the course of at least 48 h, are described. The perfluorocarbon enables monitoring the nanoparticles with quantitative 19F magnetic resonance imaging, making these particles effective multimodal imaging agents. Unlike typical core-shell perfluorocarbon-based ultrasound contrast agents, these nanoparticles have an atypical fractal internal structure. The nonvaporizing highly hydrophobic perfluorocarbon forms multiple cores within the polymeric matrix and is, surprisingly, hydrated with water, as determined from small-angle neutron scattering and nuclear magnetic resonance spectroscopy. Finally, the nanoparticles are used to image therapeutic dendritic cells with ultrasound in vivo, as well as with 19F MRI and fluorescence imaging, demonstrating their potential for long-term in vivo multimodal imaging.
Collapse
|
57
|
Aloi A, Vilanova N, Isa L, de Jong AM, Voets IK. Super-resolution microscopy on single particles at fluid interfaces reveals their wetting properties and interfacial deformations. NANOSCALE 2019; 11:6654-6661. [PMID: 30896703 DOI: 10.1039/c8nr08633h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Solid particles adsorbed at fluid interfaces are crucial for the mechanical stability of Pickering emulsions. The key parameter which determines the kinetic and thermodynamic properties of these colloids is the particle contact angle, θ. Several methods have recently been developed to measure the contact angle of individual particles adsorbed at liquid-liquid interfaces, as morphological and chemical heterogeneities at the particle surface can significantly affect θ. However, none of these techniques enables the simultaneous visualization of the nanoparticles and the reconstruction of the fluid interface to which they are adsorbed, in situ. To tackle this challenge, we utilize a newly developed super-resolution microscopy method, called iPAINT, which exploits non-covalent and continuous labelling of interfaces with photo-activatable fluorescent probes. Herewith, we resolve with nanometer accuracy both the position of individual nanoparticles at a water-octanol interface and the location of the interface itself. First, we determine single particle contact angles for both hydrophobic and hydrophilic spherical colloids. These experiments reveal a non-negligible dependence of θ on particle size, from which we infer an effective line tension, τ. Next, we image elliptical particles at a water-decane interface, showing that the corresponding interfacial deformations can be clearly captured by iPAINT microscopy.
Collapse
|
58
|
Pazin WM, Vilanova N, Voets IK, Soares AEE, Ito AS. Effects of artepillin C on model membranes displaying liquid immiscibility. ACTA ACUST UNITED AC 2019; 52:e8281. [PMID: 30916221 PMCID: PMC6437936 DOI: 10.1590/1414-431x20198281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/22/2019] [Indexed: 01/13/2023]
Abstract
It has been hypothesized that the therapeutic effects of artepillin C, a natural
compound derived from Brazilian green propolis, are likely related to its
partition in the lipid bilayer component of biological membranes. To test this
hypothesis, we investigated the effects of the major compound of green propolis,
artepillin C, on model membranes (small and giant unilamelar vesicles) composed
of ternary lipid mixtures containing cholesterol, which display liquid-ordered
(lo) and liquid-disordered (ld) phase coexistence.
Specifically, we explored potential changes in relevant membrane parameters upon
addition of artepillin C presenting both neutral and deprotonated states by
means of small angle X-ray scattering (SAXS), differential scanning calorimetry
(DSC), and confocal and multiphoton excitation fluorescence microscopy.
Thermotropic analysis obtained from DSC experiments indicated a loss in the
lipid cooperativity of lo phase at equilibrium conditions, while at
similar conditions spontaneous formation of unilamellar vesicles from SAXS
experiments showed that deprotonated artepillin C preferentially located at the
surface of the membrane. Time-resolved experiments using fluorescence microscopy
showed that at doses above 100 µM, artepillin C in its neutral state interacted
with both liquid-ordered and liquid-disordered phases, inducing curvature stress
and promoting dehydration at the membrane interface.
Collapse
|
59
|
Guo S, Vance TDR, Stevens CA, Voets IK, Davies PL. RTX Adhesins are Key Bacterial Surface Megaproteins in the Formation of Biofilms. Trends Microbiol 2019; 27:470. [PMID: 30826181 DOI: 10.1016/j.tim.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Fernández-Castaño Romera M, Göstl R, Shaikh H, Ter Huurne G, Schill J, Voets IK, Storm C, Sijbesma RP. Mimicking Active Biopolymer Networks with a Synthetic Hydrogel. J Am Chem Soc 2019; 141:1989-1997. [PMID: 30636412 PMCID: PMC6367683 DOI: 10.1021/jacs.8b10659] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stiffening due to internal stress generation is of paramount importance in living systems and is the foundation for many biomechanical processes. For example, cells stiffen their surrounding matrix by pulling on collagen and fibrin fibers. At the subcellular level, molecular motors prompt fluidization and actively stiffen the cytoskeleton by sliding polar actin filaments in opposite directions. Here, we demonstrate that chemical cross-linking of a fibrous matrix of synthetic semiflexible polymers with thermoresponsive poly( N-isopropylacrylamide) (PNIPAM) produces internal stress by induction of a coil-to-globule transition upon crossing the lower critical solution temperature of PNIPAM, resulting in a macroscopic stiffening response that spans more than 3 orders of magnitude in modulus. The forces generated through collapsing PNIPAM are sufficient to drive a fluid material into a stiff gel within a few seconds. Moreover, rigidified networks dramatically stiffen in response to applied shear stress featuring power law rheology with exponents that match those of reconstituted collagen and actomyosin networks prestressed by molecular motors. This concept holds potential for the rational design of synthetic materials that are fluid at room temperature and rapidly rigidify at body temperature to form hydrogels mechanically and structurally akin to cells and tissues.
Collapse
|
61
|
Saez Talens V, Makurat DMM, Liu T, Dai W, Guibert C, Noteborn WEM, Voets IK, Kieltyka RE. Shape modulation of squaramide-based supramolecular polymer nanoparticles. Polym Chem 2019. [DOI: 10.1039/c9py00310j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the synthesis and self-assembly of a library of squaramide-based bolaamphiphiles with variable hydrophobic and hydrophilic domain sizes to understand their effect on the formation of supramolecular polymer nanoparticles.
Collapse
|
62
|
Brotzakis ZF, Voets IK, Bakker HJ, Bolhuis PG. Water structure and dynamics in the hydration layer of a type III anti-freeze protein. Phys Chem Chem Phys 2018; 20:6996-7006. [PMID: 29468240 DOI: 10.1039/c8cp00170g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on a molecular dynamics study on the relation between the structure and the orientational (and hydrogen bond) dynamics of hydration water around the ocean pout AFP III anti-freeze protein. We find evidence for an increasing tetrahedral structure from the area opposite to the ice binding site (IBS) towards the protein IBS, with the strongest signal of tetrahedral structure around the THR-18 residue of the IBS. The tetrahedral structural parameter mostly positively correlates with increased reorientation decay times. Interestingly, for several key (polar) residues that are not part of the IBS but are in its vicinity, we observe a decrease of the reorientation time with increasing tetrahedral structure. A similar anti-correlation is observed for the hydrogen-bonded water molecules. These effects are enhanced at a lower temperature. We interpret these results in terms of the structure-making and structure-breaking residues. Moreover, we investigate the tetrahedral structure and dynamics of waters at a partially dehydrated IBS, and for the protein adsorbed at the air-water interface. We find that the mutation changes the preferred protein orientation upon adsorption at an air-water interface. These results are in agreement with the water-air Vibration Sum Frequency Generation spectroscopic experiments showing a strongly reduced tetrahedral signal upon mutation at the IBS.
Collapse
|
63
|
Fernández-Castaño Romera M, Lou X, Schill J, Ter Huurne G, Fransen PPKH, Voets IK, Storm C, Sijbesma RP. Strain-Stiffening in Dynamic Supramolecular Fiber Networks. J Am Chem Soc 2018; 140:17547-17555. [PMID: 30465604 PMCID: PMC6302312 DOI: 10.1021/jacs.8b09289] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytoskeleton is a highly adaptive network of filamentous proteins capable of stiffening under stress even as it dynamically assembles and disassembles with time constants of minutes. Synthetic materials that combine reversibility and strain-stiffening properties remain elusive. Here, strain-stiffening hydrogels that have dynamic fibrous polymers as their main structural components are reported. The fibers form via self-assembly of bolaamphiphiles (BA) in water and have a well-defined cross-section of 9 to 10 molecules. Fiber length recovery after sonication, H/D exchange experiments, and rheology confirm the dynamic nature of the fibers. Cross-linking of the fibers yields strain-stiffening, self-healing hydrogels that closely mimic the mechanics of biological networks, with mechanical properties that can be modulated by chemical modification of the components. Comparison of the supramolecular networks with covalently fixated networks shows that the noncovalent nature of the fibers limits the maximum stress that fibers can bear and, hence, limits the range of stiffening.
Collapse
|
64
|
ter Huurne GM, Voets IK, Palmans ARA, Meijer EW. Effect of Intra- versus Intermolecular Cross-Linking on the Supramolecular Folding of a Polymer Chain. Macromolecules 2018; 51:8853-8861. [PMID: 30449902 PMCID: PMC6236471 DOI: 10.1021/acs.macromol.8b01623] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Indexed: 01/06/2023]
Abstract
Anfinsen's famous experiment showed that the restoration of catalytic activity of a completely unfolded ribonuclease A is only possible when the correct order of events is followed during the refolding process. Inspired by this work, the effect of structural constraints induced by covalent cross-links on the folding of a synthetic polymer chain via hydrogen-bonding interactions is investigated. Hereto, methacrylate-based monomers comprising either benzene-1,3,5-tricarboxamide (BTA)-based or coumarin-based pendants are copolymerized with n-butyl methacrylate in various ratios via reversible addition-fragmentation chain-transfer (RAFT) polymerization. To assess whether the folding and single-chain polymeric nanoparticle (SCPN) formation depend on the order of events, we compare two folding pathways. In the one case, we first covalently cross-link the coumarin pendants within the polymers in a solvent that prevents hydrogen bonding, after which hydrogen bonding is activated, inducing folding of the polymer. In the other case, we induce hydrogen-bonding interactions between tethered BTAs prior to covalent cross-linking of the coumarin pendants. A combination of circular dichroism (CD) spectroscopy, UV-vis spectroscopy, size-exclusion chromatography (SEC), and dynamic light scattering (DLS) is employed to understand the effect of the structural constraints on the folding behavior of these synthetic polymers. The results show that like in ribonuclease A, the order of events matters greatly and determines the outcome. Importantly, a hydrogen-bond-promoting solvent prevents the formation of SCPNs upon covalent cross-linking and results in multichain aggregates. In contrast, covalently cross-linking the polymer when no hydrogen bonds are present followed by inducing hydrogen bonding favors the formation of SCPNs above the UCST of the methacrylate-based polymer. To our surprise, the two systems show a fundamentally different response to changes in temperature, indicating that also in synthetic polymers differences in the folding pathway induce differences in the properties of the resultant nanostructures.
Collapse
|
65
|
Cingil HE, Meertens NCH, Voets IK. Temporally Programmed Disassembly and Reassembly of C3Ms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802089. [PMID: 30095218 DOI: 10.1002/smll.201802089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/06/2018] [Indexed: 05/24/2023]
Abstract
Responsive materials, which can adapt and operate autonomously under dynamic conditions, are a stepping stone towards functional, life-like systems inspired by fueled self-assembly processes in nature. Complex coacervate core micelles (C3Ms) comprising oppositely charged macromolecules constitute a novel class of polymeric micelles ideally suited for use as responsive nanoscopic delivery vehicles of hydrophilic and hydrophobic cargo. To fully exploit their potential, it is important that the C3Ms form and fall apart in an autonomous fashion as orchestrated by dynamic cues in their environment. Herein a means to temporally program the self-regulated C3M coassembly pathway, using a modulated base-catalyzed feedback system, is presented. Incorporated in the C3Ms is a pH responsive polyfluorene-based conjugated polyelectrolyte (CPF) as a building block and trace amounts of a molecular sensor (doxorubicin HCl) as cargo, both of which report on micellar coassembly and disassembly via binding-induced fluorescence quenching. CPF additionally reports on the pH of its microenvironment as its pH-dependent conformational states are mirrored in the transitions of its vibronic bands. This experimental design enables one to monitor solution pH, C3M disassembly and reassembly, as well as cargo release and recapture noninvasively in a closed system with real time florescence experiments.
Collapse
|
66
|
Filippov AD, van Hees IA, Fokkink R, Voets IK, Kamperman M. Rapid and Quantitative De- tert-butylation for Poly(acrylic acid) Block Copolymers and Influence on Relaxation of Thermoassociated Transient Networks. Macromolecules 2018; 51:8316-8323. [PMID: 30405273 PMCID: PMC6202630 DOI: 10.1021/acs.macromol.8b01440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/19/2018] [Indexed: 01/24/2023]
Abstract
![]()
The
synthesis of charged polymers often requires the polymerization
of protected monomers, followed by a polymer-analogous reaction to
the polyelectrolyte product. We present a mild, facile method to cleave tert-butyl groups from poly(tert-butyl
acrylate) blocks that yields poly(acrylic acid) (pAA) blocks free
of traces of the ester. The reaction utilizes a slight excess of HCl
in hexafluoroisopropanol (HFIP) at room temperature and runs
to completion within 4 h. We compare deprotection in HFIP with the
common TFA/DCM method and show that the latter does not yield clean
pAA. We show the effect of complete tert-butyl cleavage
on a ABA triblock copolymer, where poly(N-isopropylacrylamide)
(pNIPAM) is A and pAA is B, by means of viscosimetry, DLS, and SAXS
on solutions above overlap. The pNIPAM blocks dehydrate, and their
increased self-affinity above the lower critical solution temperature
(LCST) results in network formation by the triblocks. This manifests
itself as an increase in viscosity and a slowing down of the first-order
correlation function in light scattering. However, this stickering
effect manifests itself exclusively when the pAA block is tert-butyl-free. Additionally, SAXS shows that the conformational
properties of tert-butyl-free pAA copolymers are
markedly different from those with residual esters. Thus, we illustrate
a surprising effect of hydrophobic impurities that act across blocks
and assert the usefulness of HCl/HFIP in pAA synthesis.
Collapse
|
67
|
Matsumoto NM, Lafleur RPM, Lou X, Shih KC, Wijnands SPW, Guibert C, van Rosendaal JWAM, Voets IK, Palmans ARA, Lin Y, Meijer EW. Polymorphism in Benzene-1,3,5-tricarboxamide Supramolecular Assemblies in Water: A Subtle Trade-off between Structure and Dynamics. J Am Chem Soc 2018; 140:13308-13316. [PMID: 30221520 PMCID: PMC6194755 DOI: 10.1021/jacs.8b07697] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
In biology, polymorphism is a well-known
phenomenon by which a
discrete biomacromolecule can adopt multiple specific conformations
in response to its environment. The controlled incorporation of polymorphism
into noncovalent aqueous assemblies of synthetic small molecules is
an important step toward the development of bioinspired responsive
materials. Herein, we report on a family of carboxylic acid functionalized
water-soluble benzene-1,3,5-tricarboxamides (BTAs) that self-assemble
in water to form one-dimensional fibers, membranes, and hollow nanotubes.
Interestingly, one of the BTAs with the optimized position of the
carboxylic group in the hydrophobic domain yields nanotubes that undergo
reversible temperature-dependent dynamic reorganizations. SAXS and
Cryo-TEM data show the formation of elongated, well-ordered nanotubes
at elevated temperatures. At these temperatures, increased dynamics,
as measured by hydrogen–deuterium exchange, provide enough
flexibility to the system to form well-defined nanotube structures
with apparently defect-free tube walls. Without this flexibility,
the assemblies are frozen into a variety of structures that are very
similar at the supramolecular level, but less defined at the mesoscopic
level.
Collapse
|
68
|
Huurne GM, Vantomme G, Bersselaar BWL, Thota BNS, Voets IK, Palmans ARA, Meijer EW. The effect of dendritic pendants on the folding of amphiphilic copolymers via supramolecular interactions. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
69
|
Vleugels LF, Ricois S, Voets IK, Tuinier R. Determination of the ‘apparent pKa’ of selected food hydrocolloids using ortho-toluidine blue. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
70
|
Noteborn WEM, Wondergem JAJ, Iurchenko A, Chariyev-Prinz F, Donato D, Voets IK, Heinrich D, Kieltyka RE. Grafting from a Hybrid DNA-Covalent Polymer by the Hybridization Chain Reaction. Macromolecules 2018; 51:5157-5164. [PMID: 30057430 PMCID: PMC6060401 DOI: 10.1021/acs.macromol.7b02610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/06/2018] [Indexed: 11/30/2022]
Abstract
Nucleic acid-polymer conjugates are an attractive class of materials endowed with tunable and responsive character. Herein, we exploit the dynamic character of nucleic acids in the preparation of hybrid DNA-covalent polymers with extendable grafts by the hybridization chain reaction. Addition of DNA hairpins to an initiator DNA-dextran graft copolymer resulted in the growth of the DNA grafts as evidenced by various characterization techniques over several length scales. Additionally, aggregation of the initiator DNA-graft copolymer before the hybridization chain reaction was observed resulting in the formation of kinetically trapped aggregates several hundreds of nanometers in diameter that could be disrupted by a preheating step at 60 °C prior to extension at room temperature. Materials of increasing viscosity were rapidly formed when metastable DNA hairpins were added to the initiator DNA-dextran grafted copolymer with increasing concentration of the components in the mixture. This study shows the potential for hierarchical self-assembly of DNA-grafted polymers through the hybridization chain reaction and opens the door for biomedical applications where viscosity can be used as a readout.
Collapse
|
71
|
Guo S, Voets IK, Davies PL. Structure of a 1.5 MDa bacterial adhesin reveals its role in the mixed-species biofilm formation with diatoms on ice. Acta Crystallogr A Found Adv 2018. [DOI: 10.1107/s0108767318098628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
72
|
Pustovarenko A, Goesten MG, Sachdeva S, Shan M, Amghouz Z, Belmabkhout Y, Dikhtiarenko A, Rodenas T, Keskin D, Voets IK, Weckhuysen BM, Eddaoudi M, de Smet LCPM, Sudhölter EJR, Kapteijn F, Seoane B, Gascon J. Nanosheets of Nonlayered Aluminum Metal-Organic Frameworks through a Surfactant-Assisted Method. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707234. [PMID: 29774609 DOI: 10.1002/adma.201707234] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Indexed: 05/29/2023]
Abstract
During the last decade, the synthesis and application of metal-organic framework (MOF) nanosheets has received growing interest, showing unique performances for different technological applications. Despite the potential of this type of nanolamellar materials, the synthetic routes developed so far are restricted to MOFs possessing layered structures, limiting further development in this field. Here, a bottom-up surfactant-assisted synthetic approach is presented for the fabrication of nanosheets of various nonlayered MOFs, broadening the scope of MOF nanosheets application. Surfactant-assisted preorganization of the metallic precursor prior to MOF synthesis enables the manufacture of nonlayered Al-containing MOF lamellae. These MOF nanosheets are shown to exhibit a superior performance over other crystal morphologies for both chemical sensing and gas separation. As revealed by electron microscopy and diffraction, this superior performance arises from the shorter diffusion pathway in the MOF nanosheets, whose 1D channels are oriented along the shortest particle dimension.
Collapse
|
73
|
Adelizzi B, Aloi A, Van Zee NJ, Palmans ARA, Meijer EW, Voets IK. Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy. ACS NANO 2018; 12:4431-4439. [PMID: 29697958 PMCID: PMC5968428 DOI: 10.1021/acsnano.8b00396] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/26/2018] [Indexed: 05/29/2023]
Abstract
Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers' structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution.
Collapse
|
74
|
Adelizzi B, Aloi A, Markvoort AJ, Ten Eikelder HMM, Voets IK, Palmans ARA, Meijer EW. Supramolecular Block Copolymers under Thermodynamic Control. J Am Chem Soc 2018; 140:7168-7175. [PMID: 29733207 PMCID: PMC6002778 DOI: 10.1021/jacs.8b02706] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Supramolecular
block copolymers are becoming attractive materials
in nascent optoelectronic and catalytic technologies. However, their
dynamic nature precludes the straightforward tuning and analysis of
the polymer’s structure. Here we report the elucidation on
the microstructure of triarylamine triamide-based supramolecular block
copolymers through a comprehensive battery of spectroscopic, theoretical,
and super-resolution microscopic techniques. Via spectroscopic analysis
we demonstrate that the direct mixing of preassembled homopolymers
and the copolymerization induced by slow cooling of monomers lead
to the formation of the same copolymer’s architecture. The
small but pronounced deviation of the experimental spectra from the
linear combination of the homopolymers’ spectra hints at the
formation of block copolymers. A mass balance model is introduced
to further unravel the microstructure of the copolymers formed, and
it confirms that stable multiblock supramolecular copolymers can be
accessed from different routes. The multiblock structure of the supramolecular
copolymers originates from the fine balance between favorable hydrogen-bonding
interactions and a small mismatch penalty between two different monomers.
Finally, we visualized the formation of the supramolecular block copolymers
by adapting a recently developed super-resolution microscopy technique,
interface point accumulation for imaging in nanoscale topography (iPAINT),
for visualizing the architectures formed in organic media. Combining
multiple techniques was crucial to unveil the microstructure of these
complex dynamic supramolecular systems.
Collapse
|
75
|
Sproncken CCM, Surís-Valls R, Cingil HE, Detrembleur C, Voets IK. Complex Coacervate Core Micelles Containing Poly(vinyl alcohol) Inhibit Ice Recrystallization. Macromol Rapid Commun 2018; 39:e1700814. [PMID: 29635766 DOI: 10.1002/marc.201700814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/19/2018] [Indexed: 11/09/2022]
Abstract
Complex coacervate core micelles (C3Ms) form upon complexation of oppositely charged copolymers. These co-assembled structures are widely investigated as promising building blocks for encapsulation, nanoparticle synthesis, multimodal imaging, and coating technology. Here, the impact on ice growth is investigated of C3Ms containing poly(vinyl alcohol), PVA, which is well known for its high ice recrystallization inhibition (IRI) activity. The PVA-based C3Ms are prepared upon co-assembly of poly(4-vinyl-N-methyl-pyridinium iodide) and poly(vinyl alcohol)-block-poly(acrylic acid). Their formation conditions, size, and performance as ice recrystallization inhibitors are studied. It is found that the C3Ms exhibit IRI activity at PVA monomer concentrations as low as 1 × 10-3 m. The IRI efficacy of PVA-C3Ms is similar to that of linear PVA and PVA graft polymers, underlining the influence of vinyl alcohol monomer concentration rather than polymer architecture.
Collapse
|