51
|
Chung PJ, Jung H, Choi YD, Kim JK. Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. BMC Genomics 2018; 19:40. [PMID: 29329517 PMCID: PMC5767043 DOI: 10.1186/s12864-017-4367-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Plant stress responses and mechanisms determining tolerance are controlled by diverse sets of genes. Transcription factors (TFs) have been implicated in conferring drought tolerance under drought stress conditions, and the identification of their target genes can elucidate molecular regulatory networks that orchestrate tolerance mechanisms. RESULTS We generated transgenic rice plants overexpressing the 4 rice TFs, OsNAC5, 6, 9, and 10, under the control of the root-specific RCc3 promoter. We showed that they were tolerant to drought stress with reduced loss of grain yield under drought conditions compared with wild type plants. To understand the molecular mechanisms underlying this tolerance, we here performed chromatin immunoprecipitation (ChIP)-Seq and RNA-Seq analyses to identify the direct target genes of the OsNAC proteins using the RCc3:6MYC-OsNAC expressing roots. A total of 475 binding loci for the 4 OsNAC proteins were identified by cross-referencing their binding to promoter regions and the expression levels of the corresponding genes. The binding loci were distributed among the promoter regions of 391 target genes that were directly up-regulated by one of the OsNAC proteins in four RCc3:6MYC-OsNAC transgenic lines. Based on gene ontology (GO) analysis, the direct target genes were related to transmembrane/transporter activity, vesicle, plant hormones, carbohydrate metabolism, and TFs. The direct targets of each OsNAC range from 4.0-8.7% of the total number of up-regulated genes found in the RNA-Seq data sets. Thus, each OsNAC up-regulates a set of direct target genes that alter root system architecture in the RCc3:OsNAC plants to confer drought tolerance. Our results provide a valuable resource for functional dissection of the molecular mechanisms of drought tolerance. CONCLUSIONS Many of the target genes, including transmembrane/transporter, vesicle related, auxin/hormone related, carbohydrate metabolic processes, and transcription factor genes, that are up-regulated by OsNACs act as the cellular components which would alter the root architectures of RCc3:OsNACs for drought tolerance.
Collapse
|
52
|
Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim JK. Overexpression of OsNAC14 Improves Drought Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:310. [PMID: 29593766 PMCID: PMC5855183 DOI: 10.3389/fpls.2018.00310] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/22/2018] [Indexed: 05/14/2023]
Abstract
Plants have evolved to have sophisticated adaptation mechanisms to cope with drought stress by reprograming transcriptional networks through drought responsive transcription factors. NAM, ATAF1-2, and CUC2 (NAC) transcription factors are known to be associated with various developmental processes and stress tolerance. In this study, we functionally characterized the rice drought responsive transcription factor OsNAC14. OsNAC14 was predominantly expressed at meiosis stage but is induced by drought, high salinity, ABA, and low temperature in leaves. Overexpression of OsNAC14 resulted in drought tolerance at the vegetative stage of growth. Field drought tests demonstrated that OsNAC14 overexpressing transgenic rice lines exhibited higher number of panicle and filling rate compared to non-transgenic plants under drought conditions. RNA-sequencing analysis revealed that OsNAC14 overexpression elevated the expression of genes for stress response, DNA damage repair, defense related, and strigolactone biosynthesis. In addition, chromatin immunoprecipitation analysis confirmed the direct interaction of OsNAC14 with the promoter of OsRAD51A1, a key component in homologous recombination in DNA repair system. Collectively, these results indicate that OsNAC14 mediates drought tolerance by recruiting factors involved in DNA damage repair and defense response resulting in improved tolerance to drought.
Collapse
|
53
|
Lee DK, Redillas MCFR, Jung H, Choi S, Kim YS, Kim JK. A Nitrogen Molecular Sensing System, Comprised of the ALLANTOINASE and UREIDE PERMEASE 1 Genes, Can Be Used to Monitor N Status in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:444. [PMID: 29720986 PMCID: PMC5915567 DOI: 10.3389/fpls.2018.00444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/21/2018] [Indexed: 05/14/2023]
Abstract
Nitrogen (N) is an essential nutrient for plant growth and development, but its concentration in the soil is often insufficient for optimal crop production. Consequently, improving N utilization in crops is considered as a major target in agricultural biotechnology. However, much remains to be learnt about crop N metabolism for application. In this study, we have developed a molecular sensor system to monitor the N status in rice (Oryza sativa). We first examined the role of the ureide, allantoin, which is catabolized into allantoin-derived metabolites and used as an N source under low N conditions. The expression levels of two genes involved in ureide metabolism, ALLANTOINASE (OsALN) and UREIDE PERMEASE 1 (OsUPS1), were highly responsive to the N status. OsALN was rapidly up-regulated under low N conditions, whereas OsUPS1 was up-regulated under high N conditions. Taking advantage of the responses of these two genes to N status, we generated transgenic rice plants harboring the molecular N sensors, proALN::ALN-LUC2 and proUPS1::UPS1-LUC2, comprising the gene promoters driving expression of the luciferase reporter. We observed that expression of the transgenes mimicked transcriptional regulation of the endogenous OsALN and OsUPS1 genes in response to exogenous N status. Importantly, the molecular N sensors showed similar levels of specificity to nitrate and ammonium, from which we infer their sensing abilities. Transgenic rice plants expressing the proUPS1::UPS1-LUC2 sensor showed strong luminescence under high exogenous N conditions (>1 mM), whereas transgenic plants expressing the proALN::ALN-LUC2 sensor showed strong luminescence under low exogenous N conditions (<0.1 mM). High exogenous N (>1 mM) substantially increased internal ammonium and nitrate levels, whereas low exogenous N (<0.1 mM) had no effect on internal ammonium and nitrate levels, indicating the luminescence signals of molecular sensors reflect internal N status in rice. Thus, proALN::ALN-LUC2 and proUPS1::UPS1-LUC2 represent N molecular sensors that operate over a physiological and developmental range in rice.
Collapse
|
54
|
|
55
|
Jang G, Chang SH, Um TY, Lee S, Kim JK, Choi YD. Antagonistic interaction between jasmonic acid and cytokinin in xylem development. Sci Rep 2017; 7:10212. [PMID: 28860478 PMCID: PMC5579306 DOI: 10.1038/s41598-017-10634-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023] Open
Abstract
Developmental flexibility under stress conditions largely relies on the interactions between hormones that mediate stress responses and developmental processes. In this study, we showed that the stress hormone jasmonic acid (JA) induces formation of extra xylem in the roots of wild-type Arabidopsis thaliana (Col-0). JA signaling mutants such as coronatine insensitive1-1 and jasmonate resistant1-1 did not form extra xylem in response to JA, but the JA biosynthesis mutant oxophytodienoate-reductase3 did form extra xylem. These observations suggested that the JA response promotes xylem development. To understand the mechanism, we examined the regulatory interaction between JA and cytokinin, a negative regulator of xylem development. JA treatment reduced cytokinin responses in the vasculature, and exogenous cytokinin nullified the effect of JA on formation of extra xylem. A time-course experiment showed that suppression of cytokinin responses by JA does not occur rapidly, but the JA-mediated xylem phenotype is tightly linked to the suppression of the cytokinin response. Further analysis of arabidopsis histidine phosphotransfer protein6-1 and myc2-3 mutants revealed that the JA-responsive transcription factor MYC2 regulates the expression of AHP6 in response to JA and expression of AHP6 is involved in the JA-mediated xylem phenotype.
Collapse
|
56
|
Park D, Park SH, Ban YW, Kim YS, Park KC, Kim NS, Kim JK, Choi IY. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data. BMC Biotechnol 2017; 17:67. [PMID: 28810845 PMCID: PMC5558722 DOI: 10.1186/s12896-017-0386-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Genetically modified crops (GM crops) have been developed to improve the agricultural traits of modern crop cultivars. Safety assessments of GM crops are of paramount importance in research at developmental stages and before releasing transgenic plants into the marketplace. Sequencing technology is developing rapidly, with higher output and labor efficiencies, and will eventually replace existing methods for the molecular characterization of genetically modified organisms. METHODS To detect the transgenic insertion locations in the three GM rice gnomes, Illumina sequencing reads are mapped and classified to the rice genome and plasmid sequence. The both mapped reads are classified to characterize the junction site between plant and transgene sequence by sequence alignment. RESULTS Herein, we present a next generation sequencing (NGS)-based molecular characterization method, using transgenic rice plants SNU-Bt9-5, SNU-Bt9-30, and SNU-Bt9-109. Specifically, using bioinformatics tools, we detected the precise insertion locations and copy numbers of transfer DNA, genetic rearrangements, and the absence of backbone sequences, which were equivalent to results obtained from Southern blot analyses. CONCLUSION NGS methods have been suggested as an effective means of characterizing and detecting transgenic insertion locations in genomes. Our results demonstrate the use of a combination of NGS technology and bioinformatics approaches that offers cost- and time-effective methods for assessing the safety of transgenic plants.
Collapse
|
57
|
Ahn H, Jung I, Shin SJ, Park J, Rhee S, Kim JK, Jung W, Kwon HB, Kim S. Transcriptional Network Analysis Reveals Drought Resistance Mechanisms of AP2/ERF Transgenic Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1044. [PMID: 28663756 PMCID: PMC5471331 DOI: 10.3389/fpls.2017.01044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/30/2017] [Indexed: 05/18/2023]
Abstract
This study was designed to investigate at the molecular level how a transgenic version of rice "Nipponbare" obtained a drought-resistant phenotype. Using multi-omics sequencing data, we compared wild-type rice (WT) and a transgenic version (erf71) that had obtained a drought-resistant phenotype by overexpressing OsERF71, a member of the AP2/ERF transcription factor (TF) family. A comprehensive bioinformatics analysis pipeline, including TF networks and a cascade tree, was developed for the analysis of multi-omics data. The results of the analysis showed that the presence of OsERF71 at the source of the network controlled global gene expression levels in a specific manner to make erf71 survive longer than WT. Our analysis of the time-series transcriptome data suggests that erf71 diverted more energy to survival-critical mechanisms related to translation, oxidative response, and DNA replication, while further suppressing energy-consuming mechanisms, such as photosynthesis. To support this hypothesis further, we measured the net photosynthesis level under physiological conditions, which confirmed the further suppression of photosynthesis in erf71. In summary, our work presents a comprehensive snapshot of transcriptional modification in transgenic rice and shows how this induced the plants to acquire a drought-resistant phenotype.
Collapse
|
58
|
Jeong JS, Jung C, Seo JS, Kim JK, Chua NH. The Deubiquitinating Enzymes UBP12 and UBP13 Positively Regulate MYC2 Levels in Jasmonate Responses. THE PLANT CELL 2017; 29:1406-1424. [PMID: 28536144 PMCID: PMC5502463 DOI: 10.1105/tpc.17.00216] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 05/08/2023]
Abstract
The transcription factor MYC2 has emerged as a master regulator of jasmonate (JA)-mediated responses as well as crosstalk among different signaling pathways. The instability of MYC2 is in part due to the action of PUB10 E3 ligase, which can polyubiquitinate this protein. Here, we show that polyubiquitinated MYC2 can be deubiquitinated by UBP12 and UBP13 in vitro, suggesting that the two deubiquitinating enzymes can counteract the effect of PUB10 in vivo. Consistent with this view, UBP12 and UBP13 associate with MYC2 in the nucleus. Transgenic Arabidopsis thaliana plants deficient in UBP12 and UBP13 show accelerated decay of MYC2 and are hyposensitive to JA, whereas plants overexpressing UBP12 or UBP13 have prolonged MYC2 half-life and are hypersensitive to JA Our results suggest that there is a genetic link between UBP12, UBP13, and MYC2. Our results identify UBP12 and UBP13 as additional positive regulators of JA responses and suggest that these enzymes likely act by stabilizing MYC2.
Collapse
|
59
|
Chang SH, Lee S, Um TY, Kim JK, Do Choi Y, Jang G. pTAC10, a Key Subunit of Plastid-Encoded RNA Polymerase, Promotes Chloroplast Development. PLANT PHYSIOLOGY 2017; 174:435-449. [PMID: 28336770 PMCID: PMC5411158 DOI: 10.1104/pp.17.00248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 05/09/2023]
Abstract
Regulation of photosynthetic gene expression by plastid-encoded RNA polymerase (PEP) is essential for chloroplast development. The activity of PEP largely relies on at least 12 PEP-associated proteins (PAPs) encoded in the nuclear genome of plant cells. A recent model proposed that these PAPs regulate the establishment of the PEP complex through broad PAP-PEP or PAP-PAP interactions. In this study, we identified the Arabidopsis (Arabidopsis thaliana) seedling-lethal mutant ptac10-1, which has defects in chloroplast development, and found that the mutant phenotype is caused by the suppression of PLASTID S1 RNA-BINDING DOMAIN PROTEIN (pTAC10/PAP3). Analysis of the heterozygous mutant and pTAC10-overexpressing transgenic plants indicated that the expression level of pTAC10 is tightly linked to chloroplast development. Characterization of the interaction of pTAC10 with PAPs revealed that pTAC10 interacts with other PAPs, such as FSD2, FSD3, TrxZ, pTAC7, and pTAC14, but it does not interact with PEP core enzymes, such as rpoA and rpoB. Analysis of pTAC10 interactions using truncated pTAC10 proteins showed that the pTAC10 carboxyl-terminal region downstream of the S1 domain is involved in the pTAC10-PAP interaction. Furthermore, overexpression of truncated pTAC10s lacking the C-terminal regions downstream of the S1 domain could not rescue the ptac10-1 mutant phenotype and induced an abnormal whitening phenotype in Columbia-0 plants. Our observations suggested that these pTAC10-PAP interactions are essential for the formation of the PEP complex and chloroplast development.
Collapse
|
60
|
Kim JK, Shin J. 0244 A GOOD NIGHT SLEEP ENHANCES LIFE SATISFACTION: THE ROLE OF THE POSITIVITY OF RECALLED EXPERIENCES. Sleep 2017. [DOI: 10.1093/sleepj/zsx050.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
61
|
Yoon JO, You SL, Kim JK. Intra-articular comminution worsens outcomes of distal radial fractures treated by open reduction and palmar locking plate fixation. J Hand Surg Eur Vol 2017; 42:260-265. [PMID: 28196444 DOI: 10.1177/1753193416682943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED We studied 50 patients with AO type C2 distal radial fractures and 35 with AO type C3 distal radial fractures treated by open reduction and palmar locking plate fixation. At 3-month clinical assessments, mean wrist flexion arcs, grip strengths and disabilities of the arm, shoulder and hand scores were significantly better for AO type C2 fractures. At 2-year post-operative clinical assessments, mean disabilities of the arm, shoulder and hand scores were significantly better for AO type C2 fractures than for AO type C3 fractures. At 2-year radiographic examinations, anterior angulations, ulnar variances and arthritis grades were also significantly better for AO type C2 fractures. This study showed that AO type C3 distal radial fractures, which have intra-articular comminution, had poorer clinical and radiographic outcomes than AO type C2 fractures, despite open reduction and palmar locking plate fixation. LEVEL OF EVIDENCE IV.
Collapse
|
62
|
Lee DK, Yoon S, Kim YS, Kim JK. Rice OsERF71-mediated root modification affects shoot drought tolerance. PLANT SIGNALING & BEHAVIOR 2017; 12:e1268311. [PMID: 27935412 PMCID: PMC5289523 DOI: 10.1080/15592324.2016.1268311] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Drought is the most serious problem that impedes crop development and productivity worldwide. Although several studies have documented the root architecture adaption for drought tolerance, little is known about the underlying molecular mechanisms. Our latest study demonstrated that overexpression of the OsERF71 in rice roots under drought conditions modifies root structure including larger aerenchyma and radial root growth, and thereby, protects the rice plants from drought stresses. The OsERF71-mediated root modifications are caused by combinatory overexpression of general stress-inducible, cell wall-associated and lignin biosynthesis genes that contribute to drought tolerance. Here we addressed that the OsERF71-mediated root modifications alter physiological capacity in shoots without evidence of developmental changes for drought tolerance. Thus, the OsERF71-mediated root modifications provide novel molecular insights into drought tolerance mechanisms.
Collapse
|
63
|
Kim JK, Kim DJ, Yun Y. Natural history and factors associated with ulnar-sided wrist pain in distal radial fractures treated by plate fixation. J Hand Surg Eur Vol 2016; 41:727-31. [PMID: 26896455 DOI: 10.1177/1753193416630525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/04/2016] [Indexed: 02/03/2023]
Abstract
UNLABELLED We documented longitudinal changes in the incidence of ulnar-sided wrist pain after distal radial fractures treated by plate fixation and identified factors associated with ulnar-sided wrist pain. A total of 140 patients were enrolled in this study. Radiographs were taken 3 months after operation, and were used to measure radial inclination, anterior angulation and ulnar variance, and to identify the presence of an ulnar styloid fracture. Clinical assessments at the same time included grip strengths, ranges of wrist motion and the patient-rated wrist evaluation questionnaire. The presence of ulnar-sided wrist pain was noted at each follow-up visit. The incidence of ulnar-sided wrist pain decreased significantly with time after surgery (22 patients at 3 months, 11 patients at 6 months and three patients at 12 months). The mean age, sex, the presence of an ulnar styloid fracture and the classification of the distal radial fracture were not factors that were associated with a higher incidence of ulnar-sided wrist pain, but there was an association between higher patient-rated wrist evaluation scores and the presence of ulnar-sided wrist pain. LEVEL OF EVIDENCE Prognosis, Level IV.
Collapse
|
64
|
Lee DK, Jung H, Jang G, Jeong JS, Kim YS, Ha SH, Do Choi Y, Kim JK. Overexpression of the OsERF71 Transcription Factor Alters Rice Root Structure and Drought Resistance. PLANT PHYSIOLOGY 2016; 172:575-88. [PMID: 27382137 PMCID: PMC5074616 DOI: 10.1104/pp.16.00379] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/01/2016] [Indexed: 05/18/2023]
Abstract
Plant responses to drought stress require the regulation of transcriptional networks via drought-responsive transcription factors, which mediate a range of morphological and physiological changes. AP2/ERF transcription factors are known to act as key regulators of drought resistance transcriptional networks; however, little is known about the associated molecular mechanisms that give rise to specific morphological and physiological adaptations. In this study, we functionally characterized the rice (Oryza sativa) drought-responsive AP2/ERF transcription factor OsERF71, which is expressed predominantly in the root meristem, pericycle, and endodermis. Overexpression of OsERF71, either throughout the entire plant or specifically in roots, resulted in a drought resistance phenotype at the vegetative growth stage, indicating that overexpression in roots was sufficient to confer drought resistance. The root-specific overexpression was more effective in conferring drought resistance at the reproductive stage, such that grain yield was increased by 23% to 42% over wild-type plants or whole-body overexpressing transgenic lines under drought conditions. OsERF71 overexpression in roots elevated the expression levels of genes related to cell wall loosening and lignin biosynthetic genes, which correlated with changes in root structure, the formation of enlarged aerenchyma, and high lignification levels. Furthermore, OsERF71 was found to directly bind to the promoter of OsCINNAMOYL-COENZYME A REDUCTASE1, a key gene in lignin biosynthesis. These results indicate that the OsERF71-mediated drought resistance pathway recruits factors involved in cell wall modification to enable root morphological adaptations, thereby providing a mechanism for enhancing drought resistance.
Collapse
|
65
|
Chung PJ, Jung H, Jeong DH, Ha SH, Choi YD, Kim JK. Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. BMC Genomics 2016; 17:563. [PMID: 27501838 PMCID: PMC4977689 DOI: 10.1186/s12864-016-2997-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/04/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Plant transcriptome profiling has provided a tool for understanding the mechanisms by which plants respond to stress conditions. Analysis of genome-wide transcriptome will provides a useful dataset of drought responsive noncoding RNAs and their candidate target genes that may be involved in drought stress responses. RESULTS Here RNA-seq analyses of leaves from drought stressed rice plants was performed, producing differential expression profiles of noncoding RNAs. We found that the transcript levels of 66 miRNAs changed significantly in response to drought conditions and that they were negatively correlated with putative target genes during the treatments. The negative correlations were further validated by qRT-PCR using total RNAs from both drought-treated leaves and various tissues at different developmental stages. The drought responsive miRNA/target pairs were confirmed by the presence of decay intermediates generated by miRNA-guided cleavages in Parallel Analysis of RNA Ends (PARE) libraries. We observed that the precursor miR171f produced two different mature miRNAs, miR171f-5p and miR171f-3p with 4 candidate target genes, the former of which was responsive to drought conditions. We found that the expression levels of the miR171f precursor negatively correlated with those of one candidate target gene, but not with the others, suggesting that miR171f-5p was drought-responsive, with Os03g0828701-00 being a likely target. Pre-miRNA expression profiling indicated that miR171f is involved in the progression of rice root development and growth, as well as the response to drought stress. Ninety-eight lncRNAs were also identified, together with their corresponding antisense transcripts, some of which were responsive to drought conditions. CONCLUSIONS We identified rice noncoding RNAs (66 miRNAs and 98 lncRNAs), whose expression was highly regulated by drought stress conditions, and whose transcript levels negatively correlated with putative target genes.
Collapse
|
66
|
Kim JH, Go YS, Kim JK, Chung BY. Characterization of microRNAs and their target genes associated with transcriptomic changes in gamma-irradiated Arabidopsis. GENETICS AND MOLECULAR RESEARCH 2016; 15:gmr8386. [PMID: 27525891 DOI: 10.4238/gmr.15038386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression in response to biotic and abiotic stress in plants. We investigated gamma-ray-responsive miRNAs in Arabidopsis wild-type and cmt3-11t mutant plants using miRNA microarray analysis. miRNA expression was differentiated between the wild-type and cmt3-11t mutants. miR164a, miR169d, miR169h, miR172b*, and miR403 were identified as repressible in the wild-type and/or cmt3-11t mutant in response to gamma irradiation, while miR827, miR840, and miR850 were strongly inducible. These eight miRNA genes contain UV-B-responsive cis-elements, including G-box, I-box core, ARE, and/or MBS in the putative promoter regions. Moreover, Box 4, MBS, TCA-element, and Unnamed_4, as well as CAAT- and TATA-box, were identified in these eight miRNA genes. However, a positive correlation between the transcriptions of miRNAs and their putative target genes was only observed between miR169d and At1g30560 in the wild-type, and between miR827 and At1g70700 in the cmt3-11t mutant. Quantitative RT-PCR analysis confirmed that the transcription of miR164a, miR169d, miR169h, miR172b*, miR403, and miR827 differed after gamma irradiation depending on the genotype (wild-type, cmt3-11t, drm2, drd1-6, and ddm1-2) and developmental stage (14 or 28 days after sowing). In contrast, high transcriptional induction of miR840 and miR850 was observed in these six genotypes regardless of the developmental stage. Although the actual target genes and functions of miR840 and miR850 remain to be determined, our results indicate that these two miRNAs may be strongly induced and reproducible genetic markers in Arabidopsis plants exposed to gamma rays.
Collapse
|
67
|
Hosford AD, Hergenreder JE, Kim JK, Baggerman JO, Ribeiro FRB, Anderson MJ, Spivey KS, Rounds W, Johnson BJ. Effects of supplemental lysine and methionine with zilpaterol hydrochloride on feedlot performance, carcass merit, and skeletal muscle fiber characteristics in finishing feedlot cattle. J Anim Sci 2016; 93:4532-44. [PMID: 26440352 DOI: 10.2527/jas.2015-9047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Feeding zilpaterol hydrochloride (ZH) with ruminally protected AA was evaluated in a small-pen feeding trial. Crossbred steers ( = 180; initial BW = 366 kg) were blocked by weight and then randomly assigned to treatments (45 pens; 9 pens/treatment). Treatment groups consisted of no ZH and no AA (Cont-), ZH and no AA (Cont+), ZH and a ruminally protected lysine supplement (Lys), ZH and a ruminally protected methionine supplement (Met), and ZH and ruminally protected lysine and methionine (Lys+Met). Zilpaterol hydrochloride (8.3 mg/kg DM) was fed for the last 20 d of the finishing period with a 3-d withdrawal period. Lysine and Met were top dressed daily for the 134-d feeding trial to provide 12 or 4 g·hd·d, respectively, to the small intestine. Carcass characteristics, striploins, and prerigor muscle samples were collected following harvest at a commercial facility. Steaks from each steer were aged for 7, 14, 21, and 28 d, and Warner-Bratzler shear force (WBSF) was determined as an indicator of tenderness. Prerigor muscle samples were used for immunohistological analysis. Cattle treated with Met and Lys+Met had increased final BW ( < 0.3) and ADG ( < 0.05) compared to Cont- and Cont+. Supplementation of Lys, Met, and Lys+Met improved G:F ( < 0.05) compared to Cont- during the ZH feeding period (d 111 to 134) as well as the entire feeding period ( < 0.05). Zilpaterol hydrochloride increased carcass ADG ( < 0.05) when compared to non-ZH-fed steers. Methionine and Lys+Met treatments had heavier HCW ( < 0.02) than that of Cont-. Yield grade was decreased ( < 0.04) for Cont+ steers compared to steers treated with Lys, Lys+Met, and Cont-. Tenderness was reduced ( < 0.05) with ZH regardless of AA supplementation. Lysine, Met, Lys+Met, and Cont+ had less tender steaks ( < 0.05) throughout all aging groups compared to Cont-. Steaks from Lys-treated steers were less tender ( < 0.05) than those of Cont+ during the 7- and 14-d aging periods. Nuclei density was the greatest with Cont- cattle compared to all other treatments suggesting a dilution effect of the nuclei in the larger muscle fibers with ZH feeding. Supplementation of Met in conjunction with ZH feeding increased ADG and HCW although this may lead to decreased tenderness even after aging for 28 d. These findings indicated that steers fed ZH may require additional AA absorbed from the small intestine to maximize performance.
Collapse
|
68
|
Tarvonen PL, Sipilä K, Yang GS, Kim JK, Lamidi ML, Suominen AL. Comparison of two preventive interventions on dental caries among children in Democratic People's Republic of Korea. Int J Dent Hyg 2016; 14:301-306. [PMID: 27005480 DOI: 10.1111/idh.12209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim was to compare the change in dental caries status in two different intervention groups of the Children's Oral Health Promotion Programme (COHPP). METHODS A longitudinal study among 500 children who had participated into the COHPP for 6 years was conducted in Pyongyang, Democratic People's Republic of Korea (DPRK). Children in Group I received intensified school-based intervention and were clinically examined at the age of 7 years in 2007 (n = 250), 10 years in 2010 (n = 250) and 13 years in 2013 (n = 242). Children in Group II (n = 250) joined the programme at the age of 4 years in kindergarten in 2007, were provided with early preschool-based intervention and were clinically examined at the age of 7 years in 2010 and 10 years in 2013. RESULTS Both the prevalence and the mean number of dt + DT decreased significantly in both groups during the follow-up. This was due to decrease in the number of dt, whereas the number of DT remained relatively constant. Poisson regression showed that the association between the group status and the change in the number of dt + DT was statistically significant when adjusted for gender but disappeared when the school was included in the analysis. CONCLUSIONS The decrease in dental caries may be partly due to the exfoliation of deciduous teeth and dental treatment received. However, the study gave some reference emphasizing the early starting of the prevention.
Collapse
|
69
|
Kim JK, Oh SY, Sohn EH, Hong YH, Jun SM, Bae JS. When is facial diplegia regarded as a variant of Guillain-Barré syndrome? J Peripher Nerv Syst 2016; 20:32-6. [PMID: 25975218 DOI: 10.1111/jns.12115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 12/16/2022]
Abstract
A variant of Guillain-Barré syndrome (GBS) with predominant manifestation of facial diplegia (FD) has been described recently. This study aimed to characterize and determine the incidence of this FD-predominant GBS variant. The clinical and serological information of 900 consecutive patients were reviewed. In total, eight patients were identified between January 2007 and December 2010 as having FD accompanied by some features of GBS. These features were subjective sensory symptoms such as distal paresthesia (7/8, 88%), albumin-cytological (A/C) dissociation (7/8, 88%), antecedent infection (6/8, 75%), and minor nerve conduction study (NCS) abnormalities (5/7, 71%). One patient presented with the typical NCS feature of demyelinating neuropathy. Only two patients exhibited areflexia (2/8, 25%). None of the patients possessed any anti-ganglioside antibodies; however, the serum of two patients was positive for anti-mycoplasma antibody (2/6, 33%). FD variant of GBS occurred in less than 1% of our dataset. FD can be a regional variant of GBS when it is accompanied by supporting features, such as subjective tingling, A/C dissociation, and minor NCS abnormalities.
Collapse
|
70
|
Lee DK, Kim HI, Jang G, Chung PJ, Jeong JS, Kim YS, Bang SW, Jung H, Choi YD, Kim JK. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:199-210. [PMID: 26706071 DOI: 10.1016/j.plantsci.2015.10.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 05/24/2023]
Abstract
The mechanisms of plant response and adaptation to drought stress require the regulation of transcriptional networks via the induction of drought-responsive transcription factors. Nuclear Factor Y (NF-Y) transcription factors have aroused interest in roles of plant drought stress responses. However, the molecular mechanism of the NF-Y-induced drought tolerance is not well understood. Here, we functionally analyzed two rice NF-YA genes, OsNF-YA7 and OsNF-YA4. Expression of OsNF-YA7 was induced by drought stress and its overexpression in transgenic rice plants improved their drought tolerance. In contrast, OsNF-YA4 expression was not increased by drought stress and its overexpression in transgenic rice plants did not affect their sensitivity to drought stress. OsNF-YA4 expression was highly induced by the stress-related hormone abscisic acid (ABA), while OsNF-YA7 was not, indicating that OsNF-YA7 mediates drought tolerance in an ABA-independent manner. Analysis of the OsNF-YA7 promoter revealed three ABA-independent DRE/CTR elements and RNA-seq analysis identified 48 genes downstream of OsNFYA7 action putatively involved in the OsNF-YA7-mediated drought tolerance pathway. Taken together, our results suggest an important role for OsNF-YA7 in rice drought stress tolerance.
Collapse
|
71
|
Park D, Kim D, Jang G, Lim J, Shin YJ, Kim J, Seo MS, Park SH, Kim JK, Kwon TH, Choi IY. Efficiency to Discovery Transgenic Loci in GM Rice Using Next Generation Sequencing Whole Genome Re-sequencing. Genomics Inform 2015; 13:81-5. [PMID: 26523132 PMCID: PMC4623445 DOI: 10.5808/gi.2015.13.3.81] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022] Open
Abstract
Molecular characterization technology in genetically modified organisms, in addition to how transgenic biotechnologies are developed now require full transparency to assess the risk to living modified and non-modified organisms. Next generation sequencing (NGS) methodology is suggested as an effective means in genome characterization and detection of transgenic insertion locations. In the present study, we applied NGS to insert transgenic loci, specifically the epidermal growth factor (EGF) in genetically modified rice cells. A total of 29.3 Gb (~72× coverage) was sequenced with a 2 × 150 bp paired end method by Illumina HiSeq2500, which was consecutively mapped to the rice genome and T-vector sequence. The compatible pairs of reads were successfully mapped to 10 loci on the rice chromosome and vector sequences were validated to the insertion location by polymerase chain reaction (PCR) amplification. The EGF transgenic site was confirmed only on chromosome 4 by PCR. Results of this study demonstrated the success of NGS data to characterize the rice genome. Bioinformatics analyses must be developed in association with NGS data to identify highly accurate transgenic sites.
Collapse
|
72
|
Kim JM, Park KY, Lee WJ, Byun JS, Kim JK, Park MS, Ahn SW, Shin HW. The cortical contrast accumulation from brain computed tomography after endovascular treatment predicts symptomatic hemorrhage. Eur J Neurol 2015; 22:1453-8. [PMID: 26130213 DOI: 10.1111/ene.12764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/07/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE The prognostic value of contrast accumulation from non-contrast brain computed tomography taken immediately after endovascular reperfusion treatment in acute ischaemic stroke patients to predict symptomatic hemorrhage was studied. METHODS Between July 2007 and August 2014, acute anterior circulation ischaemic stroke patients who were treated by intra-arterial thrombolysis or thrombectomy were included. Contrast accumulation was defined as a high attenuation area from non-contrast brain computed tomography immediately taken after endovascular reperfusion treatment, and patients were categorized into three groups according to the presence and location of contrast: (i) negative, (ii) cortical involvement and (iii) non-cortical involvement. The rates of symptomatic hemorrhage after 24 h and functional outcome at discharge were compared between patients with and without cortical involvement. RESULTS Of 64 patients who were treated by endovascular intervention, contrast accumulation was detected in 56, including 33 patients with cortical involvement and 23 patients without cortical involvement. The cortical involvement pattern was more frequently associated with symptomatic hemorrhage (13 vs. 1 patient, P = 0.003) and with grave outcome at discharge with modified Rankin Scale 5 or 6 (14 vs. 4, P = 0.048) than the non-cortical involvement group. Multivariate logistic regression analysis including initial collateral status and occlusion site disclosed that cortical involvement pattern independently predicted symptomatic hemorrhage after endovascular treatment (odds ratio 19.0, confidence interval 1.6-227.6, P = 0.020). CONCLUSION Our study provides evidence that the cortical involvement of contrast accumulation is associated with symptomatic hemorrhage after endovascular reperfusion treatment.
Collapse
|
73
|
Jung H, Lee DK, Choi YD, Kim JK. OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:304-12. [PMID: 26025543 DOI: 10.1016/j.plantsci.2015.04.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/24/2015] [Accepted: 04/26/2015] [Indexed: 05/20/2023]
Abstract
Auxin signaling is a fundamental part of many plant growth processes and stress responses and operates through Aux/IAA protein degradation and the transmission of the signal via auxin response factors (ARFs). A total of 31 Aux/IAA genes have been identified in rice (Oryza sativa), some of which are induced by drought stress. However, the mechanistic link between Aux/IAA expression and drought responses is not well understood. In this study we found that the rice Aux/IAA gene OsIAA6 is highly induced by drought stress and that its overexpression in transgenic rice improved drought tolerance, likely via the regulation of auxin biosynthesis genes. We observed that OsIAA6 was specifically expressed in the axillary meristem of the basal stem, which is the tissue that gives rise to tillers. A knock-down mutant of OsIAA6 showed abnormal tiller outgrowth, apparently due to the regulation of the auxin transporter OsPIN1 and the rice tillering inhibitor OsTB1. Our results confirm that the OsIAA6 gene is involved in drought stress responses and the control of tiller outgrowth.
Collapse
|
74
|
Seo J, Kim W, Kim J, Kim JK, Kim SC, Jang Y, Jang K, Kim K, Kim B, Park S, Park I, Kim MK, Seo KS, Kim HB, Kim IH, Seo S, Song M. Effects of Palm Kernel Expellers on Growth Performance, Nutrient Digestibility, and Blood Profiles of Weaned Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:987-92. [PMID: 26104403 PMCID: PMC4478508 DOI: 10.5713/ajas.14.0842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/29/2014] [Accepted: 01/26/2015] [Indexed: 11/27/2022]
Abstract
This experiment was conducted to investigate the effects of palm kernel expellers on growth performance, nutrient digestibility, and blood profiles of weaned pigs. A total of 88 weaned pigs (6.94±0.76 kg body weight [BW]; 28 d old) were randomly allotted to 2 dietary treatments (4 pigs/pen; 11 replicates/treatment) in a randomized complete block design (sex as a block). The dietary treatments were a typical nursery diet based on corn and soybean meal (CON) and CON added with 20% of palm kernel expellers (PKE). Pigs were fed for 6 wk using a 3-phase feeding program with declining diet complexity and with phases of 1, 2, and 3 wk, respectively. Blood was collected from randomly selected 2 pigs in each pen before weaning and on d 7 after weaning. Pigs were fed respective dietary treatments containing 0.2% chromic oxide from d 29 to 35 after weaning. Fecal samples were collected from randomly selected 2 pigs in each pen daily for the last 3 days after the 4-d adjustment period. Measurements were growth performances, digestibility of dry matter, nitrogen and energy, white and red blood cell counts, packed cell volume, and incidence of diarrhea. The PKE increased average daily gain (ADG) (246 vs 215 g/d; p = 0.06) and average daily feed intake (ADFI) (470 vs 343 g/d; p<0.05) and decreased gain-to-feed ratio (G:F) (0.522 vs 0.628 g/g; p<0.05) during phase 2 compared with CON, but did not affect growth performance during phase 1 and 3. During overall experimental period, PKE increased ADG (383 vs 362 g/d; p = 0.05) and ADFI (549 vs 496 g/d; p<0.05) compared with CON, but did not affect G:F. However, no differences were found on digestibility of dry matter, nitrogen, and energy between CON and PKE. The PKE reduced frequency of diarrhea (15% vs 25%; p = 0.08) for the first 2 wk after weaning compared with CON. Similarly, PKE decreased white blood cells (8.19 vs 9.56×10(3)/μL; p = 0.07), red blood cells (2.92 vs 3.25×10(6)/μL; p = 0.09), and packed cell volume (11.1% vs 12.6%; p = 0.06) on d 7 after weaning compared with CON. In conclusion, addition of 20% palm kernel expellers to nursery diet based on corn and soybean meal had no negative effects on growth performance, nutrient digestibility, and blood profiles of weaned pigs.
Collapse
|
75
|
Bang SW, Park SH, Kim YS, Choi YD, Kim JK. The activities of four constitutively expressed promoters in single-copy transgenic rice plants for two homozygous generations. PLANTA 2015; 241:1529-1541. [PMID: 25809149 DOI: 10.1007/s00425-015-2278-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
We have characterized four novel constitutive promoters ARP1, H3F3, HSP and H2BF3 that are active in all tissues/stages of transgenic plants and stable over two homozygous generations. Gene promoters that are active and stable over several generations in transgenic plants are valuable tools for plant research and biotechnology. In this study, we characterized four putative constitutive promoters (ARP1, H3F3, HSP and H2BF3) in transgenic rice plants. Promoter regions were fused to the green fluorescence protein (GFP) reporter gene and transformed into rice. Single-copy transgenic lines were then selected and promoter activity was analyzed in various organs and tissues of two successive homozygous generations. All four promoters showed a broad expression profile in most tissues and developmental stages, and indeed the expression of the ARP1 and H3F3 promoters was even greater than that of the PGD1 promoter, a previously described constitutive promoter that has been used in transgenic rice. This observation was based on expression levels in leaves, roots, dry seeds and flowers in both the T2 and T3 generations. Each promoter exhibited comparable levels of activity over two homozygous generations with no sign of transgene silencing, which is an important characteristic of promoters to be used in crop biotechnology applications. These promoters therefore have considerable potential value for the stable and constitutive expression of transgenes in monocotyledonous crops.
Collapse
|