51
|
Otuki S, Kamakura T, Wada M, Ishibashi K, Yamagata K, Inoue Y, Miyamoto K, Nagase S, Noda T, Aiba T, Izumi C, Noguchi T, Yasuda S, Kusano K. P1904Comparison of the efficacy of new-generation atrial antitachycardia pacing between patients with sick sinus syndrome and atrioventricular block. Eur Heart J 2018. [DOI: 10.1093/eurheartj/ehy565.p1904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
52
|
Ueda N, Noda T, Kamakura T, Wada M, Yamagata K, Ishibashi K, Inoue Y, Miyamoto K, Nagase S, Aiba T, Izumi C, Noguchi T, Yasuda S, Kusano K. P1948The efficacy of a new device-based continuous optimization algorithm for mildly wide QRS and non-CLBBB patients with cardiac resynchronization therapy. Eur Heart J 2018. [DOI: 10.1093/eurheartj/ehy565.p1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
53
|
Isotani A, Matsumura T, Ogawa M, Tanaka T, Yamagata K, Ikawa M, Okabe M. A delayed sperm penetration of cumulus layers by disruption of acrosin gene in rats. Biol Reprod 2018; 97:61-68. [PMID: 28859281 DOI: 10.1093/biolre/iox066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
Acrosin, the trypsin-like serine protease in the sperm acrosome, was long viewed as a key enzyme required for zona pellucida penetration to fertilize eggs. However, gene disruption experiments in mice surprisingly showed that acrosin-disrupted males were fertile. Thus, the acrosin was considered to be not an essential enzyme for fertilization in mice. However, the involvement of acrosin in fertilization has been suggested in various species such as rat, bull, and pig. Moreover, it has been reported that serine protease (including acrosin) activity in mice is significantly weaker compared to other species, including rats. We analyzed the role of acrosin by disrupting the rat acrosin gene. It was found that, unlike in mice, acrosin was almost the sole source of serine protease in rat spermatozoa. Nevertheless, the acrosin-disrupted males were not infertile. However, the litter size from acrosin-disrupted males was decreased compared to heterozygous mutant rats. Further investigation using an in vitro fertilization system revealed that the acrosin-disrupted spermatozoa possessed an equal ability to penetrate the zona pellucida with wild-type spermatozoa, but the cumulus cell dispersal was slower compared to wild-type and heterozygous spermatozoa. This delay was presumed to be the cause of the small litter size of acrosin-disrupted male rats.
Collapse
|
54
|
Yao T, Suzuki R, Furuta N, Suzuki Y, Kabe K, Tokoro M, Sugawara A, Yajima A, Nagasawa T, Matoba S, Yamagata K, Sugimura S. Live-cell imaging of nuclear-chromosomal dynamics in bovine in vitro fertilised embryos. Sci Rep 2018; 8:7460. [PMID: 29748644 PMCID: PMC5945782 DOI: 10.1038/s41598-018-25698-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/26/2018] [Indexed: 02/06/2023] Open
Abstract
Nuclear/chromosomal integrity is an important prerequisite for the assessment of embryo quality in artificial reproductive technology. However, lipid-rich dark cytoplasm in bovine embryos prevents its observation by visible light microscopy. We performed live-cell imaging using confocal laser microscopy that allowed long-term imaging of nuclear/chromosomal dynamics in bovine in vitro fertilised (IVF) embryos. We analysed the relationship between nuclear/chromosomal aberrations and in vitro embryonic development and morphological blastocyst quality. Three-dimensional live-cell imaging of 369 embryos injected with mRNA encoding histone H2B-mCherry and enhanced green fluorescent protein (EGFP)-α-tubulin was performed from single-cell to blastocyst stage for eight days; 17.9% reached the blastocyst stage. Abnormalities in the number of pronuclei (PN), chromosomal segregation, cytokinesis, and blastomere number at first cleavage were observed at frequencies of 48.0%, 30.6%, 8.1%, and 22.2%, respectively, and 13.0%, 6.2%, 3.3%, and 13.4%, respectively, for abnormal embryos developed into blastocysts. A multivariate analysis showed that abnormal chromosome segregation (ACS) and multiple PN correlated with delayed timing and abnormal blastomere number at first cleavage, respectively. In morphologically transferrable blastocysts, 30-40% of embryos underwent ACS and had abnormal PN. Live-cell imaging may be useful for analysing the association between nuclear/chromosomal dynamics and embryonic development in bovine embryos.
Collapse
|
55
|
Morita K, Tokoro M, Hatanaka Y, Higuchi C, Ikegami H, Nagai K, Anzai M, Kato H, Mitani T, Taguchi Y, Yamagata K, Hosoi Y, Miyamoto K, Matsumoto K. Peroxiredoxin as a functional endogenous antioxidant enzyme in pronuclei of mouse zygotes. J Reprod Dev 2018; 64:161-171. [PMID: 29503398 PMCID: PMC5902904 DOI: 10.1262/jrd.2018-005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antioxidant mechanisms to adequately moderate levels of endogenous reactive oxygen species (ROS) are important for oocytes and embryos to obtain and maintain developmental competence,
respectively. Immediately after fertilization, ROS levels in zygotes are elevated but the antioxidant mechanisms during the maternal-to-zygotic transition (MZT) are not well understood.
First, we identified peroxiredoxin 1 (PRDX1) and PRDX2 by proteomics analysis as two of the most abundant endogenous antioxidant enzymes eliminating hydrogen peroxide
(H2O2). We here report the cellular localization of hyperoxidized PRDX and its involvement in the antioxidant mechanisms of freshly fertilized oocytes. Treatment of
zygotes at the pronuclear stage with H2O2 enhanced pronuclear localization of hyperoxidized PRDX in zygotes and concurrently impaired the generation of
5-hydroxymethylcytosine (5hmC) on the male genome, which is an epigenetic reprogramming event that occurs at the pronuclear stage. Thus, our results suggest that endogenous PRDX is involved
in antioxidant mechanisms and epigenetic reprogramming during MZT.
Collapse
|
56
|
Tanoue H, Morinaga J, Yoshizawa T, Yugami M, Itoh H, Nakamura T, Uehara Y, Masuda T, Odagiri H, Sugizaki T, Kadomatsu T, Miyata K, Endo M, Terada K, Ochi H, Takeda S, Yamagata K, Fukuda T, Mizuta H, Oike Y. Angiopoietin-like protein 2 promotes chondrogenic differentiation during bone growth as a cartilage matrix factor. Osteoarthritis Cartilage 2018; 26:108-117. [PMID: 29074299 DOI: 10.1016/j.joca.2017.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/30/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Chondrocyte differentiation is crucial for long bone growth. Many cartilage extracellular matrix (ECM) proteins reportedly contribute to chondrocyte differentiation, indicating that mechanisms underlying chondrocyte differentiation are likely more complex than previously appreciated. Angiopoietin-like protein 2 (ANGPTL2) is a secreted factor normally abundantly produced in mesenchymal lineage cells such as adipocytes and fibroblasts, but its loss contributes to the pathogenesis of lifestyle- or aging-related diseases. However, the function of ANGPTL2 in chondrocytes, which are also differentiated from mesenchymal stem cells, remains unclear. Here, we investigate whether ANGPTL2 is expressed in or functions in chondrocytes. METHODS First, we evaluated Angptl2 expression during chondrocyte differentiation using chondrogenic ATDC5 cells and wild-type epiphyseal cartilage of newborn mice. We next assessed ANGPTL2 function in chondrogenic differentiation and associated signaling using Angptl2 knockdown ATDC5 cells and Angptl2 knockout mice. RESULTS ANGPTL2 is expressed in chondrocytes, particularly those located in resting and proliferative zones, and accumulates in ECM surrounding chondrocytes. Interestingly, long bone growth was retarded in Angptl2 knockout mice from neonatal to adult stages via attenuation of chondrocyte differentiation. Both in vivo and in vitro experiments show that changes in ANGPTL2 expression can also alter p38 mitogen-activated protein kinase (MAPK) activity mediated by integrin α5β1. CONCLUSION ANGPTL2 contributes to chondrocyte differentiation and subsequent endochondral ossification through α5β1 integrin and p38 MAPK signaling during bone growth. Our findings provide insight into molecular mechanisms governing communication between chondrocytes and surrounding ECM components in bone growth activities.
Collapse
|
57
|
Ueda J, Harada A, Urahama T, Machida S, Maehara K, Hada M, Makino Y, Nogami J, Horikoshi N, Osakabe A, Taguchi H, Tanaka H, Tachiwana H, Yao T, Yamada M, Iwamoto T, Isotani A, Ikawa M, Tachibana T, Okada Y, Kimura H, Ohkawa Y, Kurumizaka H, Yamagata K. Testis-Specific Histone Variant H3t Gene Is Essential for Entry into Spermatogenesis. Cell Rep 2017; 18:593-600. [PMID: 28099840 DOI: 10.1016/j.celrep.2016.12.065] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/16/2016] [Accepted: 12/20/2016] [Indexed: 01/09/2023] Open
Abstract
Cellular differentiation is associated with dynamic chromatin remodeling in establishing a cell-type-specific epigenomic landscape. Here, we find that mouse testis-specific and replication-dependent histone H3 variant H3t is essential for very early stages of spermatogenesis. H3t gene deficiency leads to azoospermia because of the loss of haploid germ cells. When differentiating spermatogonia emerge in normal spermatogenesis, H3t appears and replaces the canonical H3 proteins. Structural and biochemical analyses reveal that H3t-containing nucleosomes are more flexible than the canonical nucleosomes. Thus, by incorporating H3t into the genome during spermatogonial differentiation, male germ cells are able to enter meiosis and beyond.
Collapse
|
58
|
Higuchi C, Shimizu N, Shin SW, Morita K, Nagai K, Anzai M, Kato H, Mitani T, Yamagata K, Hosoi Y, Miyamoto K, Matsumoto K. Ubiquitin-proteasome system modulates zygotic genome activation in early mouse embryos and influences full-term development. J Reprod Dev 2017; 64:65-74. [PMID: 29212961 PMCID: PMC5830360 DOI: 10.1262/jrd.2017-127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maternal RNA/protein degradation and zygotic genome activation (ZGA), occurring during maternal-to-zygotic transition (MZT), are the first essential events for the development of pre-implantation embryos. Previously,
we have shown the importance of the ubiquitin-proteasome system (UPS) for initiation of minor ZGA at the 1-cell stage of mouse embryos. However, little is known about the mechanism of involvement of the UPS-degraded
maternal proteins in ZGA. In this study, we investigated the effect of inhibiting maternal protein degradation by the reversible proteasome inhibitor, MG132, on post-implantation development and ZGA regulation during
early cleavage stages. Our study revealed that zygotic transcription by RNA polymerase II (Pol II) at the 1-cell stage was delayed and the full-term development was affected by transient proteasome inhibition during 1 to
9 h post-insemination (hpi). Furthermore, we found that the transient inhibition of proteasome activity at the 2-cell stage delayed the onset of transcription of some major ZGA genes. These results support the model
hypothesizing the requirement of sequential degradation of maternal proteins by UPS for the proper onset of ZGA and normal progression of MZT in early mouse embryos.
Collapse
|
59
|
Satouh Y, Nozawa K, Yamagata K, Fujimoto T, Ikawa M. Viable offspring after imaging of Ca2+ oscillations and visualization of the cortical reaction in mouse eggs. Biol Reprod 2017; 96:563-575. [PMID: 28339615 DOI: 10.1093/biolre/iox002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/27/2017] [Indexed: 11/14/2022] Open
Abstract
– During mammalian fertilization, egg Ca 2+ oscillations are known to play pivotal roles in triggering downstream events such as resumption of the cell cycle and the establishment of blocks to polyspermy. However, viable offspring have not been obtained after monitoring Ca 2+ oscillations, and their spatiotemporal links to subsequent events are still to be examined. Therefore, the development of imaging methods to avoid phototoxic damage while labeling these events is required. Here, we examined the usefulness of genetically encoded Ca 2+ indicators for optical imaging (GECOs), in combination with spinning-disk confocal imaging. The Ca 2+ imaging of fertilized mouse eggs with GEM-, G-, or R-GECO recorded successful oscillations (8.19 ± 0.31, 7.56 ± 0.23, or 7.53 ± 0.27 spikes in the first 2 h, respectively), similar to those obtained with chemical indicators. Then, in vitro viability tests revealed that imaging with G- or R-GECO did not interfere with the rate of development to the blastocyst stage (61.8 or 70.0%, respectively, vs 75.0% in control). Furthermore, two-cell transfer to recipient female mice after imaging with G- or R-GECO resulted in a similar birthrate (53.3 or 52.0%, respectively) to that of controls (48.7%). Next, we assessed the quality of the cortical reaction (CR) in artificially activated or fertilized eggs using fluorescently labeled Lens culinaris agglutinin fluorescein isothiocyanate. Multicolor imaging demonstrated that the first few Ca 2+ spikes are sufficient for the completion of the CR and subsequent hardening of the zona pellucida in mouse eggs. These methods provide a framework for studying Ca 2+ dynamics in mammalian fertilization.
Collapse
|
60
|
Semba Y, Harada A, Maehara K, Oki S, Meno C, Ueda J, Yamagata K, Suzuki A, Onimaru M, Nogami J, Okada S, Akashi K, Ohkawa Y. Chd2 regulates chromatin for proper gene expression toward differentiation in mouse embryonic stem cells. Nucleic Acids Res 2017; 45:8758-8772. [PMID: 28549158 PMCID: PMC5587750 DOI: 10.1093/nar/gkx475] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/15/2017] [Indexed: 12/21/2022] Open
Abstract
Chromatin reorganization is necessary for pluripotent stem cells, including embryonic stem cells (ESCs), to acquire lineage potential. However, it remains unclear how ESCs maintain their characteristic chromatin state for appropriate gene expression upon differentiation. Here, we demonstrate that chromodomain helicase DNA-binding domain 2 (Chd2) is required to maintain the differentiation potential of mouse ESCs. Chd2-depleted ESCs showed suppressed expression of developmentally regulated genes upon differentiation and subsequent differentiation defects without affecting gene expression in the undifferentiated state. Furthermore, chromatin immunoprecipitation followed by sequencing revealed alterations in the nucleosome occupancy of the histone variant H3.3 for developmentally regulated genes in Chd2-depleted ESCs, which in turn led to elevated trimethylation of the histone H3 lysine 27. These results suggest that Chd2 is essential in preventing suppressive chromatin formation for developmentally regulated genes and determines subsequent effects on developmental processes in the undifferentiated state.
Collapse
|
61
|
Yamagata K, Izawa Y, Onodera D, Tagami M. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol Cell Biochem 2017; 441:9-19. [DOI: 10.1007/s11010-017-3171-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023]
|
62
|
Yamagata K, Takahashi N, Akita N, Nabika T. Arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats. J Neuroinflammation 2017; 14:176. [PMID: 28865453 PMCID: PMC5581459 DOI: 10.1186/s12974-017-0949-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/24/2017] [Indexed: 11/25/2022] Open
Abstract
Background Astrocytes support a range of brain functions as well as neuronal survival, but their detailed relationship with stroke-related edema is not well understood. We previously demonstrated that the release of lactate from astrocytes isolated from stroke-prone spontaneously hypertensive rats (SHRSP/Izm) was attenuated under stroke conditions. The supply of lactate to neurons is regulated by astrocytic monocarboxylate transporters (MCTs). The purpose of this study was to examine the contributions of arginine vasopressin (AVP) and/or hypoxia and reoxygenation (H/R) to the regulation of MCTs and neurotrophic factor in astrocytes obtained from SHRSP/Izm and congenic SHRpch1_18 rats. Methods We compared AVP-induced lactate levels, MCTs, and brain-derived neurotrophic factor (BDNF) in astrocytes isolated from SHRSP/Izm, SHRpch1_18, and Wistar Kyoto rats (WKY/Izm). The expression levels of genes and proteins were determined by PCR and Western blotting (WB). Results The production of lactate induced by AVP was increased in astrocytes from all three strains. However, the levels of lactate were lower in SHRSP/Izm and SHRpch1_18 animals compared with the WKY/Izm strain. Gene expression levels of Slc16a1, Slc16a4, and Bdnf were lowered by AVP in SHRSP/Izm and SHRpch1_18 rats compared with WKY/Izm. The increase of MCT4 that was induced by AVP was blocked by the addition of a specific nitric oxide (NO) chelator, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO). Furthermore, AVP increased the expression of iNOS and eNOS proteins in WKY/Izm and SHRSP/Izm rat astrocytes. However, the iNOS expression levels in SHRSP astrocytes differed from those of WKY/Izm astrocytes. The increase of MCT4 protein expression during AVP treatment was blocked by the addition of a specific NF-kB inhibitor, pyrrolidine dithiocarbamate (PDTC). The induction of MCT4 by AVP may be regulated by NO through NF-kB. Conclusions These results suggest that the expression of MCTs mediated by AVP may be regulated by NO. The data suggest that AVP attenuated the expression of MCTs in SHRSP/Izm and SHRpch1_18 astrocytes. Reduced expression of MCTs may be associated with decreased lactate production in SHRSP.
Collapse
|
63
|
Suzuki S, Nakashima N, Kageyama M, Yamagata K. A phytoestrogen supplement prevents the altered gene expression associated with pregnancy implantation induced by IL-1β in endometrial epithelial cells. Reprod Biol 2017. [PMID: 28647515 DOI: 10.1016/j.repbio.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phytoestrogens stimulate expression of the uterine estrogen receptor and regulate uterine functions in reproductive tissues. However, comprehensive understanding of the beneficial impacts of phytoestrogens on uterine biology at the molecular level remains unexplored. Interleukin-1β (IL-1β) expression is increased in the inflamed decidua and is associated with first trimester pregnancy loss. AglyMax-Sup has the same composition as that of the phytoestrogen supplement AglyMax but with added vitamins and other components. Expression of genes associated with implantation may be enhanced by AglyMax-Sup compared with AglyMax. We tested the hypothesis that AglyMax-Sup has greater effects on implantation compared with AglyMax, using RT-PCR and Western blotting in the endometrial epithelial cell line. Furthermore, we investigated the protective effect of AglyMax-Sup on IL-1βinduced changes in estrogen-responsive gene expression in endometrial epithelial cells. The purpose of this study was to compare the effects of the phytoestrogen supplement AglyMax-Sup with those of AglyMax on estrogen-responsive gene expression. AglyMax and AglyMax-Sup significantly (p<0.05) induced gene expression of glycodelin-A, HoxA10, IL-11, LIF, MEG-E8 and TGFβ1. AglyMax-Sup induced high levels of these genes compared with the levels induced by AglyMax. The enhanced expression of LIF, IL-11, integrin αV, and HOXA10 induced by AglyMax-Sup was abolished by the ER antagonist fulvestrant and the ERK inhibitor PD98059. Meanwhile, IL-1β inhibited progesterone plus estrogen-induced TGFβ1, glycodelin-A, HOXA10, and integrin αV expression. IL-1β-induced suppression of these expression was reversed by AglyMax-Sup. These results indicate that expression of genes associated with implantation may be increased by AglyMax-Sup compared with AglyMax. AglyMax-Sup might abrogate IL-1β-mediated changes that can affect embryo implantation via the MAPK pathway.
Collapse
|
64
|
Yamagata K. Docosahexaenoic acid regulates vascular endothelial cell function and prevents cardiovascular disease. Lipids Health Dis 2017; 16:118. [PMID: 28619112 PMCID: PMC5472966 DOI: 10.1186/s12944-017-0514-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/08/2017] [Indexed: 01/15/2023] Open
Abstract
Docosahexaenoic acid (DHA) is present in high concentrations in salmon, herring, and trout. Epidemiologic studies have shown that high dietary consumption of these and other oily fish is associated with reduced rates of myocardial infarction, atherosclerosis, and other ischemic pathologies. Atherosclerosis is induced by inflammation and can lead to acute cardiovascular events and extensive plaque. DHA inhibits the development of inflammation in endothelial cells, alters the function and regulation of vascular biomarkers, and reduces cardiovascular risk. It also affects vascular relaxation and constriction by controlling nitric oxide and endothelin 1 production in endothelial cells. DHA also contributes to the prevention of arteriosclerosis by regulating the expression of oxidized low density lipoprotein receptor 1, plasminogen activator inhibitor 1, thromboxane A2 receptor, and adhesion molecules such as vascular cell adhesion molecule-1, monocyte chemoattractant protein-1, and intercellular adhesion molecule 1 in endothelial cells. Recent research showed that DHA reduces the increase in adhesion factor expression induced by lipopolysaccharide by suppressing toll-like receptor 4. A new mechanism of action of DHA has been described that is mediated through endothelial free fatty acid receptor 4, associated with heme oxygenase 1 induction by Nrf2. However, the efficacy and mechanisms of action of DHA in cardiovascular disease prevention are not yet completely understood. The aim of this paper was to review the effects of DHA on vascular endothelial cells and recent findings on their potential for the prevention of circulatory diseases.
Collapse
|
65
|
Ogushi S, Yamagata K, Obuse C, Furuta K, Wakayama T, Matzuk MM, Saitou M. Reconstitution of the oocyte nucleolus in mice through a single nucleolar protein, NPM2. J Cell Sci 2017; 130:2416-2429. [PMID: 28600324 DOI: 10.1242/jcs.195875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 05/31/2017] [Indexed: 12/28/2022] Open
Abstract
The mammalian oocyte nucleolus, the most prominent subcellular organelle in the oocyte, is vital in early development, yet its key functions and constituents remain unclear. We show here that the parthenotes/zygotes derived from enucleolated oocytes exhibited abnormal heterochromatin formation around parental pericentromeric DNAs, which led to a significant mitotic delay and frequent chromosome mis-segregation upon the first mitotic division. A proteomic analysis identified nucleoplasmin 2 (NPM2) as a dominant component of the oocyte nucleolus. Consistently, Npm2-deficient oocytes, which lack a normal nucleolar structure, showed chromosome segregation defects similar to those in enucleolated oocytes, suggesting that nucleolar loss, rather than micromanipulation-related damage to the genome, leads to a disorganization of higher-order chromatin structure in pronuclei and frequent chromosome mis-segregation during the first mitosis. Strikingly, expression of NPM2 alone sufficed to reconstitute the nucleolar structure in enucleolated embryos, and rescued their first mitotic division and full-term development. The nucleolus rescue through NPM2 required the pentamer formation and both the N- and C-terminal domains. Our findings demonstrate that the NPM2-based oocyte nucleolus is an essential platform for parental chromatin organization in early embryonic development.
Collapse
|
66
|
Peichl P, Krebsova A, Wichterle D, Kubanek M, Cihak R, Yamagata K, Aldhoon B, Piherova L, Norambuena P, Stranecky V, Kmoch S, Macek M, Kautzner J. 1222Characteristics of an arrhythmogenic substrate and results of catheter ablation of ventricular arrhythmias in patients with desmoplakin mutation associated arrhythmogenic cardiomyopathy. Europace 2017. [DOI: 10.1093/ehjci/eux154.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
67
|
Peichl P, Wichterle D, Cihak R, Yamagata K, Aldhoon B, Kautzner J. P1419Effect of pulmonary vein isolation on drivers of persistent atrial fibrillation: a prospective study using non-invasive panoramic mapping. Europace 2017. [DOI: 10.1093/ehjci/eux158.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
68
|
Yamagata K, Fujiwara A, Onodera D, Motoki T. Lutein Regulates the Expression of Apoptosis-related Genes and Stem Cell Markers in A549 Human Lung Cancer Cells. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The BCL2 family has both pro-apoptotic and anti-apoptotic functions. Furthermore, stem cell markers such as Oct4, SOX2, and NANOG enhance cancer cells’ self-renewal, resistance to anti-cancer drugs and clonal growth. Therefore, selective inhibition of BCL2 genes and downregulated expression of stem cell markers should reduce the survival of cancer cells. Previous studies have reported that lutein, a carotenoid pigment present in fruits and vegetables, can inhibit cancer cells. However, the inhibitory effects of lutein on cancer cells have not been investigated sufficiently. In this study, we used gene expression analysis by polymerase chain reaction (PCR) and Western blotting to show that lutein regulates the expression of genes involved in apoptosis and several stem cell marker genes in a human lung cancer cell line, A549. Lutein induced gene expression of pro-apoptotic BAX and CAS3 and reduced the level of the anti-apoptotic gene BCL2. Furthermore, protein expression of BCL2 and BAX was regulated by treatment with lutein. Lutein also inhibited SOX2 and NANOG gene expression in A549, but not POU5F1. In addition, lutein reduced gene expression of SLCA11, but induced CD44 and CD133 gene expression. These results indicated that lutein inhibits several events associated with apoptosis regulation in a BCL2 family-dependent pathway.
Collapse
|
69
|
Yamazaki T, Hatano Y, Handa T, Kato S, Hoida K, Yamamura R, Fukuyama T, Uematsu T, Kobayashi N, Kimura H, Yamagata K. Targeted DNA methylation in pericentromeres with genome editing-based artificial DNA methyltransferase. PLoS One 2017; 12:e0177764. [PMID: 28542388 PMCID: PMC5436701 DOI: 10.1371/journal.pone.0177764] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/03/2017] [Indexed: 01/10/2023] Open
Abstract
To study the impact of epigenetic changes on biological functions, the ability to manipulate the epigenetic status of certain genomic regions artificially could be an indispensable technology. “Epigenome editing” techniques have gradually emerged that apply TALE or CRISPR/Cas9 technologies with various effector domains isolated from epigenetic code writers or erasers such as DNA methyltransferase, 5-methylcytosine oxidase, and histone modification enzymes. Here we demonstrate that a TALE recognizing a major satellite, consisting of a repeated sequence in pericentromeres, could be fused with the bacterial CpG methyltransferase, SssI. ChIP-qPCR assays demonstrated that the fusion protein TALMaj-SssI preferentially bound to major chromosomal satellites in cultured cell lines. Then, TALMaj-SssI was expressed in fertilized mouse oocytes with hypomethylated major satellites (10–20% CpG islands). Bisulfite sequencing revealed that the DNA methylation status was increased specifically in major satellites (50–60%), but not in minor satellites or other repeat elements, such as Intracisternal A-particle (IAP) or long interspersed nuclear elements-1 (Line1) when the expression level of TALMaj-SssI is optimized in the cell. At a microscopic level, distal ends of chromosomes at the first mitotic stage were dramatically highlighted by the mCherry-tagged methyl CpG binding domain of human MBD1 (mCherry-MBD-NLS). Moreover, targeted DNA methylation to major satellites did not interfere with kinetochore function during early embryonic cleavages. Co-injection of dCas9 fused with SssI and guide RNA (gRNA) recognizing major satellite sequences enabled increment of the DNA methylation in the satellites, but a few off-target effects were also observed in minor satellites and retrotransposons. Although CRISPR can be applied instead of the TALE system, technical improvements to reduce off-target effects are required. We have demonstrated a new method of introducing DNA methylation without the need of other binding partners using the CpG methyltransferase, SssI.
Collapse
|
70
|
Miyamoto K, Tajima Y, Yoshida K, Oikawa M, Azuma R, Allen GE, Tsujikawa T, Tsukaguchi T, Bradshaw CR, Jullien J, Yamagata K, Matsumoto K, Anzai M, Imai H, Gurdon JB, Yamada M. Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules. Biol Open 2017; 6:415-424. [PMID: 28412714 PMCID: PMC5399555 DOI: 10.1242/bio.023473] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Animal cloning has been achieved in many species by transplanting differentiated cell nuclei to unfertilized oocytes. However, the low efficiencies of cloning have remained an unresolved issue. Here we find that the combination of two small molecules, trichostatin A (TSA) and vitamin C (VC), under culture condition with bovine serum albumin deionized by ion-exchange resins, dramatically improves the cloning efficiency in mice and 15% of cloned embryos develop to term by means of somatic cell nuclear transfer (SCNT). The improvement was not observed by adding the non-treated, rather than deionized, bovine serum. RNA-seq analyses of SCNT embryos at the two-cell stage revealed that the treatment with TSA and VC resulted in the upregulated expression of previously identified reprogramming-resistant genes. Moreover, the expression of early-embryo-specific retroelements was upregulated by the TSA and VC treatment. The enhanced gene expression was relevant to the VC-mediated reduction of histone H3 lysine 9 methylation in SCNT embryos. Our study thus shows a simply applicable method to greatly improve mouse cloning efficiency, and furthers our understanding of how somatic nuclei acquire totipotency. Summary: The optimized culture condition with small molecules is sufficient to allow highly efficient mouse cloning by removing epigenetic barriers to reprogramming.
Collapse
|
71
|
Sato Y, Kujirai T, Arai R, Asakawa H, Ohtsuki C, Horikoshi N, Yamagata K, Ueda J, Nagase T, Haraguchi T, Hiraoka Y, Kimura A, Kurumizaka H, Kimura H. A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation. J Mol Biol 2016; 428:3885-3902. [PMID: 27534817 DOI: 10.1016/j.jmb.2016.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/28/2023]
Abstract
Eukaryotic gene expression is regulated in the context of chromatin. Dynamic changes in post-translational histone modification are thought to play key roles in fundamental cellular functions such as regulation of the cell cycle, development, and differentiation. To elucidate the relationship between histone modifications and cellular functions, it is important to monitor the dynamics of modifications in single living cells. A genetically encoded probe called mintbody (modification-specific intracellular antibody), which is a single-chain variable fragment tagged with a fluorescent protein, has been proposed as a useful visualization tool. However, the efficacy of intracellular expression of antibody fragments has been limited, in part due to different environmental conditions in the cytoplasm compared to the endoplasmic reticulum where secreted proteins such as antibodies are folded. In this study, we have developed a new mintbody specific for histone H4 Lys20 monomethylation (H4K20me1). The specificity of the H4K20me1-mintbody in living cells was verified using yeast mutants and mammalian cells in which this target modification was diminished. Expression of the H4K20me1-mintbody allowed us to monitor the oscillation of H4K20me1 levels during the cell cycle. Moreover, dosage-compensated X chromosomes were visualized using the H4K20me1-mintbody in mouse and nematode cells. Using X-ray crystallography and mutational analyses, we identified critical amino acids that contributed to stabilization and/or proper folding of the mintbody. Taken together, these data provide important implications for future studies aimed at developing functional intracellular antibodies. Specifically, the H4K20me1-mintbody provides a powerful tool to track this particular histone modification in living cells and organisms.
Collapse
|
72
|
Kobayashi S, Hosoi Y, Shiura H, Yamagata K, Takahashi S, Fujihara Y, Kohda T, Okabe M, Ishino F. Live imaging of X chromosome reactivation dynamics in early mouse development can discriminate naïve from primed pluripotent stem cells. Development 2016; 143:2958-64. [PMID: 27471261 DOI: 10.1242/dev.136739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/08/2016] [Indexed: 02/04/2023]
Abstract
Pluripotent stem cells can be classified into two distinct states, naïve and primed, which show different degrees of potency. One difficulty in stem cell research is the inability to distinguish these states in live cells. Studies on female mice have shown that reactivation of inactive X chromosomes occurs in the naïve state, while one of the X chromosomes is inactivated in the primed state. Therefore, we aimed to distinguish the two states by monitoring X chromosome reactivation. Thus far, X chromosome reactivation has been analysed using fixed cells; here, we inserted different fluorescent reporter gene cassettes (mCherry and eGFP) into each X chromosome. Using these knock-in 'Momiji' mice, we detected X chromosome reactivation accurately in live embryos, and confirmed that the pluripotent states of embryos were stable ex vivo, as represented by embryonic and epiblast stem cells in terms of X chromosome reactivation. Thus, Momiji mice provide a simple and accurate method for identifying stem cell status based on X chromosome reactivation.
Collapse
|
73
|
Hashimoto S, Nakano T, Yamagata K, Inoue M, Morimoto Y, Nakaoka Y. Multinucleation per se is not always sufficient as a marker of abnormality to decide against transferring human embryos. Fertil Steril 2016; 106:133-139.e6. [DOI: 10.1016/j.fertnstert.2016.03.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
|
74
|
Miyagawa I, Nakayamada S, Nakano K, Yamagata K, Sakata K, Yamaoka K, Tanaka Y. THU0027 Induction of Regulatory T Cells and Its Regulation with Insulin-like Growth Factor/Insulin-like Growth Factor Binding Protein-4 by Human Mesenchymal Stem Cells. Ann Rheum Dis 2016. [DOI: 10.1136/annrheumdis-2016-eular.2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
75
|
Yamagata K, Sone N, Suguyama S, Nabika T. Different effects of arginine vasopressin on high-mobility group box 1 expression in astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats. Int J Exp Pathol 2016; 97:97-106. [PMID: 27126918 DOI: 10.1111/iep.12172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/08/2016] [Indexed: 01/26/2023] Open
Abstract
Stroke-prone spontaneously hypertensive rats (SHRSP/Izm) develop severe hypertension and astrocytic oedema following ischaemic stimulation. During ischaemic stress high-mobility group box 1 (Hmgb1) expression in astrocytes is induced, and subsequently potentiates deterioration of the brain due to ischaemic injury, which manifests as both cerebral inflammation and astrocytic oedema. Arginine vasopressin (AVP) induces brain injury and increases astrocytic swelling. After stroke, Hmgb1 and peroxiredoxin (Prx) are released at different times and activate macrophages in the brain via Toll-like receptors (Tlr2s). The purpose of this study was to examine whether AVP and/or hypoxia and reoxygenation (H/R) contribute to Hmgb1 regulation following ischaemic stroke. Thus, Hmgb1, Prx2 and Tlr2 expression levels in astrocytes isolated from Wistar Kyoto rats (WKY/Izm), spontaneously hypertensive rats (SHR/Izm), SHRSP/Izm and congenic rat strain SHRpch1_18 treated with AVP and/or H/R were compared. Gene and protein expression levels were determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time quantitative PCR, and Western blot. mRNA expression of Hmgb1, Prx2 and Tlr2 induced by AVP was dose-dependent, and Hmgb1 and Prx2 expression was higher in SHR/Izm, SHRSP/Izm and SHRch1_18 than in WKY/Izm. Tlr2 expression with AVP was reduced in SHR/Izm compared to WKY/Izm. In SHRpch1_18, Hmgb1 expression increased after AVP plus H/R. AVP-modulated expression of Hmgb1 protein was reduced by the addition of the antioxidant N-acetylcysteine (NAC). These results suggest that oxidative stress by AVP enhanced expression of Hmgb1, Prx2 and Tlr2 in astrocytes. We hypothesize that regulation of Hmgb1 by AVP during H/R might be related to induction of inflammation and stroke in SHRSP/Izm and SHRpch1_18 rats.
Collapse
|