51
|
Thakur N, Seam RK, Gupta MK, Gupta M, Fotedar V, Vats S, Rana S, Vias P, Ahuja R. A Prospective Observational Study Comparing Long-Course Conventional Neoadjuvant Chemoradiotherapy with Short-Course Radiotherapy Followed by Consolidation Chemotherapy with Delayed Surgery in Locally Advanced Rectal Cancer. South Asian J Cancer 2020; 9:80-85. [PMID: 33354549 PMCID: PMC7745749 DOI: 10.1055/s-0040-1721220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Polish and Australian randomized studies compared short-course radiotherapy (RT) with immediate surgery and long-course chemoradiotherapy (CRT) with delayed surgery. In these studies, similar long-term survival and local control have been reported for both these approaches, but pathological complete response (pCR) is not better with short-course RT. Moreover, studies have shown better tumor downstaging with delayed surgery. In this context, the use of short-course RT with delayed surgery may have some advantages and needs to be tested in clinical trials. Patients and Methods This was a two-arm, prospective, observational study, in which preoperative short-course RT followed by two cycles of chemotherapy was compared with the conventional neoadjuvant CRT in locally advanced rectal cancer. The primary end points were the rate of complete response and toxicity profile. The secondary end points were the rate of R0 resection, overall survival, and progression-free survival. The data obtained from the two arms were analyzed using Pearson's chi-square test to determine the statistical significance between the two treatment arms. Results The pCR rate was 6.7% in the study arm and 0 in the control arm ( p = 0.343). The RO resection rates were 92.8 and 92.3% in the study and control arms, respectively. The rates of grade 3and 4 acute toxicity in the study and control arms were 14.2 and 61.5%, respectively ( p = 0.011). The rates of grade 3 and 4 late toxicity in the study and control arms were 21.4 and 15.3%, respectively ( p = 0.686). Conclusions The pCR rates and the late toxicities in both arms are comparable. The major advantages of the 5 × 5 Gy regimen with chemotherapy in a neoadjuvant setting are a significant reduction in acute toxicities and better patient compliance along with similar efficacy as that of the standard regimen.
Collapse
|
52
|
Srivastava AK, Dwivedi N, Dhand C, Khan R, Sathish N, Gupta MK, Kumar R, Kumar S. Potential of graphene-based materials to combat COVID-19: properties, perspectives, and prospects. MATERIALS TODAY. CHEMISTRY 2020; 18:100385. [PMID: 33106780 PMCID: PMC7577689 DOI: 10.1016/j.mtchem.2020.100385] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 05/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new virus in the coronavirus family that causes coronavirus disease (COVID-19), emerges as a big threat to the human race. To date, there is no medicine and vaccine available for COVID-19 treatment. While the development of medicines and vaccines are essentially and urgently required, what is also extremely important is the repurposing of smart materials to design effective systems for combating COVID-19. Graphene and graphene-related materials (GRMs) exhibit extraordinary physicochemical, electrical, optical, antiviral, antimicrobial, and other fascinating properties that warrant them as potential candidates for designing and development of high-performance components and devices required for COVID-19 pandemic and other futuristic calamities. In this article, we discuss the potential of graphene and GRMs for healthcare applications and how they may contribute to fighting against COVID-19.
Collapse
|
53
|
Gupta MK, Vethe H, Softic S, Rao TN, Wagh V, Shirakawa J, Barsnes H, Vaudel M, Takatani T, Kahraman S, Sakaguchi M, Martinez R, Hu J, Bjørlykke Y, Raeder H, Kulkarni RN. Leptin Receptor Signaling Regulates Protein Synthesis Pathways and Neuronal Differentiation in Pluripotent Stem Cells. Stem Cell Reports 2020; 15:1067-1079. [PMID: 33125875 PMCID: PMC7664055 DOI: 10.1016/j.stemcr.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 01/05/2023] Open
Abstract
The role of leptin receptor (OB-R) signaling in linking pluripotency with growth and development and the consequences of dysfunctional leptin signaling on progression of metabolic disease is poorly understood. Using a global unbiased proteomics approach we report that embryonic fibroblasts (MEFs) carrying the db/db mutation exhibit metabolic abnormalities, while their reprogrammed induced pluripotent stem cells (iPSCs) show altered expression of proteins involved in embryonic development. An upregulation in expression of eukaryotic translation initiation factor 4e (Eif4e) and Stat3 binding to the Eif4e promoter was supported by enhanced protein synthesis in mutant iPSCs. Directed differentiation of db/db iPSCs toward the neuronal lineage showed defects. Gene editing to correct the point mutation in db/db iPSCs using CRISPR-Cas9, restored expression of neuronal markers and protein synthesis while reversing the metabolic defects. These data imply a direct role for OB-R in regulating metabolism in embryonic fibroblasts and key developmental pathways in iPSCs. Pluripotency markers are decreased in db/db iPSCs (lacking functional OB-R) Mouse db/db iPSCs exhibit higher protein synthesis mediated by the Stat3/Eif4e axis OB-R signaling regulates neuronal development markers—NOGGIN, NESTIN, GFAP CRISPR correction reverses defects in db/db iPSCs
Collapse
|
54
|
Helsley RN, Moreau F, Gupta MK, Radulescu A, DeBosch B, Softic S. Tissue-Specific Fructose Metabolism in Obesity and Diabetes. Curr Diab Rep 2020; 20:64. [PMID: 33057854 DOI: 10.1007/s11892-020-01342-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The objective of this review is to provide up-to-date and comprehensive discussion of tissue-specific fructose metabolism in the context of diabetes, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD). RECENT FINDINGS Increased intake of dietary fructose is a risk factor for a myriad of metabolic complications. Tissue-specific fructose metabolism has not been well delineated in terms of its contribution to detrimental health effects associated with fructose intake. Since inhibitors targeting fructose metabolism are being developed for the management of NAFLD and diabetes, it is essential to recognize how inability of one tissue to metabolize fructose may affect metabolism in the other tissues. The primary sites of fructose metabolism are the liver, intestine, and kidney. Skeletal muscle and adipose tissue can also metabolize a large portion of fructose load, especially in the setting of ketohexokinase deficiency, the rate-limiting enzyme of fructose metabolism. Fructose can also be sensed by the pancreas and the brain, where it can influence essential functions involved in energy homeostasis. Lastly, fructose is metabolized by the testes, red blood cells, and lens of the eye where it may contribute to infertility, advanced glycation end products, and cataracts, respectively. An increase in sugar intake, particularly fructose, has been associated with the development of obesity and its complications. Inhibition of fructose utilization in tissues primary responsible for its metabolism alters consumption in other tissues, which have not been traditionally regarded as important depots of fructose metabolism.
Collapse
|
55
|
Raghav P, Gupta MK, Rustagi N, Mishra N, Garg S. Systems approach for assessment of maternal deaths in Rajasthan: A feasibility study. Eur J Public Health 2020. [DOI: 10.1093/eurpub/ckaa166.906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
High maternal mortality in the state like Rajasthan, which is at second rank in terms of high Maternal Mortality Ratio (MMR) in India, require concentrated efforts in this direction The objectives of this study were to assess the magnitude and trend of maternal death and underlying factors contributing to maternal deaths in Rajasthan and to identify barriers and challenges in reporting maternal deaths in Rajasthan.
Methods
Data related to maternal deaths, cause of deaths and live births were retrieved from official Government sources and MMR was calculated. To find out the underlying factors contributing to maternal deaths, Verbal Autopsies were conducted through household surveys. In-depth interviews of health care staff were conducted to carry out the 'SWOT' analysis in order to identify the barriers in reporting maternal deaths. Data was analysed using SPSS version 23.
Results
A total of 7185 maternal deaths were reported from Rajasthan in last five years. The mean age of mothers was 25.18±4.98 years. Haemorrhage were reported as most common cause of maternal death (17%) followed by Severe hypertension or fits (8%) and obstructed labour (2%). The median duration of hospital stay was 23 hours (IQR=7.5-70). Maximum deaths were reported during post-partum period (61%), while around one fourth of the deaths happened during delivery.
Conclusions
The discrepancies were observed in the reporting of number and causes of maternal deaths. The trend and forecasted figures were quite different from the published National and State level reports in this regard.
Key messages
need to streamline and strengthen the Maternal Deaths Surveillance and Response to track the number of deaths and get the exact information about the underlying factors contributing to them. Effective strategies can be developed to reduce the Maternal Deaths in the State.
Collapse
|
56
|
Saurabh S, Kumar R, Gupta MK, Bhardwaj P, Nag VL, Garg MK, Misra S. Prolonged persistence of SARS-CoV-2 in the upper respiratory tract of asymptomatic infected individuals. QJM 2020; 113:556-560. [PMID: 32609360 PMCID: PMC7337859 DOI: 10.1093/qjmed/hcaa212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/18/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Duration of persistence of SARS-CoV-2 in the upper respiratory tract of infected individuals has important clinical and epidemiological implications. AIM We aimed to establish the duration and risk factors for persistence of SARS-CoV-2 in the upper respiratory tract of asymptomatic infected individuals. METHODS Data of repeat rRT-PCR (real-time reverse transcription-polymerase chain reaction) test done for SARS-CoV-2 infected individuals at our institute at Jodhpur, India were analysed from 19 March to 21 May 2020. Duration of virus persistence was estimated with parametric regression models based on weibull, log-normal, log-logistic, gamma and generalized gamma distributions. Factors associated with prolonged viral persistence were analysed with the best-fitting model. RESULTS Fifty-one SARS-CoV-2 infected individuals with repeat rRT-PCR test were identified with 44 asymptomatics. The asymptomatic individuals had median virus persistence duration of 8.87 days (95% CI: 7.65-10.27) and 95 percentile duration of 20.70 days (95% CI: 16.08-28.20). The overall median virus persistence including both symptomatic and asymptomatic individuals was found to be 9.18 days (95% CI: 8.04-10.48). Around one-fourth asymptomatics (10/44) demonstrated SARS-CoV-2 persistence beyond 2 weeks. Age <60 years and local transmission were found to be significantly associated with longer virus persistence among asymptomatic individuals on univariate regression but not in multivariate analysis. CONCLUSION Recommended home isolation duration for SARS-CoV-2 infected individuals in India should be extended from 17 days to at least 3 weeks. Prolonged persistence of SARS-CoV-2 in a considerable proportion of asymptomatic individuals merits attention with regard to ensuring universal infection prevention precautions irrespective of symptomatic status.
Collapse
|
57
|
Mondal S, Vaitheeswaran G, Gupta MK, Mittal R. Structural, elastic, vibrational and optical properties of energetic material octanitrocubane studied from first-principles theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:425502. [PMID: 32575079 DOI: 10.1088/1361-648x/ab9f4e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
We present a thorough density functional theory based computational study of crystalline properties of cubane caged potential energetic material octanitrocubane (ONC). As expected for a layered molecular solid, van der Waals corrections are inevitable and the same has been incorporated to capture the ground state properties more accurately. Study of Born effective charge and zone centered phonon frequencies using density functional perturbation theory reveals the important role of N2, N4 type nitrogen and associated oxygen atoms in contributing to the high intensity infrared modes. From the calculated electronic band structure we can conclude that ONC is an insulator with a band gap of 5.31 eV. The optical properties of ONC are found to be nearly isotropic in low energy region in spite of strong anisotropic crystal structure.
Collapse
|
58
|
Goel P, Gupta MK, Mittal R, Skinner SJ, Mukhopadhyay S, Rols S, Chaplot SL. Phonons and oxygen diffusion in Bi 2O 3and (Bi 0.7Y 0.3) 2O 3. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:334002. [PMID: 32289754 DOI: 10.1088/1361-648x/ab88f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
We report investigation of phonons and oxygen diffusion in Bi2O3and (Bi0.7Y0.3)2O3. The phonon spectra have been measured in Bi2O3at high temperatures up to 1083 K using inelastic neutron scattering.Ab initiocalculations have been used to compute the individual contributions of the constituent atoms in Bi2O3and (Bi0.7Y0.3)2O3to the total phonon density of states. Our computed results indicate that as temperature is increased, there is a complete loss of sharp peak structure in the vibrational density of states.Ab initiomolecular dynamics simulations show that even at 1000 K in δ-phase Bi2O3, Bi-Bi correlations remain ordered in the crystalline lattice while the correlations between O-O show liquid like disordered behavior. In the case of (Bi0.7Y0.3)2O3, the O-O correlations broadened at around 500 K indicating that oxygen conductivity is possible at such low temperatures in (Bi0.7Y0.3)2O3although the conductivity is much less than that observed in the undoped high temperature δ-phase of Bi2O3. This result is consistent with the calculated diffusion coefficients of oxygen and observation by quasielastic neutron scattering experiments. Ourab initiomolecular dynamics calculations predict that macroscopic diffusion is attainable in (Bi0.7Y0.3)2O3at much lower temperatures, which is more suited for technological applications. Our studies elucidate the easy directions of diffusion in δ-Bi2O3and (Bi0.7Y0.3)2O3.
Collapse
|
59
|
Sachdev K, Gupta MK. A comprehensive review of computational techniques for the prediction of drug side effects. Drug Dev Res 2020; 81:650-670. [DOI: 10.1002/ddr.21669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022]
|
60
|
Kushwah AS, Gupta MK, Singh R, Banerjee M. Cytokine gene variants and treatment outcome of cisplatin-based concomitant chemoradiotherapy in cervical cancer. Br J Biomed Sci 2020; 77:81-86. [DOI: 10.1080/09674845.2020.1714164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
61
|
Gupta MK, Vadde R, Sarojamma V. Curcumin - A Novel Therapeutic Agent in the Prevention of Colorectal Cancer. Curr Drug Metab 2020; 20:977-987. [DOI: 10.2174/1389200220666191007153238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Background:
Colorectal cancer is the third important cause of cancer-associated deaths across the world.
Hence, there is an urgent need for understanding the complete mechanism associated with colorectal cancer, which in
turn can be utilized toward early detection as well as the treatment of colorectal cancer in humans. Though colorectal
cancer is a complex process and chemotherapy is the first step toward the treatment of colorectal cancer, recently
several studies suggested that dietary phytochemicals may also aid significantly in reducing colorectal cancer risk in
human. However, only few phytochemicals, specifically curcumin derived from the rhizomes of Curcuma longa,
have better chemotherapeutic property, which might be because of its ability to regulate the activity of key factors
associated with the initiation, promotion, as well as progression of tumors.
Objectives:
In the present review, the authors made an attempt to summarize the physiochemical properties of curcumin,
which in turn prevent colorectal cancer via regulating numerous cell signaling as well as genetic pathways.
Conclusions:
Accumulated evidence suggested that curcumin suppresses tumour/colon cancer in various ways, (a)
restricting cell cycle progression, or stimulating apoptosis, (b) restricting angiogenesis, anti-apoptotic proteins expression,
cell survival signaling pathways & their cross-communication and (c) regulating immune responses. The
information discussed in the present review will be useful in the drug discovery process as well as the treatment and
prevention of colorectal cancer in humans.
Collapse
|
62
|
Mittal R, Gupta MK, Singh B, Chaplot SL. Comment on "Interplay between Phonons and Anisotropic Elasticity Drives Negative Thermal Expansion in PbTiO_{3}". PHYSICAL REVIEW LETTERS 2019; 123:179601. [PMID: 31702231 DOI: 10.1103/physrevlett.123.179601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 06/10/2023]
|
63
|
Gupta MK. Medullary thyroid cancer: an introduction. Curr Oncol 2019; 26:294. [PMID: 31708647 PMCID: PMC6821126 DOI: 10.3747/co.26.5743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Medullary thyroid cancer (mtc) is a rare cancer, making up perhaps only a few percent of all thyroid cancers […]
Collapse
|
64
|
Softic S, Meyer JG, Wang GX, Gupta MK, Batista TM, Lauritzen HPMM, Fujisaka S, Serra D, Herrero L, Willoughby J, Fitzgerald K, Ilkayeva O, Newgard CB, Gibson BW, Schilling B, Cohen DE, Kahn CR. Dietary Sugars Alter Hepatic Fatty Acid Oxidation via Transcriptional and Post-translational Modifications of Mitochondrial Proteins. Cell Metab 2019; 30:735-753.e4. [PMID: 31577934 PMCID: PMC7816129 DOI: 10.1016/j.cmet.2019.09.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 01/25/2023]
Abstract
Dietary sugars, fructose and glucose, promote hepatic de novo lipogenesis and modify the effects of a high-fat diet (HFD) on the development of insulin resistance. Here, we show that fructose and glucose supplementation of an HFD exert divergent effects on hepatic mitochondrial function and fatty acid oxidation. This is mediated via three different nodes of regulation, including differential effects on malonyl-CoA levels, effects on mitochondrial size/protein abundance, and acetylation of mitochondrial proteins. HFD- and HFD plus fructose-fed mice have decreased CTP1a activity, the rate-limiting enzyme of fatty acid oxidation, whereas knockdown of fructose metabolism increases CPT1a and its acylcarnitine products. Furthermore, fructose-supplemented HFD leads to increased acetylation of ACADL and CPT1a, which is associated with decreased fat metabolism. In summary, dietary fructose, but not glucose, supplementation of HFD impairs mitochondrial size, function, and protein acetylation, resulting in decreased fatty acid oxidation and development of metabolic dysregulation.
Collapse
|
65
|
Gupta MK, Vohra C, Raghav P. Assessment of knowledge, attitudes, and practices about antibiotic resistance among medical students in India. J Family Med Prim Care 2019; 8:2864-2869. [PMID: 31681657 PMCID: PMC6820394 DOI: 10.4103/jfmpc.jfmpc_504_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/22/2019] [Accepted: 09/05/2019] [Indexed: 11/06/2022] Open
Abstract
Context: To reduce the magnitude of antimicrobial resistance, there is a need to strengthen the knowledge for future prescribers regarding use and prescription of antibiotics. Before that, it is required to have a conclusive evidence about knowledge, attitude, and practices of that group. Aim: To assess the knowledge, attitudes, and the practices of medical students in India with respect to antibiotic resistance and usage. Settings and Design: It was a cross-sectional study which was done online through Google forms for a period of 4 months from July to October 2018. Materials and Methods: A structured questionnaire containing a five-point Likert scale was sent to medical students across India by sharing link through contacts of Medical Students Association of India. Respondent-driven sampling technique was also adopted for the study. Statistical Analysis Used: Descriptive statistics, parametric (Chi-square), and nonparametric (Kruskal--Wallis and Mann--Whitney U) tests. Results: A total of 474 responses were received from 103 medical colleges across 22 states of India. The mean score of knowledge was 4.36 ± 0.39. As compared to first year students, knowledge was significantly higher among students of all the years. As much as 83.3% students have consumed antibiotics in previous year of the survey. Around 45% of medical students accepted that they buy antibiotics without a medical prescription. Conclusion: The knowledge level of medical students was quite satisfactory. As far as attitude and practices are concerned, there is a substantial need for improvements.
Collapse
|
66
|
Mullane KM, Morrison VA, Camacho LH, Arvin A, McNeil SA, Durrand J, Campbell B, Su SC, Chan ISF, Parrino J, Kaplan SS, Popmihajlov Z, Annunziato PW, Cerana S, Dictar MO, Bonvehi P, Tregnaghi JP, Fein L, Ashley D, Singh M, Hayes T, Playford G, Morrissey O, Thaler J, Kuehr T, Greil R, Pecherstorfer M, Duck L, Van Eygen K, Aoun M, De Prijck B, Franke FA, Barrios CHE, Mendes AVA, Serrano SV, Garcia RF, Moore F, Camargo JFC, Pires LA, Alves RS, Radinov A, Oreshkov K, Minchev V, Hubenova AI, Koynova T, Ivanov I, Rabotilova B, Minchev V, Petrov PA, Chilingirov P, Karanikolov S, Raynov J, Grimard D, McNeil S, Kumar D, Larratt LM, Weiss K, Delage R, Diaz-Mitoma FJ, Cano PO, Couture F, Carvajal P, Yepes A, Torres Ulloa R, Fardella P, Caglevic C, Rojas C, Orellana E, Gonzalez P, Acevedo A, Galvez KM, Gonzalez ME, Franco S, Restrepo JG, Rojas CA, Bonilla C, Florez LE, Ospina AV, Manneh R, Zorica R, Vrdoljak DV, Samarzija M, Petruzelka L, Vydra J, Mayer J, Cibula D, Prausova J, Paulson G, Ontaneda M, Palk K, Vahlberg A, Rooneem R, Galtier F, Postil D, Lucht F, Laine F, Launay O, Laurichesse H, Duval X, Cornely OA, Camerer B, Panse J, Zaiss M, Derigs HG, Menzel H, Verbeek M, Georgoulias V, Mavroudis D, Anagnostopoulos A, Terpos E, Cortes D, Umanzor J, Bejarano S, Galeano RW, Wong RSM, Hui P, Pedrazzoli P, Ruggeri L, Aversa F, Bosi A, Gentile G, Rambaldi A, Contu A, Marei L, Abbadi A, Hayajneh W, Kattan J, Farhat F, Chahine G, Rutkauskiene J, Marfil Rivera LJ, Lopez Chuken YA, Franco Villarreal H, Lopez Hernandez J, Blacklock H, Lopez RI, Alvarez R, Gomez AM, Quintana TS, Moreno Larrea MDC, Zorrilla SJ, Alarcon E, Samanez FCA, Caguioa PB, Tiangco BJ, Mora EM, Betancourt-Garcia RD, Hallman-Navarro D, Feliciano-Lopez LJ, Velez-Cortes HA, Cabanillas F, Ganea DE, Ciuleanu TE, Ghizdavescu DG, Miron L, Cebotaru CL, Cainap CI, Anghel R, Dvorkin MV, Gladkov OA, Fadeeva NV, Kuzmin AA, Lipatov ON, Zbarskaya II, Akhmetzyanov FS, Litvinov IV, Afanasyev BV, Cherenkova M, Lioznov D, Lisukov IA, Smirnova YA, Kolomietz S, Halawani H, Goh YT, Drgona L, Chudej J, Matejkova M, Reckova M, Rapoport BL, Szpak WM, Malan DR, Jonas N, Jung CW, Lee DG, Yoon SS, Lopez Jimenez J, Duran Martinez I, Rodriguez Moreno JF, Solano Vercet C, de la Camara R, Batlle Massana M, Yeh SP, Chen CY, Chou HH, Tsai CM, Chiu CH, Siritanaratkul N, Norasetthada L, Sriuranpong V, Seetalarom K, Akan H, Dane F, Ozcan MA, Ozsan GH, Kalayoglu Besisik SF, Cagatay A, Yalcin S, Peniket A, Mullan SR, Dakhil KM, Sivarajan K, Suh JJG, Sehgal A, Marquez F, Gomez EG, Mullane MR, Skinner WL, Behrens RJ, Trevarthe DR, Mazurczak MA, Lambiase EA, Vidal CA, Anac SY, Rodrigues GA, Baltz B, Boccia R, Wertheim MS, Holladay CS, Zenk D, Fusselman W, Wade III JL, Jaslowsk AJ, Keegan J, Robinson MO, Go RS, Farnen J, Amin B, Jurgens D, Risi GF, Beatty PG, Naqvi T, Parshad S, Hansen VL, Ahmed M, Steen PD, Badarinath S, Dekker A, Scouros MA, Young DE, Graydon Harker W, Kendall SD, Citron ML, Chedid S, Posada JG, Gupta MK, Rafiyath S, Buechler-Price J, Sreenivasappa S, Chay CH, Burke JM, Young SE, Mahmood A, Kugler JW, Gerstner G, Fuloria J, Belman ND, Geller R, Nieva J, Whittenberger BP, Wong BMY, Cescon TP, Abesada-Terk G, Guarino MJ, Zweibach A, Ibrahim EN, Takahashi G, Garrison MA, Mowat RB, Choi BS, Oliff IA, Singh J, Guter KA, Ayrons K, Rowland KM, Noga SJ, Rao SB, Columbie A, Nualart MT, Cecchi GR, Campos LT, Mohebtash M, Flores MR, Rothstein-Rubin R, O'Connor BM, Soori G, Knapp M, Miranda FG, Goodgame BW, Kassem M, Belani R, Sharma S, Ortiz T, Sonneborn HL, Markowitz AB, Wilbur D, Meiri E, Koo VS, Jhangiani HS, Wong L, Sanani S, Lawrence SJ, Jones CM, Murray C, Papageorgiou C, Gurtler JS, Ascensao JL, Seetalarom K, Venigalla ML, D'Andrea M, De Las Casas C, Haile DJ, Qazi FU, Santander JL, Thomas MR, Rao VP, Craig M, Garg RJ, Robles R, Lyons RM, Stegemoller RK, Goel S, Garg S, Lowry P, Lynch C, Lash B, Repka T, Baker J, Goueli BS, Campbell TC, Van Echo DA, Lee YJ, Reyes EA, Senecal FM, Donnelly G, Byeff P, Weiss R, Reid T, Roeland E, Goel A, Prow DM, Brandt DS, Kaplan HG, Payne JE, Boeckh MG, Rosen PJ, Mena RR, Khan R, Betts RF, Sharp SA, Morrison VA, Fitz-Patrick D, Congdon J, Erickson N, Abbasi R, Henderson S, Mehdi A, Wos EJ, Rehmus E, Beltzer L, Tamayo RA, Mahmood T, Reboli AC, Moore A, Brown JM, Cruz J, Quick DP, Potz JL, Kotz KW, Hutchins M, Chowhan NM, Devabhaktuni YD, Braly P, Berenguer RA, Shambaugh SC, O'Rourke TJ, Conkright WA, Winkler CF, Addo FEK, Duic JP, High KP, Kutner ME, Collins R, Carrizosa DR, Perry DJ, Kailath E, Rosen N, Sotolongo R, Shoham S, Chen T. Safety and efficacy of inactivated varicella zoster virus vaccine in immunocompromised patients with malignancies: a two-arm, randomised, double-blind, phase 3 trial. THE LANCET. INFECTIOUS DISEASES 2019; 19:1001-1012. [DOI: 10.1016/s1473-3099(19)30310-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/25/2022]
|
67
|
Gupta MK, Kushwah AS, Singh R, Banerjee M. Genotypic analysis of XRCC4 and susceptibility to cervical cancer. Br J Biomed Sci 2019; 77:7-12. [DOI: 10.1080/09674845.2019.1637573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
68
|
De Jesus DF, Zhang Z, Kahraman S, Brown NK, Chen M, Hu J, Gupta MK, He C, Kulkarni RN. m 6A mRNA Methylation Regulates Human β-Cell Biology in Physiological States and in Type 2 Diabetes. Nat Metab 2019; 1:765-774. [PMID: 31867565 PMCID: PMC6924515 DOI: 10.1038/s42255-019-0089-9] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The regulation of islet cell biology is critical for glucose homeostasis1.N6 -methyladenosine (m6A) is the most abundant internal messenger RNA (mRNA) modification in mammals2. Here we report that the m6A landscape segregates human type 2 diabetes (T2D) islets from controls significantly better than the transcriptome and that m6A is vital for β-cell biology. m6A-sequencing in human T2D islets reveals several hypomethylated transcripts involved in cell-cycle progression, insulin secretion, and the Insulin/IGF1-AKT-PDX1 pathway. Depletion of m6A levels in EndoC-βH1 induces cell-cycle arrest and impairs insulin secretion by decreasing AKT phosphorylation and PDX1 protein levels. β-cell specific Mettl14 knock-out mice, which display reduced m6A levels, mimic the islet phenotype in human T2D with early diabetes onset and mortality due to decreased β-cell proliferation and insulin degranulation. Our data underscore the significance of RNA methylation in regulating human β-cell biology, and provide a rationale for potential therapeutic targeting of m6A modulators to preserve β-cell survival and function in diabetes.
Collapse
|
69
|
Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agarwal B, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allen G, Allocca A, Aloy MA, Altin PA, Amato A, Ananyeva A, Anderson SB, Anderson WG, Angelova SV, Antier S, Appert S, Arai K, Araya MC, Areeda JS, Arène M, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Atallah DV, Aubin F, Aufmuth P, Aulbert C, AultONeal K, Austin C, Avila-Alvarez A, Babak S, Bacon P, Badaracco F, Bader MKM, Bae S, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Banagiri S, Barayoga JC, Barclay SE, Barish BC, Barker D, Barkett K, Barnum S, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Bartos I, Bassiri R, Basti A, Batch JC, Bawaj M, Bayley JC, Bazzan M, Bécsy B, Beer C, Bejger M, Belahcene I, Bell AS, Beniwal D, Bensch M, Berger BK, Bergmann G, Bernuzzi S, Bero JJ, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhandare R, Bilenko IA, Bilgili SA, Billingsley G, Billman CR, Birch J, Birney R, Birnholtz O, Biscans S, Biscoveanu S, Bisht A, Bitossi M, Bizouard MA, Blackburn JK, Blackman J, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Bode N, Boer M, Boetzel Y, Bogaert G, Bohe A, Bondu F, Bonilla E, Bonnand R, Booker P, Boom BA, Booth CD, Bork R, Boschi V, Bose S, Bossie K, Bossilkov V, Bosveld J, Bouffanais Y, Bozzi A, Bradaschia C, Brady PR, Bramley A, Branchesi M, Brau JE, Briant T, Brighenti F, Brillet A, Brinkmann M, Brisson V, Brockill P, Brooks AF, Brown DD, Brunett S, Buchanan CC, Buikema A, Bulik T, Bulten HJ, Buonanno A, Buskulic D, Buy C, Byer RL, Cabero M, Cadonati L, Cagnoli G, Cahillane C, Bustillo JC, Callister TA, Calloni E, Camp JB, Canepa M, Canizares P, Cannon KC, Cao H, Cao J, Capano CD, Capocasa E, Carbognani F, Caride S, Carney MF, Carullo G, Diaz JC, Casentini C, Caudill S, Cavaglià M, Cavalier F, Cavalieri R, Cella G, Cepeda CB, Cerdá-Durán P, Cerretani G, Cesarini E, Chaibi O, Chamberlin SJ, Chan M, Chao S, Charlton P, Chase E, Chassande-Mottin E, Chatterjee D, Chatziioannou K, Cheeseboro BD, Chen HY, Chen X, Chen Y, Cheng HP, Chia HY, Chincarini A, Chiummo A, Chmiel T, Cho HS, Cho M, Chow JH, Christensen N, Chu Q, Chua AJK, Chua S, Chung KW, Chung S, Ciani G, Ciobanu AA, Ciolfi R, Cipriano F, Cirelli CE, Cirone A, Clara F, Clark JA, Clearwater P, Cleva F, Cocchieri C, Coccia E, Cohadon PF, Cohen D, Colla A, Collette CG, Collins C, Cominsky LR, Constancio M, Conti L, Cooper SJ, Corban P, Corbitt TR, Cordero-Carrión I, Corley KR, Cornish N, Corsi A, Cortese S, Costa CA, Cotesta R, Coughlin MW, Coughlin SB, Coulon JP, Countryman ST, Couvares P, Covas PB, Cowan EE, Coward DM, Cowart MJ, Coyne DC, Coyne R, Creighton JDE, Creighton TD, Cripe J, Crowder SG, Cullen TJ, Cumming A, Cunningham L, Cuoco E, Canton TD, Dálya G, Danilishin SL, D'Antonio S, Danzmann K, Dasgupta A, Costa CFDS, Dattilo V, Dave I, Davier M, Davis D, Daw EJ, Day B, DeBra D, Deenadayalan M, Degallaix J, De Laurentis M, Deléglise S, Del Pozzo W, Demos N, Denker T, Dent T, De Pietri R, Derby J, Dergachev V, De Rosa R, De Rossi C, DeSalvo R, de Varona O, Dhurandhar S, Díaz MC, Dietrich T, Di Fiore L, Di Giovanni M, Di Girolamo T, Di Lieto A, Ding B, Di Pace S, Di Palma I, Di Renzo F, Dmitriev A, Doctor Z, Dolique V, Donovan F, Dooley KL, Doravari S, Dorrington I, Álvarez MD, Downes TP, Drago M, Dreissigacker C, Driggers JC, Du Z, Dupej P, Dwyer SE, Easter PJ, Edo TB, Edwards MC, Effler A, Eggenstein HB, Ehrens P, Eichholz J, Eikenberry SS, Eisenmann M, Eisenstein RA, Essick RC, Estelles H, Estevez D, Etienne ZB, Etzel T, Evans M, Evans TM, Fafone V, Fair H, Fairhurst S, Fan X, Farinon S, Farr B, Farr WM, Fauchon-Jones EJ, Favata M, Fays M, Fee C, Fehrmann H, Feicht J, Fejer MM, Feng F, Fernandez-Galiana A, Ferrante I, Ferreira EC, Ferrini F, Fidecaro F, Fiori I, Fiorucci D, Fishbach M, Fisher RP, Fishner JM, Fitz-Axen M, Flaminio R, Fletcher M, Fong H, Font JA, Forsyth PWF, Forsyth SS, Fournier JD, Frasca S, Frasconi F, Frei Z, Freise A, Frey R, Frey V, Fritschel P, Frolov VV, Fulda P, Fyffe M, Gabbard HA, Gadre BU, Gaebel SM, Gair JR, Gammaitoni L, Ganija MR, Gaonkar SG, Garcia A, García-Quirós C, Garufi F, Gateley B, Gaudio S, Gaur G, Gayathri V, Gemme G, Genin E, Gennai A, George D, George J, Gergely L, Germain V, Ghonge S, Ghosh A, Ghosh A, Ghosh S, Giacomazzo B, Giaime JA, Giardina KD, Giazotto A, Gill K, Giordano G, Glover L, Goetz E, Goetz R, Goncharov B, González G, Castro JMG, Gopakumar A, Gorodetsky ML, Gossan SE, Gosselin M, Gouaty R, Grado A, Graef C, Granata M, Grant A, Gras S, Gray C, Greco G, Green AC, Green R, Gretarsson EM, Groot P, Grote H, Grunewald S, Gruning P, Guidi GM, Gulati HK, Guo X, Gupta A, Gupta MK, Gushwa KE, Gustafson EK, Gustafson R, Halim O, Hall BR, Hall ED, Hamilton EZ, Hamilton HF, Hammond G, Haney M, Hanke MM, Hanks J, Hanna C, Hannam MD, Hannuksela OA, Hanson J, Hardwick T, Harms J, Harry GM, Harry IW, Hart MJ, Haster CJ, Haughian K, Healy J, Heidmann A, Heintze MC, Heitmann H, Hello P, Hemming G, Hendry M, Heng IS, Hennig J, Heptonstall AW, Hernandez FJ, Heurs M, Hild S, Hinderer T, Hoak D, Hochheim S, Hofman D, Holland NA, Holt K, Holz DE, Hopkins P, Horst C, Hough J, Houston EA, Howell EJ, Hreibi A, Huerta EA, Huet D, Hughey B, Hulko M, Husa S, Huttner SH, Huynh-Dinh T, Iess A, Indik N, Ingram C, Inta R, Intini G, Isa HN, Isac JM, Isi M, Iyer BR, Izumi K, Jacqmin T, Jani K, Jaranowski P, Johnson DS, Johnson WW, Jones DI, Jones R, Jonker RJG, Ju L, Junker J, Kalaghatgi CV, Kalogera V, Kamai B, Kandhasamy S, Kang G, Kanner JB, Kapadia SJ, Karki S, Karvinen KS, Kasprzack M, Katolik M, Katsanevas S, Katsavounidis E, Katzman W, Kaufer S, Kawabe K, Keerthana NV, Kéfélian F, Keitel D, Kemball AJ, Kennedy R, Key JS, Khalili FY, Khamesra B, Khan H, Khan I, Khan S, Khan Z, Khazanov EA, Kijbunchoo N, Kim C, Kim JC, Kim K, Kim W, Kim WS, Kim YM, King EJ, King PJ, Kinley-Hanlon M, Kirchhoff R, Kissel JS, Kleybolte L, Klimenko S, Knowles TD, Koch P, Koehlenbeck SM, Koley S, Kondrashov V, Kontos A, Korobko M, Korth WZ, Kowalska I, Kozak DB, Krämer C, Kringel V, Krishnan B, Królak A, Kuehn G, Kumar P, Kumar R, Kumar S, Kuo L, Kutynia A, Kwang S, Lackey BD, Lai KH, Landry M, Lang RN, Lange J, Lantz B, Lanza RK, Lartaux-Vollard A, Lasky PD, Laxen M, Lazzarini A, Lazzaro C, Leaci P, Leavey S, Lee CH, Lee HK, Lee HM, Lee HW, Lee K, Lehmann J, Lenon A, Leonardi M, Leroy N, Letendre N, Levin Y, Li J, Li TGF, Li X, Linker SD, Littenberg TB, Liu J, Liu X, Lo RKL, Lockerbie NA, London LT, Longo A, Lorenzini M, Loriette V, Lormand M, Losurdo G, Lough JD, Lousto CO, Lovelace G, Lück H, Lumaca D, Lundgren AP, Lynch R, Ma Y, Macas R, Macfoy S, Machenschalk B, MacInnis M, Macleod DM, Hernandez IM, Magaña-Sandoval F, Zertuche LM, Magee RM, Majorana E, Maksimovic I, Man N, Mandic V, Mangano V, Mansell GL, Manske M, Mantovani M, Marchesoni F, Marion F, Márka S, Márka Z, Markakis C, Markosyan AS, Markowitz A, Maros E, Marquina A, Marsat S, Martelli F, Martellini L, Martin IW, Martin RM, Martynov DV, Mason K, Massera E, Masserot A, Massinger TJ, Masso-Reid M, Mastrogiovanni S, Matas A, Matichard F, Matone L, Mavalvala N, Mazumder N, McCann JJ, McCarthy R, McClelland DE, McCormick S, McCuller L, McGuire SC, McIver J, McManus DJ, McRae T, McWilliams ST, Meacher D, Meadors GD, Mehmet M, Meidam J, Mejuto-Villa E, Melatos A, Mendell G, Mendoza-Gandara D, Mercer RA, Mereni L, Merilh EL, Merzougui M, Meshkov S, Messenger C, Messick C, Metzdorff R, Meyers PM, Miao H, Michel C, Middleton H, Mikhailov EE, Milano L, Miller AL, Miller A, Miller BB, Miller J, Millhouse M, Mills J, Milovich-Goff MC, Minazzoli O, Minenkov Y, Ming J, Mishra C, Mitra S, Mitrofanov VP, Mitselmakher G, Mittleman R, Moffa D, Mogushi K, Mohan M, Mohapatra SRP, Montani M, Moore CJ, Moraru D, Moreno G, Morisaki S, Mours B, Mow-Lowry CM, Mueller G, Muir AW, Mukherjee A, Mukherjee D, Mukherjee S, Mukund N, Mullavey A, Munch J, Muñiz EA, Muratore M, Murray PG, Nagar A, Napier K, Nardecchia I, Naticchioni L, Nayak RK, Neilson J, Nelemans G, Nelson TJN, Nery M, Neunzert A, Nevin L, Newport JM, Ng KY, Ng S, Nguyen P, Nguyen TT, Nichols D, Nielsen AB, Nissanke S, Nitz A, Nocera F, Nolting D, North C, Nuttall LK, Obergaulinger M, Oberling J, O'Brien BD, O'Dea GD, Ogin GH, Oh JJ, Oh SH, Ohme F, Ohta H, Okada MA, Oliver M, Oppermann P, Oram RJ, O'Reilly B, Ormiston R, Ortega LF, O'Shaughnessy R, Ossokine S, Ottaway DJ, Overmier H, Owen BJ, Pace AE, Pagano G, Page J, Page MA, Pai A, Pai SA, Palamos JR, Palashov O, Palomba C, Pal-Singh A, Pan H, Pan HW, Pang B, Pang PTH, Pankow C, Pannarale F, Pant BC, Paoletti F, Paoli A, Papa MA, Parida A, Parker W, Pascucci D, Pasqualetti A, Passaquieti R, Passuello D, Patil M, Patricelli B, Pearlstone BL, Pedersen C, Pedraza M, Pedurand R, Pekowsky L, Pele A, Penn S, Perez CJ, Perreca A, Perri LM, Pfeiffer HP, Phelps M, Phukon KS, Piccinni OJ, Pichot M, Piergiovanni F, Pierro V, Pillant G, Pinard L, Pinto IM, Pirello M, Pitkin M, Poggiani R, Popolizio P, Porter EK, Possenti L, Post A, Powell J, Prasad J, Pratt JWW, Pratten G, Predoi V, Prestegard T, Principe M, Privitera S, Prodi GA, Prokhorov LG, Puncken O, Punturo M, Puppo P, Pürrer M, Qi H, Quetschke V, Quintero EA, Quitzow-James R, Raab FJ, Rabeling DS, Radkins H, Raffai P, Raja S, Rajan C, Rajbhandari B, Rakhmanov M, Ramirez KE, Ramos-Buades A, Rana J, Rapagnani P, Raymond V, Razzano M, Read J, Regimbau T, Rei L, Reid S, Reitze DH, Ren W, Ricci F, Ricker PM, Riemenschneider GM, Riles K, Rizzo M, Robertson NA, Robie R, Robinet F, Robson T, Rocchi A, Rolland L, Rollins JG, Roma VJ, Romano R, Romel CL, Romie JH, Rosińska D, Ross MP, Rowan S, Rüdiger A, Ruggi P, Rutins G, Ryan K, Sachdev S, Sadecki T, Sakellariadou M, Salconi L, Saleem M, Salemi F, Samajdar A, Sammut L, Sampson LM, Sanchez EJ, Sanchez LE, Sanchis-Gual N, Sandberg V, Sanders JR, Sarin N, Sassolas B, Sathyaprakash BS, Saulson PR, Sauter O, Savage RL, Sawadsky A, Schale P, Scheel M, Scheuer J, Schmidt P, Schnabel R, Schofield RMS, Schönbeck A, Schreiber E, Schuette D, Schulte BW, Schutz BF, Schwalbe SG, Scott J, Scott SM, Seidel E, Sellers D, Sengupta AS, Sennett N, Sentenac D, Sequino V, Sergeev A, Setyawati Y, Shaddock DA, Shaffer TJ, Shah AA, Shahriar MS, Shaner MB, Shao L, Shapiro B, Shawhan P, Shen H, Shoemaker DH, Shoemaker DM, Siellez K, Siemens X, Sieniawska M, Sigg D, Silva AD, Singer LP, Singh A, Singhal A, Sintes AM, Slagmolen BJJ, Slaven-Blair TJ, Smith B, Smith JR, Smith RJE, Somala S, Son EJ, Sorazu B, Sorrentino F, Souradeep T, Spencer AP, Srivastava AK, Staats K, Steer DA, Steinke M, Steinlechner J, Steinlechner S, Steinmeyer D, Steltner B, Stevenson SP, Stocks D, Stone R, Stops DJ, Strain KA, Stratta G, Strigin SE, Strunk A, Sturani R, Stuver AL, Summerscales TZ, Sun L, Sunil S, Suresh J, Sutton PJ, Swinkels BL, Szczepańczyk MJ, Tacca M, Tait SC, Talbot C, Talukder D, Tamanini N, Tanner DB, Tápai M, Taracchini A, Tasson JD, Taylor JA, Taylor R, Tewari SV, Theeg T, Thies F, Thomas EG, Thomas M, Thomas P, Thorne KA, Thrane E, Tiwari S, Tiwari V, Tokmakov KV, Toland K, Tonelli M, Tornasi Z, Torres-Forné A, Torrie CI, Töyrä D, Travasso F, Traylor G, Trinastic J, Tringali MC, Trozzo L, Tsang KW, Tse M, Tso R, Tsukada L, Tsuna D, Tuyenbayev D, Ueno K, Ugolini D, Urban AL, Usman SA, Vahlbruch H, Vajente G, Valdes G, van Bakel N, van Beuzekom M, van den Brand JFJ, Van Den Broeck C, Vander-Hyde DC, van der Schaaf L, van Heijningen JV, van Veggel AA, Vardaro M, Varma V, Vass S, Vasúth M, Vecchio A, Vedovato G, Veitch J, Veitch PJ, Venkateswara K, Venugopalan G, Verkindt D, Vetrano F, Viceré A, Viets AD, Vinciguerra S, Vine DJ, Vinet JY, Vitale S, Vo T, Vocca H, Vorvick C, Vyatchanin SP, Wade AR, Wade LE, Wade M, Walet R, Walker M, Wallace L, Walsh S, Wang G, Wang H, Wang JZ, Wang WH, Wang YF, Ward RL, Warner J, Was M, Watchi J, Weaver B, Wei LW, Weinert M, Weinstein AJ, Weiss R, Wellmann F, Wen L, Wessel EK, Weßels P, Westerweck J, Wette K, Whelan JT, Whiting BF, Whittle C, Wilken D, Williams D, Williams RD, Williamson AR, Willis JL, Willke B, Wimmer MH, Winkler W, Wipf CC, Wittel H, Woan G, Woehler J, Wofford JK, Wong WK, Worden J, Wright JL, Wu DS, Wysocki DM, Xiao S, Yam W, Yamamoto H, Yancey CC, Yang L, Yap MJ, Yazback M, Yu H, Yu H, Yvert M, Zadrożny A, Zanolin M, Zelenova T, Zendri JP, Zevin M, Zhang J, Zhang L, Zhang M, Zhang T, Zhang YH, Zhao C, Zhou M, Zhou Z, Zhu SJ, Zhu XJ, Zimmerman AB, Zucker ME, Zweizig J. Tests of General Relativity with GW170817. PHYSICAL REVIEW LETTERS 2019; 123:011102. [PMID: 31386391 DOI: 10.1103/physrevlett.123.011102] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/21/2019] [Indexed: 06/10/2023]
Abstract
The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polarization content of the gravitational wave signal is studied. The results of all tests performed here show good agreement with GR.
Collapse
|
70
|
An SQ, Murtagh J, Twomey KB, Gupta MK, O'Sullivan TP, Ingram R, Valvano MA, Tang JL. Modulation of antibiotic sensitivity and biofilm formation in Pseudomonas aeruginosa by interspecies signal analogues. Nat Commun 2019; 10:2334. [PMID: 31133642 PMCID: PMC6536496 DOI: 10.1038/s41467-019-10271-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 04/24/2019] [Indexed: 11/15/2022] Open
Abstract
Pseudomonas aeruginosa, a significant opportunistic pathogen, can participate in inter-species communication through signaling by cis-2-unsaturated fatty acids of the diffusible signal factor (DSF) family. Sensing these signals leads to altered biofilm formation and increased tolerance to various antibiotics, and requires the histidine kinase PA1396. Here, we show that the membrane-associated sensory input domain of PA1396 has five transmembrane helices, two of which are required for DSF sensing. DSF binding is associated with enhanced auto-phosphorylation of PA1396 incorporated into liposomes. Further, we examined the ability of synthetic DSF analogues to modulate or inhibit PA1396 activity. Several of these analogues block the ability of DSF to trigger auto-phosphorylation and gene expression, whereas others act as inverse agonists reducing biofilm formation and antibiotic tolerance, both in vitro and in murine infection models. These analogues may thus represent lead compounds to develop novel adjuvants improving the efficacy of existing antibiotics.
Collapse
|
71
|
Jungtrakoon P, Shirakawa J, Buranasupkajorn P, Gupta MK, De Jesus DF, Pezzolesi MG, Panya A, Hastings T, Chanprasert C, Mendonca C, Kulkarni RN, Doria A. Loss-of-Function Mutation in Thiamine Transporter 1 in a Family With Autosomal Dominant Diabetes. Diabetes 2019; 68:1084-1093. [PMID: 30833467 PMCID: PMC6477897 DOI: 10.2337/db17-0821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/23/2019] [Indexed: 01/19/2023]
Abstract
Solute Carrier Family 19 Member 2 (SLC19A2) encodes thiamine transporter 1 (THTR1), which facilitates thiamine transport across the cell membrane. SLC19A2 homozygous mutations have been described as a cause of thiamine-responsive megaloblastic anemia (TRMA), an autosomal recessive syndrome characterized by megaloblastic anemia, diabetes, and sensorineural deafness. Here we describe a loss-of-function SLC19A2 mutation (c.A1063C: p.Lys355Gln) in a family with early-onset diabetes and mild TRMA traits transmitted in an autosomal dominant fashion. We show that SLC19A2-deficient β-cells are characterized by impaired thiamine uptake, which is not rescued by overexpression of the p.Lys355Gln mutant protein. We further demonstrate that SLC19A2 deficit causes impaired insulin secretion in conjunction with mitochondrial dysfunction, loss of protection against oxidative stress, and cell cycle arrest. These findings link SLC19A2 mutations to autosomal dominant diabetes and suggest a role of SLC19A2 in β-cell function and survival.
Collapse
|
72
|
Sakaguchi M, Cai W, Wang CH, Cederquist CT, Damasio M, Homan EP, Batista T, Ramirez AK, Gupta MK, Steger M, Wewer Albrechtsen NJ, Singh SK, Araki E, Mann M, Enerbäck S, Kahn CR. FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nat Commun 2019; 10:1582. [PMID: 30952843 PMCID: PMC6450906 DOI: 10.1038/s41467-019-09418-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 02/26/2019] [Indexed: 01/07/2023] Open
Abstract
A major target of insulin signaling is the FoxO family of Forkhead transcription factors, which translocate from the nucleus to the cytoplasm following insulin-stimulated phosphorylation. Here we show that the Forkhead transcription factors FoxK1 and FoxK2 are also downstream targets of insulin action, but that following insulin stimulation, they translocate from the cytoplasm to nucleus, reciprocal to the translocation of FoxO1. FoxK1/FoxK2 translocation to the nucleus is dependent on the Akt-mTOR pathway, while its localization to the cytoplasm in the basal state is dependent on GSK3. Knockdown of FoxK1 and FoxK2 in liver cells results in upregulation of genes related to apoptosis and down-regulation of genes involved in cell cycle and lipid metabolism. This is associated with decreased cell proliferation and altered mitochondrial fatty acid metabolism. Thus, FoxK1/K2 are reciprocally regulated to FoxO1 following insulin stimulation and play a critical role in the control of apoptosis, metabolism and mitochondrial function. Insulin signaling represses Forkhead transcription factor FoxO activity, which contributes to organismal metabolism. Here, the authors use proteomics to identify positively regulated insulin signaling targets FoxK1/K2 and demonstrate their role in lipid metabolism and mitochondrial regulation.
Collapse
|
73
|
Swarnkar SK, Khunteta A, Gupta MK, Jain P, Paliwal S. Pharmacognostic, Phytochemical and Pharmacological Review of “Phog”- Calligonum polygonoides L. ACTA ACUST UNITED AC 2019. [DOI: 10.22270/jddt.v9i2.2384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calligonum polygonoides (Phog) belongs to family Polygonaceae. It is a geographically widely distributed shrub seen from the arctic to the tropics. This endangered plant (included in Red data book of IUCN) is morphologically having stem with nodes and internodes, white flowers in spike inflorescence and needle like leaves. It is traditionally used to stabilize sand dunes, as fuel, and in treatment of heat-stroke by mixing with curd or “Rayata”. It is also reported as antidote for opium poisoning. Various phyto-chemicals present include butanolides- calligonolides A and B, various flavanoids like kaempferol, quercetin and their derivatives. Various steroidal compounds are reported in roots. Pharmacologicallly, its cytotoxic, anti-inflammatory, antioxidant, antifungal and biosorbent potentials are reported by various researchers. Therefore, an attempt has been made to accumulate properties of this potential herb.
Keywords: Calligonum, Phog, biosorbent, heat-stroke, calligonolides, kaempferol
Collapse
|
74
|
Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agarwal B, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allen G, Allocca A, Aloy MA, Altin PA, Amato A, Ananyeva A, Anderson SB, Anderson WG, Angelova SV, Antier S, Appert S, Arai K, Araya MC, Areeda JS, Arène M, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Atallah DV, Aubin F, Aufmuth P, Aulbert C, AultONeal K, Austin C, Avila-Alvarez A, Babak S, Bacon P, Badaracco F, Bader MKM, Bae S, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Banagiri S, Barayoga JC, Barclay SE, Barish BC, Barker D, Barkett K, Barnum S, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Bartos I, Bassiri R, Basti A, Batch JC, Bawaj M, Bayley JC, Bazzan M, Bécsy B, Beer C, Bejger M, Belahcene I, Bell AS, Beniwal D, Bensch M, Berger BK, Bergmann G, Bernuzzi S, Bero JJ, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhandare R, Bilenko IA, Bilgili SA, Billingsley G, Billman CR, Birch J, Birney R, Birnholtz O, Biscans S, Biscoveanu S, Bisht A, Bitossi M, Bizouard MA, Blackburn JK, Blackman J, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Bode N, Boer M, Boetzel Y, Bogaert G, Bohe A, Bondu F, Bonilla E, Bonnand R, Booker P, Boom BA, Booth CD, Bork R, Boschi V, Bose S, Bossie K, Bossilkov V, Bosveld J, Bouffanais Y, Bozzi A, Bradaschia C, Brady PR, Bramley A, Branchesi M, Brau JE, Briant T, Brighenti F, Brillet A, Brinkmann M, Brisson V, Brockill P, Brooks AF, Brown DD, Brunett S, Buchanan CC, Buikema A, Bulik T, Bulten HJ, Buonanno A, Buskulic D, Buy C, Byer RL, Cabero M, Cadonati L, Cagnoli G, Cahillane C, Calderón Bustillo J, Callister TA, Calloni E, Camp JB, Canepa M, Canizares P, Cannon KC, Cao H, Cao J, Capano CD, Capocasa E, Carbognani F, Caride S, Carney MF, Casanueva Diaz J, Casentini C, Caudill S, Cavaglià M, Cavalier F, Cavalieri R, Cella G, Cepeda CB, Cerdá-Durán P, Cerretani G, Cesarini E, Chaibi O, Chamberlin SJ, Chan M, Chao S, Charlton P, Chase E, Chassande-Mottin E, Chatterjee D, Chatziioannou K, Cheeseboro BD, Chen HY, Chen X, Chen Y, Cheng HP, Chia HY, Chincarini A, Chiummo A, Chmiel T, Cho HS, Cho M, Chow JH, Christensen N, Chu Q, Chua AJK, Chua S, Chung KW, Chung S, Ciani G, Ciobanu AA, Ciolfi R, Cipriano F, Cirelli CE, Cirone A, Clara F, Clark JA, Clearwater P, Cleva F, Cocchieri C, Coccia E, Cohadon PF, Cohen D, Colla A, Collette CG, Collins C, Cominsky LR, Constancio M, Conti L, Cooper SJ, Corban P, Corbitt TR, Cordero-Carrión I, Corley KR, Cornish N, Corsi A, Cortese S, Costa CA, Cotesta R, Coughlin MW, Coughlin SB, Coulon JP, Countryman ST, Couvares P, Covas PB, Cowan EE, Coward DM, Cowart MJ, Coyne DC, Coyne R, Creighton JDE, Creighton TD, Cripe J, Crowder SG, Cullen TJ, Cumming A, Cunningham L, Cuoco E, Canton TD, Dálya G, Danilishin SL, D'Antonio S, Danzmann K, Dasgupta A, Costa CFDS, Dattilo V, Dave I, Davier M, Davis D, Daw EJ, Day B, DeBra D, Deenadayalan M, Degallaix J, De Laurentis M, Deléglise S, Del Pozzo W, Demos N, Denker T, Dent T, De Pietri R, Derby J, Dergachev V, De Rosa R, De Rossi C, DeSalvo R, de Varona O, Dhurandhar S, Díaz MC, Di Fiore L, Di Giovanni M, Di Girolamo T, Di Lieto A, Ding B, Di Pace S, Di Palma I, Di Renzo F, Dmitriev A, Doctor Z, Dolique V, Donovan F, Dooley KL, Doravari S, Dorrington I, Dovale Álvarez M, Downes TP, Drago M, Dreissigacker C, Driggers JC, Du Z, Dupej P, Dwyer SE, Easter PJ, Edo TB, Edwards MC, Effler A, Eggenstein HB, Ehrens P, Eichholz J, Eikenberry SS, Eisenmann M, Eisenstein RA, Essick RC, Estelles H, Estevez D, Etienne ZB, Etzel T, Evans M, Evans TM, Fafone V, Fair H, Fairhurst S, Fan X, Farinon S, Farr B, Farr WM, Fauchon-Jones EJ, Favata M, Fays M, Fee C, Fehrmann H, Feicht J, Fejer MM, Feng F, Fernandez-Galiana A, Ferrante I, Ferreira EC, Ferrini F, Fidecaro F, Fiori I, Fiorucci D, Fishbach M, Fisher RP, Fishner JM, Fitz-Axen M, Flaminio R, Fletcher M, Fong H, Font JA, Forsyth PWF, Forsyth SS, Fournier JD, Frasca S, Frasconi F, Frei Z, Freise A, Frey R, Frey V, Fritschel P, Frolov VV, Fulda P, Fyffe M, Gabbard HA, Gadre BU, Gaebel SM, Gair JR, Gammaitoni L, Ganija MR, Gaonkar SG, Garcia A, García-Quirós C, Garufi F, Gateley B, Gaudio S, Gaur G, Gayathri V, Gemme G, Genin E, Gennai A, George D, George J, Gergely L, Germain V, Ghonge S, Ghosh A, Ghosh A, Ghosh S, Giacomazzo B, Giaime JA, Giardina KD, Giazotto A, Gill K, Giordano G, Glover L, Goetz E, Goetz R, Goncharov B, González G, Gonzalez Castro JM, Gopakumar A, Gorodetsky ML, Gossan SE, Gosselin M, Gouaty R, Grado A, Graef C, Granata M, Grant A, Gras S, Gray C, Greco G, Green AC, Green R, Gretarsson EM, Groot P, Grote H, Grunewald S, Gruning P, Guidi GM, Gulati HK, Guo X, Gupta A, Gupta MK, Gushwa KE, Gustafson EK, Gustafson R, Halim O, Hall BR, Hall ED, Hamilton EZ, Hamilton HF, Hammond G, Haney M, Hanke MM, Hanks J, Hanna C, Hannam MD, Hannuksela OA, Hanson J, Hardwick T, Harms J, Harry GM, Harry IW, Hart MJ, Haster CJ, Haughian K, Healy J, Heidmann A, Heintze MC, Heitmann H, Hello P, Hemming G, Hendry M, Heng IS, Hennig J, Heptonstall AW, Hernandez FJ, Heurs M, Hild S, Hinderer T, Hoak D, Hochheim S, Hofman D, Holland NA, Holt K, Holz DE, Hopkins P, Horst C, Hough J, Houston EA, Howell EJ, Hreibi A, Huerta EA, Huet D, Hughey B, Hulko M, Husa S, Huttner SH, Huynh-Dinh T, Iess A, Indik N, Ingram C, Inta R, Intini G, Isa HN, Isac JM, Isi M, Iyer BR, Izumi K, Jacqmin T, Jani K, Jaranowski P, Johnson DS, Johnson WW, Jones DI, Jones R, Jonker RJG, Ju L, Junker J, Kalaghatgi CV, Kalogera V, Kamai B, Kandhasamy S, Kang G, Kanner JB, Kapadia SJ, Karki S, Karvinen KS, Kasprzack M, Katolik M, Katsanevas S, Katsavounidis E, Katzman W, Kaufer S, Kawabe K, Keerthana NV, Kéfélian F, Keitel D, Kemball AJ, Kennedy R, Key JS, Khalili FY, Khamesra B, Khan H, Khan I, Khan S, Khan Z, Khazanov EA, Kijbunchoo N, Kim C, Kim JC, Kim K, Kim W, Kim WS, Kim YM, King EJ, King PJ, Kinley-Hanlon M, Kirchhoff R, Kissel JS, Kleybolte L, Klimenko S, Knowles TD, Koch P, Koehlenbeck SM, Koley S, Kondrashov V, Kontos A, Korobko M, Korth WZ, Kowalska I, Kozak DB, Krämer C, Kringel V, Krishnan B, Królak A, Kuehn G, Kumar P, Kumar R, Kumar S, Kuo L, Kutynia A, Kwang S, Lackey BD, Lai KH, Landry M, Lang RN, Lange J, Lantz B, Lanza RK, Lartaux-Vollard A, Lasky PD, Laxen M, Lazzarini A, Lazzaro C, Leaci P, Leavey S, Lee CH, Lee HK, Lee HM, Lee HW, Lee K, Lehmann J, Lenon A, Leonardi M, Leroy N, Letendre N, Levin Y, Li J, Li TGF, Li X, Linker SD, Littenberg TB, Liu J, Liu X, Lo RKL, Lockerbie NA, London LT, Longo A, Lorenzini M, Loriette V, Lormand M, Losurdo G, Lough JD, Lovelace G, Lück H, Lumaca D, Lundgren AP, Lynch R, Ma Y, Macas R, Macfoy S, Machenschalk B, MacInnis M, Macleod DM, Magaña Hernandez I, Magaña-Sandoval F, Magaña Zertuche L, Magee RM, Majorana E, Maksimovic I, Man N, Mandic V, Mangano V, Mansell GL, Manske M, Mantovani M, Marchesoni F, Marion F, Márka S, Márka Z, Markakis C, Markosyan AS, Markowitz A, Maros E, Marquina A, Martelli F, Martellini L, Martin IW, Martin RM, Martynov DV, Mason K, Massera E, Masserot A, Massinger TJ, Masso-Reid M, Mastrogiovanni S, Matas A, Matichard F, Matone L, Mavalvala N, Mazumder N, McCann JJ, McCarthy R, McClelland DE, McCormick S, McCuller L, McGuire SC, McIver J, McManus DJ, McRae T, McWilliams ST, Meacher D, Meadors GD, Mehmet M, Meidam J, Mejuto-Villa E, Melatos A, Mendell G, Mendoza-Gandara D, Mercer RA, Mereni L, Merilh EL, Merzougui M, Meshkov S, Messenger C, Messick C, Metzdorff R, Meyers PM, Miao H, Michel C, Middleton H, Mikhailov EE, Milano L, Miller AL, Miller A, Miller BB, Miller J, Millhouse M, Mills J, Milovich-Goff MC, Minazzoli O, Minenkov Y, Ming J, Mishra C, Mitra S, Mitrofanov VP, Mitselmakher G, Mittleman R, Moffa D, Mogushi K, Mohan M, Mohapatra SRP, Montani M, Moore CJ, Moraru D, Moreno G, Morisaki S, Mours B, Mow-Lowry CM, Mueller G, Muir AW, Mukherjee A, Mukherjee D, Mukherjee S, Mukund N, Mullavey A, Munch J, Muñiz EA, Muratore M, Murray PG, Nagar A, Napier K, Nardecchia I, Naticchioni L, Nayak RK, Neilson J, Nelemans G, Nelson TJN, Nery M, Neunzert A, Nevin L, Newport JM, Ng KY, Ng S, Nguyen P, Nguyen TT, Nichols D, Nielsen AB, Nissanke S, Nitz A, Nocera F, Nolting D, North C, Nuttall LK, Obergaulinger M, Oberling J, O'Brien BD, O'Dea GD, Ogin GH, Oh JJ, Oh SH, Ohme F, Ohta H, Okada MA, Oliver M, Oppermann P, Oram RJ, O'Reilly B, Ormiston R, Ortega LF, O'Shaughnessy R, Ossokine S, Ottaway DJ, Overmier H, Owen BJ, Pace AE, Pagano G, Page J, Page MA, Pai A, Pai SA, Palamos JR, Palashov O, Palomba C, Pal-Singh A, Pan H, Pan HW, Pang B, Pang PTH, Pankow C, Pannarale F, Pant BC, Paoletti F, Paoli A, Papa MA, Parida A, Parker W, Pascucci D, Pasqualetti A, Passaquieti R, Passuello D, Patil M, Patricelli B, Pearlstone BL, Pedersen C, Pedraza M, Pedurand R, Pekowsky L, Pele A, Penn S, Perez CJ, Perreca A, Perri LM, Pfeiffer HP, Phelps M, Phukon KS, Piccinni OJ, Pichot M, Piergiovanni F, Pierro V, Pillant G, Pinard L, Pinto IM, Pirello M, Pitkin M, Poggiani R, Popolizio P, Porter EK, Possenti L, Post A, Powell J, Prasad J, Pratt JWW, Pratten G, Predoi V, Prestegard T, Principe M, Privitera S, Prodi GA, Prokhorov LG, Puncken O, Punturo M, Puppo P, Pürrer M, Qi H, Quetschke V, Quintero EA, Quitzow-James R, Rabeling DS, Radkins H, Raffai P, Raja S, Rajan C, Rajbhandari B, Rakhmanov M, Ramirez KE, Ramos-Buades A, Rana J, Rapagnani P, Raymond V, Razzano M, Read J, Regimbau T, Rei L, Reid S, Reitze DH, Ren W, Ricci F, Ricker PM, Riles K, Rizzo M, Robertson NA, Robie R, Robinet F, Robson T, Rocchi A, Rolland L, Rollins JG, Roma VJ, Romano R, Romel CL, Romie JH, Rosińska D, Ross MP, Rowan S, Rüdiger A, Ruggi P, Rutins G, Ryan K, Sachdev S, Sadecki T, Sakellariadou M, Salconi L, Saleem M, Salemi F, Samajdar A, Sammut L, Sampson LM, Sanchez EJ, Sanchez LE, Sanchis-Gual N, Sandberg V, Sanders JR, Sarin N, Sassolas B, Saulson PR, Sauter O, Savage RL, Sawadsky A, Schale P, Scheel M, Scheuer J, Schmidt P, Schnabel R, Schofield RMS, Schönbeck A, Schreiber E, Schuette D, Schulte BW, Schutz BF, Schwalbe SG, Scott J, Scott SM, Seidel E, Sellers D, Sengupta AS, Sentenac D, Sequino V, Sergeev A, Setyawati Y, Shaddock DA, Shaffer TJ, Shah AA, Shahriar MS, Shaner MB, Shao L, Shapiro B, Shawhan P, Shen H, Shoemaker DH, Shoemaker DM, Siellez K, Siemens X, Sieniawska M, Sigg D, Silva AD, Singer LP, Singh A, Singhal A, Sintes AM, Slagmolen BJJ, Slaven-Blair TJ, Smith B, Smith JR, Smith RJE, Somala S, Son EJ, Sorazu B, Sorrentino F, Souradeep T, Spencer AP, Srivastava AK, Staats K, Steinke M, Steinlechner J, Steinlechner S, Steinmeyer D, Steltner B, Stevenson SP, Stocks D, Stone R, Stops DJ, Strain KA, Stratta G, Strigin SE, Strunk A, Sturani R, Stuver AL, Summerscales TZ, Sun L, Sunil S, Suresh J, Sutton PJ, Swinkels BL, Szczepańczyk MJ, Tacca M, Tait SC, Talbot C, Talukder D, Tanner DB, Tápai M, Taracchini A, Tasson JD, Taylor JA, Taylor R, Tewari SV, Theeg T, Thies F, Thomas EG, Thomas M, Thomas P, Thorne KA, Thrane E, Tiwari S, Tiwari V, Tokmakov KV, Toland K, Tonelli M, Tornasi Z, Torres-Forné A, Torrie CI, Töyrä D, Travasso F, Traylor G, Trinastic J, Tringali MC, Trozzo L, Tsang KW, Tse M, Tso R, Tsuna D, Tsukada L, Tuyenbayev D, Ueno K, Ugolini D, Urban AL, Usman SA, Vahlbruch H, Vajente G, Valdes G, van Bakel N, van Beuzekom M, van den Brand JFJ, Van Den Broeck C, Vander-Hyde DC, van der Schaaf L, van Heijningen JV, van Veggel AA, Vardaro M, Varma V, Vass S, Vasúth M, Vecchio A, Vedovato G, Veitch J, Veitch PJ, Venkateswara K, Venugopalan G, Verkindt D, Vetrano F, Viceré A, Viets AD, Vinciguerra S, Vine DJ, Vinet JY, Vitale S, Vo T, Vocca H, Vorvick C, Vyatchanin SP, Wade AR, Wade LE, Wade M, Walet R, Walker M, Wallace L, Walsh S, Wang G, Wang H, Wang JZ, Wang WH, Wang YF, Ward RL, Warner J, Was M, Watchi J, Weaver B, Wei LW, Weinert M, Weinstein AJ, Weiss R, Wellmann F, Wen L, Wessel EK, Weßels P, Westerweck J, Wette K, Whelan JT, Whiting BF, Whittle C, Wilken D, Williams D, Williams RD, Williamson AR, Willis JL, Willke B, Wimmer MH, Winkler W, Wipf CC, Wittel H, Woan G, Woehler J, Wofford JK, Wong WK, Worden J, Wright JL, Wu DS, Wysocki DM, Xiao S, Yam W, Yamamoto H, Yancey CC, Yang L, Yap MJ, Yazback M, Yu H, Yu H, Yvert M, Zadrożny A, Zanolin M, Zelenova T, Zendri JP, Zevin M, Zhang J, Zhang L, Zhang M, Zhang T, Zhang YH, Zhao C, Zhou M, Zhou Z, Zhu SJ, Zhu XJ, Zimmerman AB, Zucker ME, Zweizig J, Weinberg NN. Constraining the p-Mode-g-Mode Tidal Instability with GW170817. PHYSICAL REVIEW LETTERS 2019; 122:061104. [PMID: 30822067 DOI: 10.1103/physrevlett.122.061104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/30/2018] [Indexed: 06/09/2023]
Abstract
We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB_{!pg}^{pg}) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB_{!pg}^{pg}=0.03_{-0.58}^{+0.70} (maximum a posteriori and 90% credible region). By injecting simulated signals that do not include p-g effects and recovering them with the p-g model, we show that there is a ≃50% probability of obtaining similar lnB_{!pg}^{pg} even when p-g effects are absent. We find that the p-g amplitude for 1.4 M_{⊙} neutron stars is constrained to less than a few tenths of the theoretical maximum, with maxima a posteriori near one-tenth this maximum and p-g saturation frequency ∼70 Hz. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest ≲10^{3} modes saturate by wave breaking. Thus, the measured constraints only rule out extreme values of the p-g parameters. They also imply that the instability dissipates ≲10^{51} erg over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves.
Collapse
|
75
|
Choudhary N, Gupta MK. A comparative study of perception and practices regarding menstrual hygiene among adolescent girls in urban and rural areas of Jodhpur district, Rajasthan. J Family Med Prim Care 2019; 8:875-880. [PMID: 31041217 PMCID: PMC6482757 DOI: 10.4103/jfmpc.jfmpc_69_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: There are vast disparities of information gap between urban and rural adolescent girls in India, which do have an impact on the practices during menstruation. Aim: To assess and compare the knowledge, perceptions, and practices of adolescent girls regarding menstrual hygiene in rural and urban areas of Jodhpur. Settings and Design: It was a cross-sectional study, which was conducted on school going adolescent girls in urban and rural schools of Jodhpur. Materials and Methods: The sample size for the study was 450, which was divided into rural and urban adolescent girls. A self-administered questionnaire was used for data collection. Statistical Analysis Used: Data were analyzed using SPSS v. 16. Inferences were drawn using Chi-square test and t test. Results: The mean age of menarche was 13.41 ± 1.07 years. A significantly more number of girls from an urban area (56.2%) were using sanitary napkins during menstruation. Only around one-fourth of the girls in study area had ever been counseled for menstrual hygiene. Awareness about adolescent health clinic was significantly more among urban girls. Conclusion: Significant differences were observed among urban and rural adolescent girls in terms of knowledge, perception, and practices related to menstrual hygiene.
Collapse
|