51
|
Vexler ZS, Sharp FR, Feuerstein GZ, Ashwal S, Thoresen M, Yager JY, Ferriero DM. Translational stroke research in the developing brain. Pediatr Neurol 2006; 34:459-63. [PMID: 16765824 DOI: 10.1016/j.pediatrneurol.2005.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/15/2005] [Accepted: 10/06/2005] [Indexed: 11/26/2022]
Abstract
Preclinical animal models can help guide the development of clinical pediatric and newborn stroke trials. Data obtained using currently available models of hypoxia-ischemia and focal stroke have demonstrated the need for age-appropriate models. There are age-related differences in susceptibility of the immature brain to oxidative stress and inflammation, as well as in the rate and degree of apoptotic neuronal death. These issues need to be carefully addressed in designing future clinical trials.
Collapse
|
52
|
Yager JY, Wright S, Armstrong EA, Jahraus CM, Saucier DM. A New Model for Determining the Influence of Age and Sex on Functional Recovery following Hypoxic-Ischemic Brain Damage. Dev Neurosci 2005; 27:112-20. [PMID: 16046844 DOI: 10.1159/000085982] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 01/10/2005] [Indexed: 11/19/2022] Open
Abstract
Stroke is a disorder affecting the lives of all age groups, and particularly those at the opposite ends of the age spectrum. It is generally believed that the immature brain is more resistant to damage resulting from a hypoxic/ischemic injury, and that it is also more 'plastic' in terms of its ability to recover. Evidence from our laboratory, and a host of others, has indicated, however, that the developing brain may in fact be more sensitive to injury resulting from hypoxia-ischemia. The question remains, however, whether the immature brain has a greater capacity for recovery. In order to determine the relative capability for functional recovery between age groups, a stroke model of comparable injury is required. This paper describes a new rodent model of ischemic injury allowing for comparisons of behavioral recovery spanning the spectrum of ages between newborn and the elderly. Endothelin-1, a potent vasoconstrictor, was stereotactically injected into the brains of 10-, 63-, and 180-day-old Wistar rats, immediately adjacent to the middle cerebral artery. Regionally, the cortex, caudate, and thalamus were most significantly affected, with sparing of the hippocampus. Pathologic assessment indicated a similar degree of injury across age groups affecting the territorial distribution of the middle cerebral artery, with a predominance of damage in the anterior sections of the cortex and caudate (p < 0.05), compared to the posterior sections including the cortex and thalamus. There were no regional differences in the extent of damage between age groups. Interestingly, however, there were significant differences between males and females regarding the overall extent of brain damage (p < 0.05), with males showing greater damage than females. In addition, there were significant regional differences in the extent of damage between males and females, particularly regarding cortical damage (p < 0.05), both anteriorly and posteriorly, and the caudate anteriorly (p < 0.05). Our findings provide an important new model for comparison of brain damage among the entire spectrum of ages affected by stroke. Importantly, this will allow for further investigations regarding both functional recovery and gender difference comparisons. This may have important ramifications for the development of therapeutic interventions that are age and gender specific.
Collapse
|
53
|
Eicher DJ, Wagner CL, Katikaneni LP, Hulsey TC, Bass WT, Kaufman DA, Horgan MJ, Languani S, Bhatia JJ, Givelichian LM, Sankaran K, Yager JY. Moderate hypothermia in neonatal encephalopathy: efficacy outcomes. Pediatr Neurol 2005; 32:11-7. [PMID: 15607598 DOI: 10.1016/j.pediatrneurol.2004.06.014] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 06/15/2004] [Indexed: 11/24/2022]
Abstract
Therapeutic hypothermia holds promise as a rescue neuroprotective strategy for hypoxic-ischemic injury, but the incidence of severe neurologic sequelae with hypothermia is unknown in encephalopathic neonates who present shortly after birth. This study reports a multicenter, randomized, controlled, pilot trial of moderate systemic hypothermia (33 degrees C) vs normothermia (37 degrees C) for 48 hours in neonates initiated within 6 hours of birth or hypoxic-ischemic event. The trial tested the ability to initiate systemic hypothermia in outlying hospitals and participating tertiary care centers, and determined the incidence of adverse neurologic outcomes of death and developmental scores at 12 months by Bayley II or Vineland tests between normothermic and hypothermic groups. Thirty-two hypothermic and 33 normothermic neonates were enrolled. The entry criteria selected a severely affected group of neonates, with 77% Sarnat stage III. Ten hypothermia (10/32, 31%) and 14 normothermia (14/33, 42%) patients expired. Controlling for treatment group, outborn infants were significantly more likely to die than hypoxic-ischemic infants born in participating tertiary care centers (odds ratio 10.7, 95% confidence interval 1.3-90). Severely abnormal motor scores (Psychomotor Development Index < 70) were recorded in 64% of normothermia patients and in 24% of hypothermia patients. The combined outcome of death or severe motor scores yielded fewer bad outcomes in the hypothermia group (52%) than the normothermia group (84%) (P = 0.019). Although these results need to be validated in a large clinical trial, this pilot trial provides important data for clinical trial design of hypothermia treatment in neonatal hypoxic-ischemic injury.
Collapse
|
54
|
Eicher DJ, Wagner CL, Katikaneni LP, Hulsey TC, Bass WT, Kaufman DA, Horgan MJ, Languani S, Bhatia JJ, Givelichian LM, Sankaran K, Yager JY. Moderate hypothermia in neonatal encephalopathy: safety outcomes. Pediatr Neurol 2005; 32:18-24. [PMID: 15607599 DOI: 10.1016/j.pediatrneurol.2004.06.015] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 06/15/2004] [Indexed: 11/20/2022]
Abstract
Hypoxic-ischemic injury may cause multisystem organ damage with significant aberrations in clotting, renal, and cardiac functions. Systemic hypothermia may aggravate these medical conditions, such as bradycardia and increased clotting times, and very little safety data in neonatal hypoxic-ischemic injury is available. This study reports a multicenter, randomized, controlled pilot trial of moderate systemic hypothermia (33 degrees C) vs normothermia (37 degrees C) for 48 hours in infants with neonatal encephalopathy instituted within 6 hours of birth or hypoxic-ischemic event. The best outcome measures of safety were determined, comparing rates of adverse events between normothermia and hypothermia groups. A total of 32 hypothermia and 33 normothermia neonates were enrolled in seven centers. Adverse events and serious adverse effects were collected by the study team during the hospital admission, monitored by an independent study monitor, and reported to Institutional Review Boards and the Data and Safety Monitoring Committee. The following adverse events were observed significantly more commonly in the hypothermia group: more frequent bradycardia and lower heart rates during the period of hypothermia, longer dependence on pressors, higher prothrombin times, and lower platelet counts with more patients requiring plasma and platelet transfusions. Seizures as an adverse event were more common in the hypothermia group. These observed side effects of 48 hours of moderate systemic hypothermia were of mild to moderate severity and manageable with minor interventions.
Collapse
|
55
|
Yager JY, Armstrong EA, Jaharus C, Saucier DM, Wirrell EC. Preventing hyperthermia decreases brain damage following neonatal hypoxic-ischemic seizures. Brain Res 2004; 1011:48-57. [PMID: 15140643 DOI: 10.1016/j.brainres.2004.02.070] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2004] [Indexed: 11/25/2022]
Abstract
Neonatal seizures are the most common manifestation of underlying cerebral dysfunction. Hypoxic-ischemic encephalopathy is the cause of seizures in 40-60% of newborns. Previous work from our laboratory demonstrates that seizures associated with a hypoxic-ischemic insult results in aggravation of neuronal cell death, specifically within the hippocampus. The latter occurs in the setting of spontaneously occurring hyperthermia of 1.5 degrees C. The purpose of this study was to determine whether preventing the onset of seizure induced hyperthermia would be neuroprotective. Three groups of 10-day old rat pups received unilateral hypoxic-ischemic insults for 30 min followed by KA-induced seizures. Hyperthermia was prevented by lowering the environmental temperature ("relative hypothermia") to 29 degrees C such that the seizuring rat pups were normothermic. In one group, the prevention of hyperthermia occurred immediately following hypoxia-ischemia, whereas in the other group it occurred at the onset of seizures. The third group of rat pups (controls) remained at their nesting temperature and therefore became hyperthermic during seizures. Early (3 days) and late (20 days) neuropathology was assessed. Rat pups in whom hyperthermia was prevented during seizures displayed a significant reduction in brain damage compared to controls (p<0.05). Assessment of hippocampal brain damage also showed a significant improvement in neuronal necrosis at 20 days of recovery compared to 3 days of recovery (p<0.05). The results indicate that preventing spontaneous hyperthermia in this model of hypoxic-ischemic seizures in the newborn is neuroprotective.
Collapse
|
56
|
Abstract
Controversy continues over which animal model to use as a reflection of human disease states. With respect to perinatal brain disorders, scientists must contend with a disease in evolution. In that regard, the perinatal brain is at risk during a time of extremely rapid development and maturation, involving processes that are required for normal growth. Interfering with these processes, as part of therapeutic intervention must be efficacious and safe. To date, numerous models have provided tremendous information regarding the pathophysiology of brain damage to term and preterm infants. Our challenges will continue to be in identifying those infants at greatest risk for permanent injury, and adapting therapies that provide more benefit than harm. Using animal models to conduct these studies will bring us closer to that goal.
Collapse
|
57
|
Rezvani M, Yager JY, Hartfield DS. Group A streptococcal meningitis as a complication of an infected capillary haemangioma. Eur J Pediatr 2004; 163:19-21. [PMID: 14610671 DOI: 10.1007/s00431-003-1334-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 09/29/2003] [Indexed: 11/30/2022]
Abstract
UNLABELLED We report a case of group A streptococcal meningitis in an infant resulting from an infected capillary haemangioma. The child suffered significant morbidity including cerebral infarction, epilepsy, and developmental delay. Treatment of infected capillary haemangiomas remains controversial and inconsistent. CONCLUSION Our experience of this infant, resulting in profound neurological morbidity suggests that group A Streptococcus can be a virulent organism in the young child and that capillary haemangiomas must be treated aggressively at the first sign of infection.
Collapse
|
58
|
Hagberg H, Ichord R, Palmer C, Yager JY, Vannucci SJ. Animal models of developmental brain injury: relevance to human disease. A summary of the panel discussion from the Third Hershey Conference on Developmental Cerebral Blood Flow and Metabolism. Dev Neurosci 2003; 24:364-6. [PMID: 12640174 DOI: 10.1159/000069040] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
59
|
Yager JY, Armstrong EA, Miyashita H, Wirrell EC. Prolonged neonatal seizures exacerbate hypoxic-ischemic brain damage: correlation with cerebral energy metabolism and excitatory amino acid release. Dev Neurosci 2003; 24:367-81. [PMID: 12640175 DOI: 10.1159/000069049] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Accepted: 10/24/2002] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Perinatal hypoxia-ischemia (HI) is the most common precipitant of seizures in the first 24-48 h of a newborn's life. In a previous study, our laboratory developed a model of prolonged, continuous electrographic seizures in 10-day-old rat pups using kainic acid (KA) as a proconvulsant. Groups of animals included those receiving only KA, or HI for 15 or 30 min, followed by KA infusion. Our results showed that prolonged electrographic seizures following 30 min of HI resulted in a marked exacerbation of brain damage. We have undertaken studies to determine alterations in hippocampal high-energy phosphate reserves and the extracellular release of hippocampal amino acids in an attempt to ascertain the underlying mechanisms responsible for the damage promoted by the combination of HI and KA seizures. METHODS All studies were performed on 10-day-old rats. Five groups were identified: (1) group I--KA alone, (2) group II--15 min of HI plus KA, (3) group III--15 min of HI alone, (4) group IV--30 min of HI plus KA, and (5) group VI--30 min of HI alone. HI was induced by right common carotid artery ligation and exposure to 8% oxygen/balance nitrogen. Glycolytic intermediates and high-energy phosphates were measured. Prior to treatment, at the end of HI (both 15 and 30 min), prior to KA injection, and at 1 (onset of seizures), 3, 5 (end of seizures), 7, 24 and 48 h, blood samples were taken for glucose, lactate and beta-hydroxybutyrate. At the same time points, animals were sacrificed by decapitation and brains were rapidly frozen for subsequent dissection of the hippocampus and measurement of glucose, lactate, beta-hydroxybutyrate, adenosine triphosphate (ATP) and phosphocreatine (PCr). In separate groups of rats as defined above, microdialysis probes (CMA) were stereotactically implanted into the CA2-3 region of the ipsilateral hippocampus for measurement of extracellular amino acid release. Dialysate was collected prior to any treatment, at the end of HI (15 and 30 min), prior to KA injection, and at 1 (onset of seizures), 3, 5 (end of seizures), 7 and 9 h. Determination of glutamate, serine, glutamine, glycine, taurine, alanine, and GABA was accomplished using high-performance liquid chromatography with EC detection. RESULTS Blood and hippocampal glucose concentrations in all groups receiving KA were significantly lower than control during seizures (p < 0.05). beta-Hydroxybutyrate values displayed the inverse, in that values were significantly higher (p < 0.01) in all KA groups compared with pretreatment controls during seizure activity. Values returned to control by 2 h following the cessation of seizures. Lactate concentrations in brain and blood mimicked those of beta-hydroxybutyrate. ATP values declined to 0.36 mmol/l in both the 15 and 30 min hypoxia groups compared with 1.85 mmol/l for controls (p < 0.01). During seizures, ATP and PCr values declined significantly below their homologous controls. Following seizures, ATP values only for those animals receiving KA plus HI for 30 min remained below their homologous controls for at least 24 h. Determination of amino acid release revealed elevations of glutamate, glycine, taurine, alanine and GABA above pretreatment control during HI, with a return to normal prior to KA injections. During seizures and for the 4 h of recovery monitored, only glutamate in the combined HI and KA group rose significantly above both the 15 min of HI plus KA and the KA alone group (p < 0.05). CONCLUSION Under circumstances in which there is a protracted depletion of high-energy phosphate reserves, as occurs with a combination of HI- and KA-induced seizures, excess amounts of glutamate become toxic to the brain. The latter may account for the exacerbation of damage to the newborn hippocampus, and serve as a target for future therapeutic intervention.
Collapse
|
60
|
Abstract
Despite the fact that hypoglycemia is an extremely common disorder of the newborn, consensus has been difficult to reach regarding definition, diagnosis, outcome, and treatment. With improved neuroradiologic techniques, such as MRI and PET scanning becoming increasingly available, studies to determine the correlation between hypoglycemia and outcome will help to clarify issues surrounding the effects of hypoglycemia on brain pathology. Long-term epidemiologic studies correlating the severity and duration of hypoglycemia with neurologic consequences are required, and can be complemented by appropriate parallel investigations in animal models of neonatal hypoglycemia.
Collapse
|
61
|
Abstract
Iron deficiency is a common disorder in pediatric patients. Although the most common manifestation is that of anemia, iron deficiency is frequently the source of a host of neurologic disorders presenting to general pediatric neurologic practices. These disorders include developmental delay, stroke, breath-holding episodes, pseudotumor cerebri, and cranial nerve palsies. Although frequent, the identification of iron deficiency as part of the differential diagnosis in these disorders is uncommon and frequently goes untreated. The purpose of the current review is to highlight what is understood regarding iron deficiency and it's underlying pathophysiology as it relates to the brain, and the association of iron deficiency with common neurologic pediatric disease.
Collapse
|
62
|
Abstract
This study was undertaken to clarify whether seizures in the newborn cause damage to the healthy brain and, more specifically, to determine the extent to which seizures may contribute to the brain-damaging effects of hypoxia-ischemia (HI). Seizures were induced in 10-d-old rat pups with kainic acid (KA). Seizure duration was determined electrographically. HI was induced by common carotid artery ligation followed by exposure to 8% oxygen for either 15 or 30 min. Six groups of animals were assessed: 1) controls [neither KA nor HI (group I)]; 2) group II, KA alone; 3) group III, 15 min HI alone; 4) group IV,15 min HI plus KA; 5) group V, 30 min HI alone; and 6) group VI, 30 min HI plus KA. Animals were assessed neuropathologically at 3 (early) and 20 (late) d of recovery. KA injection without hypoxia resulted in continuous clinical and electrographic seizures lasting a mean of 282 min. No neuropathologic injury was seen in groups I (no HI or KA), II (KA alone), III (15 min HI alone), or IV (15 min HI and KA). Animals in group V (30 min HI alone) displayed brain damage with a mean score of 2.3 and 0.60 at 3 and 20 d of recovery, respectively. Animals in group VI (30 min HI and KA) had a mean score of 12.1 and 3.65 at 3 and 20 d of recovery, respectively. Compared with group V, the increased damage as a result of the seizure activity in group VI occurred exclusively in the hippocampus. Status epilepticus in the otherwise "healthy" neonatal brain does not cause neuropathologic injury. However, seizures superimposed on HI significantly exacerbate brain injury in a topographically specific manner.
Collapse
|
63
|
Yager JY, Asselin J. The effect of pre hypoxic-ischemic (HI) hypo and hyperthermia on brain damage in the immature rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 117:139-43. [PMID: 10567731 DOI: 10.1016/s0301-7516(99)00040-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To determine the effect of pre-hypoxic-ischemic (HI) hypo and hyperthermia on neuropathologic outcome in the immature brain, groups of 7-day rat pups underwent unilateral common carotid artery ligation and exposure to hypoxia in 8% oxygen at 37 degrees C for 3 h. Prior to HI, rat pups were divided into three groups and received either: (a) 3-1 h periods, at 8-h intervals, 24 h prior to HI, (b) 1-3 h period, 24 h prior to HI, or (c) 1-3 h period, immediately prior to HI, of exposure to environmental temperatures of 28 degrees C, 31 degrees C, 34 degrees C, 37 degrees C, or 39 degrees C. Following HI, all animals were returned to their dams for neuropathologic assessment at 30 days of age. Mortality was highest among those animals exposed to pre-HI hypothermia at 28 degrees C. Only those animals who were pre-conditioned with hyperthermia at either 37 degrees C or 39 degrees C, immediately prior to HI, displayed a significant reduction in brain damage compared to control (p<0.01). These results indicate that hyperthermia induced prior to HI protects the immature brain from damage. This study further emphasizes the importance of a cautionary approach in implementing systemic hypothermia during clinical trials, and the need to further understand the timing and effects of thermoregulation on the immature brain.
Collapse
|
64
|
Abstract
Mycoplasma pneumoniae encephalitis is a recognized cause of reversible coma in children. As an etiology of infectious encephalitis, it yields a relatively poorer prognosis than most other causes of infectious encephalopathies. Encephalitis is generally diagnosed by a constellation of clinical symptoms and confirmed by a cerebrospinal fluid (CSF) examination revealing cell pleocytosis and elevated protein. That Mycoplasma pneumoniae encephalopathy can occur in the presence of a normal CSF examination is less well appreciated. The authors report two children who presented with coma and normal CSF findings in whom a diagnosis of acute Mycoplasma pneumoniae infection was made. The two children both had rapid and complete recovery over several days. These cases exemplify that coma can result from acute infection with Mycoplasma pneumoniae in the absence of an inflammatory CSF response and that a normal CSF may herald a more favorable prognosis.
Collapse
|
65
|
Jelinski SE, Yager JY, Juurlink BH. Preferential injury of oligodendroblasts by a short hypoxic-ischemic insult. Brain Res 1999; 815:150-3. [PMID: 9974135 DOI: 10.1016/s0006-8993(98)01053-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
One-week-old rat pups were subjected to an acute 10 min severe hypoxic-ischemic insult. Over the next 24 h, during the reperfusion period, O4 immunocytochemistry demonstrated that oligodendroblasts underwent degenerative changes that were coincident with induction of heme oxygenase. We suggest that the increased vulnerability of oligodendroblasts to oxidative stress following an hypoxic-ischemic insult may contribute to the pathogenesis of periventricular leukomalacia.
Collapse
|
66
|
Abstract
Severe hypernatremia has been associated with a wide variety of central nervous system lesions. Neurologic sequelae are the usual outcome in those cases in which a lesion has been documented neuroradiologically. The authors report a 7-month-old male with severe hypernatremia who developed obtundation after correction of the electrolyte imbalance. Magnetic resonance imaging revealed bilateral thalamic signal changes that resolved on follow-up study, in accordance with complete clinical recovery. To the authors' knowledge, bilateral thalamic signal changes are previously unreported findings associated with hypernatremia. Pertinent literature and the clinical course of the authors' patient are the basis for questioning currently recommended guidelines for the rate of correction of hypernatremia.
Collapse
|
67
|
Tuor UI, Yager JY, Bascaramurty S, Del Bigio MR. Dexamethasone prevents hypoxia/ischemia-induced reductions in cerebral glucose utilization and high-energy phosphate metabolites in immature brain. J Neurochem 1997; 69:1954-63. [PMID: 9349540 DOI: 10.1046/j.1471-4159.1997.69051954.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We examined the potential importance of dexamethasone-mediated alterations in energy metabolism in providing protection against hypoxic-ischemic brain damage in immature rats. Seven-day-old rats (n = 165) that had been treated with dexamethasone (0.1 mg/kg, i.p.) or vehicle were assigned to control or hypoxic-ischemic groups (unilateral carotid artery occlusion plus 2-3 h of 8% oxygen at normothermia). The systemic availability of alternate fuels such as beta-hydroxybutyrate, lactate, pyruvate, and free fatty acids was not altered by dexamethasone treatment, and, except for glucose, brain levels were also unaffected. At the end of hypoxia, levels of cerebral high-energy phosphates (ATP and phosphocreatine) were decreased in vehicle- but relatively preserved in dexamethasone-treated animals. The local cerebral metabolic rate of glucose utilization (lCMRgl) was decreased modestly under control conditions in dexamethasone-treated animals, whereas cerebral energy use measured in a model of decapitation ischemia did not differ significantly between groups. The lCMRgl increased markedly during hypoxia-ischemia (p < 0.05) and remained elevated throughout ischemia in dexamethasone- but not vehicle-treated groups, indicating an enhanced glycolytic flux with dexamethasone treatment. Thus, dexamethasone likely provides protection against hypoxic-ischemic damage in immature rats by preserving cerebral ATP secondary to a maintenance of glycolytic flux.
Collapse
|
68
|
Yager JY, Thornhill JA. The effect of age on susceptibility to hypoxic-ischemic brain damage. Neurosci Biobehav Rev 1997; 21:167-74. [PMID: 9062939 DOI: 10.1016/s0149-7634(96)00006-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Stroke occurs in all age groups, ranging from the new-born to the elderly. Our current understanding of the mechanisms of ischemic brain injury suggests that, despite age, the underlying cascade of events includes the rapid depletion of energy reserves, lactate accumulation, release of excitatory amino acids, high intracellular concentrations of Ca2+, and the production of oxygen free radicals. The extent to which these events affect brain injury, however, is profoundly influenced by age. Hyperglycemia for example, markedly enhances hypoxic-ischemic brain damage in adults, but has a protective effect in new-born rats. Insulin-induced hypoglycemia, on the other hand, protects the adult brain, but may be detrimental to the new-born. Substrate utilization of ketone bodies is markedly enhanced in the new-born, and has now been shown also to protect the brain. The immature brain is generally believed to be more resistant to the damaging effects of cerebrovascular compromise compared to the more mature brain. However, recent experiments suggest that the correlation between brain damage and age is not linear. To further clarify the effects of age and development on hypoxic-ischemic brain damage, we developed a model whereby rats of increasing age received identical cerebrovascular insults. Neuropathologic assessment at 7 days of recovery showed that brain damage was most severe in the 1- and 3-week-old animals followed by those that were 6 months. The 6- and 9-week-old groups had significantly less injury than the other three age groups. Hippocampal damage was most severe in the 3-week and 6-month-old rats compared to all other age groups. These findings contrast previously held beliefs regarding the enhanced tolerance of the immature brain to hypoxic-ischemic damage and demonstrate that the immature brain is, in fact, less resistant to hypoxic-ischemic brain damage than its adult counterpart. The results emphasize the need for a greater understanding of the effects of ontogeny on hypoxic-ischemic brain damage, particularly as it pertains to the development of therapeutic interventions.
Collapse
|
69
|
Abstract
Iron deficiency is a common pediatric problem affecting 20%-25% of the world's infants. Most commonly causing anemia, iron deficiency is also implicated in such neurologic sequelae as irritability, lethargy, headaches, developmental delay, and infrequently papilledema, pseudotumor cerebri, and cranial nerve abnormalities. Rarely has iron deficiency been recognized as a significant cause of stroke in the adult or pediatric populations. We report a series of 6 children, 6 to 18 months of age, who presented with an ischemic stroke or venous thrombosis after a viral prodrome. All patients had iron deficiency as a consistent finding among the group, and other known etiologies of childhood stroke were excluded. These patients provide evidence of a strong association between iron deficiency and ischemic events in children between 6 and 18 months of age.
Collapse
|
70
|
Yager JY, Shuaib A, Thornhill J. The effect of age on susceptibility to brain damage in a model of global hemispheric hypoxia-ischemia. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 93:143-54. [PMID: 8804701 DOI: 10.1016/0165-3806(96)00026-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stroke occurs in all age groups, ranging from the newborn to the elderly. The immature brain is generally believed to be more resistant to the damaging effects of cerebrovascular compromise compared to the more mature brain. However, recent experiments suggest that the correlation between brain damage and age is not linear. To determine the effects of age and development on hypoxic-ischemic brain damage, we developed a model whereby rats of increasing age received identical cerebrovascular insults, and assessed neuropathologic outcome. Male Wistar rats of 1, 3, 6, and 9 weeks and 6 months underwent unilateral common carotid artery ligation and exposure to 12% oxygen for 35 min. Animals were all spontaneously breathing under light halothane anesthesia (0.5%). Core temperatures were maintained at 37 degrees C. Blood pressures were monitored via indwelling carotid artery catheters on the side ipsilateral to the carotid artery ligation. Cerebral blood flow was assessed in separate groups utilizing Laser Doppler flowmetry. Physiologic monitoring revealed that under these experimental conditions, mean arterial blood pressure and cerebral blood flow decreased to the same extent in each of the age groups, verifying that all animals experienced an identical insult. Neuropathologic assessment at 7 days of recovery showed that brain damage was most severe in the 1 and 3 week old animals followed by those that were 6 months. The 6 and 9 week old groups had significantly less injury than the other 3 age groups. Hippocampal damage was most severe in the 3 week and 6 month old rats compared to all other age groups. Our findings contrast previously held beliefs regarding the enhanced tolerance of the immature brain to hypoxic-ischemic damage and demonstrates that, in a physiologically controlled in vivo model of hemispheric global ischemia, (1) the immature brain is, in fact, less resistant to hypoxic-ischemic brain damage than its adult counterpart, (2) the brain damaging effects of hypoxic-ischemia are age dependent, but do not increase linearly with advancing age and development, and (3) the intermediate age groups are more tolerant to hypoxic-ischemic brain injury than either very young or more mature ages.
Collapse
|
71
|
Yager JY, Asselin J. Effect of mild hypothermia on cerebral energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat. Stroke 1996; 27:919-25; discussion 926. [PMID: 8623114 DOI: 10.1161/01.str.27.5.919] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND PURPOSE Intraischemic hypothermia (34 degrees C and 31 degrees C) has a profound neuroprotective effect on the brain of the immature rat. Hypothermia immediately after hypoxia-ischemia is not beneficial. To determine the mechanisms by which mild to moderate hypothermia affects cerebral energy metabolism of the brain of the newborn rat pup, we examined alterations in cerebral glycolytic intermediates and high-energy phosphate compounds during intraischemic and postischemic hypothermia and correlated these findings with known neuropathologic injury. METHODS Seven-day-old rat pups underwent unilateral common carotid artery ligation and exposure to hypoxia in 8% oxygen at either 37 degrees C, 34 degrees C, or 31 degrees C for 3.0 hours. Separate groups were exposed to hypoxia-ischemia at 37 degrees C for 3 hours but recovered at either 37 degrees C, 34 degrees C, or 31 degrees C. At 60, 120, and 180 minutes of intraischemic hypothermia and at 10, 30, 60, and 240 minutes of postischemic hypothermia, individual rat pups were quick-frozen in liquid nitrogen for later determination of cerebral concentrations of glucose, lactate, ATP, and phosphocreatine. RESULTS Cerebral glucose was significantly higher and lactate significantly lower in the 31 degrees C animals during hypoxia-ischemia than either the 34 degrees C or 37 degrees C groups. Brain ATP concentrations were completely preserved during hypoxia-ischemia at 31 degrees C, whereas 34 degrees C of hypothermia had no effect on preserving high-energy phosphate compounds compared with those animals in the 37 degrees C group. Postischemic hypothermia of either 34 degrees C or 31 degrees C had no effect on the rate or extent of recovery of glycolytic intermediates or high-energy phosphate compounds compared with the normothermic 37 degrees C rat pups. CONCLUSIONS Moderate hypothermia of 31 degrees C completely inhibits the depletion of ATP during hypoxia-ischemia, a mechanism that likely accounts for its neuroprotective effect. No preservation of ATP was seen, however, during intraischemic mild hypothermia of 34 degrees C despite the relatively profound neuroprotective effect of this degree of temperature reduction. Thus, the mechanisms by which mild hypothermia is neuroprotective are temperature dependent and may act at more than one point along the cascade of events eventually leading to hypoxic-ischemic brain damage in the immature rat.
Collapse
|
72
|
Yager JY, Brucklacher RM, Vannucci RC. Paradoxical mitochondrial oxidation in perinatal hypoxic-ischemic brain damage. Brain Res 1996; 712:230-8. [PMID: 8814897 DOI: 10.1016/0006-8993(95)01423-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Measurements of cytoplasmic and mitochondrial markers of the oxidation-reduction (redox) state of brain tissue were conducted in a perinatal animal model of cerebral hypoxia-ischemia to ascertain underlying biochemical mechanisms whereby ischemia (reduced oxygen and substrate supply) causes brain damage. Seven-day postnatal rats underwent unilateral common carotid artery ligation followed by exposure to 8% oxygen at 37 degrees C for 3 h. During the course of hypoxia-ischemia, the rat pups were quick frozen in liquid nitrogen and their brains processed for the enzymatic, fluorometric measurement of cerebral metabolites necessary for the calculation of intracellular pH and cytoplasmic and mitochondrial redox states. The results showed an early mitochondrial reduction followed by re-oxidation during the course of hypoxia-ischemia. The oxidation reflected a partial depletion in accumulated reducing equivalents and coincides temporally with the duration of hypoxia-ischemia required to convert selective neuronal necrosis into cerebral infarction. The findings suggest that perinatal cerebral hypoxia-ischemia is characterized more by a limitation of substrate than of oxygen supply to the brain, which may explain why glucose supplementation of the immature animal improves neuropathologic outcome, in contrast to adults.
Collapse
|
73
|
Sweeney MI, Yager JY, Walz W, Juurlink BH. Cellular mechanisms involved in brain ischemia. Can J Physiol Pharmacol 1995; 73:1525-35. [PMID: 8789404 DOI: 10.1139/y95-211] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cellular mechanisms, both destructive and protective, that are associated with cerebral ischemia are reviewed in this paper. Central to understanding the evolution of stroke are the concepts of ischemic core and surrounding penumbral region damage, delayed neuronal death, and neuronal rescue. The role of spreading depression in the evolution of subsequent ATP depletion, ion shifts, glutamate release, activation of glutamate receptors, intracellular Ca2+ changes, and generation of reactive oxygen species in the penumbra in relationship to neuronal and glial cell damage are discussed. We conclude that the most fruitful areas for future stroke research include traditional approaches as well as novel approaches. Traditional approaches include stroke prevention and examination of the effects of combinations of proven and promising effective therapeutic interventions. Novel approaches include delineating mechanisms whereby growth factors and compounds such as deprenyl and staurosporine afford neuroprotection, ultimately leading to direct manipulation of the signal transduction pathways that lead to neuronal dysfunction and death. This includes determining which genes are activated and repressed in specific response to hypoxia-ischemia and determining how such alterations in gene expression affect survival and function of neurons. We also suggest that advantage be taken of the blood-brain barrier compromise during stroke in designing neuroprotective therapies.
Collapse
|
74
|
Hertz L, Yager JY, Juurlink BH. Astrocyte survival in the absence of exogenous substrate: comparison of immature and mature cells. Int J Dev Neurosci 1995; 13:523-7. [PMID: 8553886 DOI: 10.1016/0736-5748(95)00049-m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Astrocyte cultures prepared from newborn mouse neopallium were grown for either one or three weeks (representing, respectively, immature and mature astrocytes) and then exposed to deprivation of substrate (glucose and amino acids) for up to 48 hr. Cultures which had been deprived of metabolic substrates for either 24, 30, 36 or 48 hr were examined for lactate dehydrogenase efflux into the medium (an indicator of cell death) and ATP content. Significant cell death in mature astrocytes began after 30 hr of incubation in the substrate-deprived medium, a time when ATP had fallen to approximately 10% of its initial value. Immature astrocytes survived on a substrate-free medium for 48 hr before there was any indication at all of cell death, and this corresponded to a time when ATP values had fallen to 5% of the initial values. These findings are compared to previous observations during simulated ischemia (substrate deprivation plus anoxia) when (1) there was a faster cell death and (2) cell death occurred at higher ATP levels.
Collapse
|
75
|
Abstract
To determine the effect of iron status on the seizure threshold, measures of iron sufficiency were prospectively evaluated in 51 children presenting to a pediatric emergency department with a febrile illness with (26) or without (25) an associated febrile seizure. A higher proportion of children from the febrile seizure group had a family history of mental retardation (5/26 versus 0/25, P = .02) or of previous febrile seizures (10/26 versus 2/23, P = .01). The two groups were otherwise comparable for age, sex, race, family history of afebrile seizures, temperature at presentation, white blood cell count, differential, and vitamin and antibiotic use. Patients with febrile seizures were less frequently iron deficient as defined by a free erythrocyte protoporphyrin level above 0.80 ng/L (2/23 versus 10/25, P < .01), hemoglobin concentration less than 110 g/L (1/26 versus 6/25, P < .03), hematocrit less than 0.30 L/L (0/22 versus 4/25, P < .02), mean corpuscular hemoglobin less than 20 pg (0/25 versus 3/24, P < .04), mean corpuscular volume less than 65 fL (0/26 versus 4/24, P < .02), and platelet count higher than 550 x 10(9)/L (0/26 versus 3/25, P < .04). This association was even stronger when adjusted for differences in family history. None of the patients in the febrile seizure group was being treated for iron deficiency at presentation, whereas three of 25 controls used an iron supplement (P < .04). Iron deficiency may protect against the development of febrile seizures.
Collapse
|