51
|
Edwards JM, Roy S, Tomcho JC, Schreckenberger ZJ, Chakraborty S, Bearss NR, Saha P, McCarthy CG, Vijay-Kumar M, Joe B, Wenceslau CF. Microbiota are critical for vascular physiology: Germ-free status weakens contractility and induces sex-specific vascular remodeling in mice. Vascul Pharmacol 2020; 125-126:106633. [PMID: 31843471 PMCID: PMC7036036 DOI: 10.1016/j.vph.2019.106633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Commensal microbiota within a holobiont contribute to the overall health of the host via mutualistic symbiosis. Disturbances in such symbiosis is prominently correlated with a variety of diseases affecting the modern society of humans including cardiovascular diseases, which are the number one contributors to human mortality. Given that a hallmark of all cardiovascular diseases is changes in vascular function, we hypothesized that depleting microbiota from a holobiont would induce vascular dysfunction. To test this hypothesis, young mice of both sexes raised in germ-free conditions were examined vascular contractility and structure. Here we observed that male and female germ-free mice presented a decrease in contraction of resistance arteries. These changes were more pronounced in germ-free males than in germ-free females mice. Furthermore, there was a distinct change in vascular remodeling between males and females germ-free mice. Resistance arteries from male germ-free mice demonstrated increased vascular stiffness, as shown by the leftward shift in the stress-strain curve and inward hypotrophic remodeling, a characteristic of chronic reduction in blood flow. On the other hand, resistance arteries from germ-free female mice were similar in the stress-strain curves to that of conventionally raised mice, but were distinctly different and showed outward hypertrophic remodeling, a characteristic seen in aging. Interestingly, we observed that reactive oxygen species (ROS) generation from bone marrow derived neutrophils is blunted in female germ-free mice, but it is exacerbated in male germ-free mice. In conclusion, these observations indicate that commensal microbiota of a holobiont are central to maintain proper vascular function and structure homeostasis, especially in males.
Collapse
|
52
|
Murugesan A, Ibegbu C, Styles TM, Jones AT, Shanmugasundaram U, Reddy PBJ, Rahman SJ, Saha P, Vijay-Kumar M, Shankar EM, Amara RR, Velu V. Functional MAIT Cells Are Associated With Reduced Simian-Human Immunodeficiency Virus Infection. Front Immunol 2020; 10:3053. [PMID: 32010135 PMCID: PMC6978843 DOI: 10.3389/fimmu.2019.03053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are recently characterized as a novel subset of innate-like T cells that recognize microbial metabolites as presented by the MHC-1b-related protein MR1. The significance of MAIT cells in anti-bacterial defense is well-understood but not clear in viral infections such as SIV/HIV infection. Here we studied the phenotype, distribution, and function of MAIT cells and their association with plasma viral levels during chronic SHIV infection in rhesus macaques (RM). Two groups of healthy and chronic SHIV-infected macaques were characterized for MAIT cells in blood and mucosal tissues. Similar to human, we found a significant fraction of macaque T cells co-expressing MAIT cell markers CD161 and TCRVα-7.2 that correlated directly with macaque MR1 tetramer. These cells displayed memory phenotype and expressed high levels of IL-18R, CCR6, CD28, and CD95. During chronic infection, the frequency of MAIT cells are enriched in the blood but unaltered in the rectum; both blood and rectal MAIT cells displayed higher proliferative and cytotoxic phenotype post-SHIV infection. The frequency of MAIT cells in blood and rectum correlated inversely with plasma viral RNA levels and correlated directly with total CD4 T cells. MAIT cells respond to microbial products during chronic SHIV infection and correlated positively with serum immunoreactivity to flagellin levels. Tissue distribution analysis of MAIT cells during chronic infection showed significant enrichment in the non-lymphoid tissues (lung, rectum, and liver) compared to lymphoid tissues (spleen and LN), with higher levels of tissue-resident markers CD69 and CD103. Exogenous in vitro cytokine treatments during chronic SHIV infection revealed that IL-7 is important for the proliferation of MAIT cells, but IL-12 and IL-18 are important for their cytolytic function. Overall our results demonstrated that MAIT cells are enriched in blood but unaltered in the rectum during chronic SHIV infection, which displayed proliferative and functional phenotype that inversely correlated with SHIV plasma viral RNA levels. Treatment such as combined cytokine treatments could be beneficial for enhancing functional MAIT cells during chronic HIV infection in vivo.
Collapse
|
53
|
Galla S, Chakraborty S, Cheng X, Yeo JY, Mell B, Chiu N, Wenceslau CF, Vijay-Kumar M, Joe B. Exposure to Amoxicillin in Early Life Is Associated With Changes in Gut Microbiota and Reduction in Blood Pressure: Findings From a Study on Rat Dams and Offspring. J Am Heart Assoc 2020; 9:e014373. [PMID: 31928175 PMCID: PMC7033837 DOI: 10.1161/jaha.119.014373] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Pediatric hypertension is recognized as an emerging global health concern. Although new guidelines are developed for facilitating clinical management, the reasons for the prevalence of hypertension in children remain unknown. Genetics and environmental factors do not fully account for the growing incidence of pediatric hypertension. Because stable bacterial flora in early life are linked with health outcomes later in life, we hypothesized that reshaping of gut microbiota in early life affects blood pressure (BP) of pediatric subjects. Methods and Results To test this hypothesis, we administered amoxicillin, the most commonly prescribed pediatric antibiotic, to alter gut microbiota of young, genetically hypertensive rats (study 1) and dams during gestation and lactation (study 2) and recorded their BP. Reshaping of microbiota with reductions in Firmicutes/Bacteriodetes ratio were observed. Amoxicillin treated rats had lower BP compared with untreated rats. In young rats treated with amoxicillin, the lowering effect on BP persisted even after antibiotics were discontinued. Similarly, offspring from dams treated with amoxicillin showed lower systolic BP compared with control rats. Remarkably, in all cases, a decrease in BP was associated with lowering of Veillonellaceae, which are succinate‐producing bacteria. Elevated plasma succinate is reported in hypertension. Accordingly, serum succinate was measured and found lower in animals treated with amoxicillin. Conclusions Our results demonstrate a direct correlation between succinate‐producing gut microbiota and early development of hypertension and indicate that reshaping gut microbiota, especially by depleting succinate‐producing microbiota early in life, may have long‐term benefits for hypertension‐prone individuals.
Collapse
|
54
|
Chakraborty S, Galla S, Cheng X, Yeo JY, Mell B, Singh V, Yeoh B, Saha P, Mathew AV, Vijay-Kumar M, Joe B. Salt-Responsive Metabolite, β-Hydroxybutyrate, Attenuates Hypertension. Cell Rep 2019; 25:677-689.e4. [PMID: 30332647 PMCID: PMC6542293 DOI: 10.1016/j.celrep.2018.09.058] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/22/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Dietary salt reduction and exercise are lifestyle modifications for salt-sensitive hypertensives. While exercise has prominent metabolic effects, salt has an adverse effect on metabolic syndrome, of which hypertension is a hallmark. We hypothesized that dietary salt impacts metabolism in a salt-sensitive model of hypertension. An untargeted metabolomic approach demonstrates lower circulating levels of the ketone body, beta-hydroxybutyrate (βOHB), in high salt-fed hypertensive rats. Despite the high salt intake, specific rescue of βOHB levels by nutritional supplementation of its precursor, 1,3-butanediol, attenuates hypertension and protects kidney function. This beneficial effect of βOHB was likely independent of gut-microbiotal and Th17-mediated effects of salt and instead facilitated by βOHB inhibiting the renal Nlrp3 inflammasome. The juxtaposed effects of dietary salt and exercise on salt-sensitive hypertension, which decrease and increase βOHB respectively, indicate that nutritional supplementation of a precursor of βOHB provides a similar benefit to salt-sensitive hypertension as exercise. Chakraborty et al. report a link between dietary salt, a ketone, and experimental hypertension. Intake of a high salt diet lowers the ketone body betahydroxybutyrate (βOHB), produced by the liver, which functions to prevent Nlrp3-mediated kidney inflammation. Rescuing βOHB by nutritional supplementation of its precursor attenuates hypertension.
Collapse
|
55
|
Zhang Y, Kumarasamy S, Mell B, Cheng X, Morgan EE, Britton SL, Vijay-Kumar M, Koch LG, Joe B. Vertical selection for nuclear and mitochondrial genomes shapes gut microbiota and modifies risks for complex diseases. Physiol Genomics 2019; 52:1-14. [PMID: 31762410 DOI: 10.1152/physiolgenomics.00089.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Here we postulate that the heritability of complex disease traits previously ascribed solely to the inheritance of the nuclear and mitochondrial genomes is broadened to encompass a third component of the holobiome, the microbiome. To test this, we expanded on the selectively bred low capacity runner/high capacity runner (LCR/HCR) rat exercise model system into four distinct rat holobiont model frameworks including matched and mismatched host nuclear and mitochondrial genomes. Vertical selection of varying nuclear and mitochondrial genomes resulted in differential acquisition of the microbiome within each of these holobiont models. Polygenic disease risk of these novel models were assessed and subsequently correlated with patterns of acquisition and contributions of their microbiomes in controlled laboratory settings. Nuclear-mitochondrial-microbiotal interactions were not for exercise as a reporter of health, but significantly noted for increased adiposity, increased blood pressure, compromised cardiac function, and loss of long-term memory as reporters of disease susceptibility. These findings provide evidence for coselection of the microbiome with nuclear and mitochondrial genomes as an important feature impacting the heritability of complex diseases.
Collapse
|
56
|
Singh V, Yeoh BS, Walker RE, Xiao X, Saha P, Golonka RM, Cai J, Bretin ACA, Cheng X, Liu Q, Flythe MD, Chassaing B, Shearer GC, Patterson AD, Gewirtz AT, Vijay-Kumar M. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut 2019; 68:1801-1812. [PMID: 30670576 DOI: 10.1136/gutjnl-2018-316250] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Diets rich in fermentable fibres provide an array of health benefits; however, many patients with IBD report poor tolerance to fermentable fibre-rich foods. Intervention studies with dietary fibres in murine models of colonic inflammation have yielded conflicting results on whether fibres ameliorate or exacerbate IBD. Herein, we examined how replacing the insoluble fibre, cellulose, with the fermentable fibres, inulin or pectin, impacted murine colitis resulting from immune dysregulation via inhibition of interleukin (IL)-10 signalling and/or innate immune deficiency (Tlr5KO). DESIGN Mice were fed with diet containing either cellulose, inulin or pectin and subjected to weekly injections of an IL-10 receptor (αIL-10R) neutralising antibody. Colitis development was examined by serological, biochemical, histological and immunological parameters. RESULTS Inulin potentiated the severity of αIL10R-induced colitis, while pectin ameliorated the disease. Such exacerbation of colitis following inulin feeding was associated with enrichment of butyrate-producing bacteria and elevated levels of caecal butyrate. Blockade of butyrate production by either metronidazole or hops β-acids ameliorated colitis severity in inulin-fed mice, whereas augmenting caecal butyrate via tributyrin increased colitis severity in cellulose containing diet-fed mice. Elevated butyrate levels were associated with increased IL-1β activity, while inhibition of the NOD-like receptor protein 3 by genetic, pharmacologic or dietary means markedly reduced colitis. CONCLUSION These results not only support the notion that fermentable fibres have the potential to ameliorate colitis but also caution that, in some contexts, prebiotic fibres can lead to gut dysbiosis and surfeit colonic butyrate that might exacerbate IBD.
Collapse
|
57
|
Saha P, Yeoh BS, Xiao X, Golonka RM, Kumarasamy S, Vijay-Kumar M. Enterobactin, an iron chelating bacterial siderophore, arrests cancer cell proliferation. Biochem Pharmacol 2019; 168:71-81. [PMID: 31228465 PMCID: PMC6733644 DOI: 10.1016/j.bcp.2019.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Iron is essential for many biological functions, including being a cofactor for enzymes involved in cell proliferation. In line, it has been shown that cancer cells can perturb their iron metabolism towards retaining an abundant iron supply for growth and survival. Accordingly, it has been suggested that iron deprivation through the use of iron chelators could attenuate cancer progression. While they have exhibited anti-tumor properties in vitro, the current therapeutic iron chelators are inadequate due to their low efficacy. Therefore, we investigated whether the bacterial catecholate-type siderophore, enterobactin (Ent), could be used as a potent anti-cancer agent given its strong iron chelation property. We demonstrated that iron-free Ent can exert cytotoxic effects specifically towards monocyte-related tumor cell lines (RAW264.7 and J774A.1), but not primary cells, i.e. bone marrow-derived macrophages (BMDMs), through two mechanisms. First, we observed that RAW264.7 and J774A.1 cells preserve a bountiful intracellular labile iron pool (LIP), whose homeostasis can be disrupted by Ent. This may be due, in part, to the lower levels of lipocalin 2 (Lcn2; an Ent-binding protein) in these cell lines, whereas the higher levels of Lcn2 in BMDMs could prevent Ent from hindering their LIP. Secondly, we observed that Ent could dose-dependently impede reactive oxygen species (ROS) generation in the mitochondria. Such disruption in LIP balance and mitochondrial function may in turn promote cancer cell apoptosis. Collectively, our study highlights Ent as an anti-cancer siderophore, which can be exploited as an unique agent for cancer therapy.
Collapse
|
58
|
Bennett LF, Liao C, Quickel MD, Yeoh BS, Vijay-Kumar M, Hankey-Giblin P, Prabhu KS, Paulson RF. Inflammation induces stress erythropoiesis through heme-dependent activation of SPI-C. Sci Signal 2019; 12:12/598/eaap7336. [PMID: 31506384 DOI: 10.1126/scisignal.aap7336] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation alters bone marrow hematopoiesis to favor the production of innate immune effector cells at the expense of lymphoid cells and erythrocytes. Furthermore, proinflammatory cytokines inhibit steady-state erythropoiesis, which leads to the development of anemia in diseases with chronic inflammation. Acute anemia or hypoxic stress induces stress erythropoiesis, which generates a wave of new erythrocytes to maintain erythroid homeostasis until steady-state erythropoiesis can resume. Although hypoxia-dependent signaling is a key component of stress erythropoiesis, we found that inflammation also induced stress erythropoiesis in the absence of hypoxia. Using a mouse model of sterile inflammation, we demonstrated that signaling through Toll-like receptors (TLRs) paradoxically increased the phagocytosis of erythrocytes (erythrophagocytosis) by macrophages in the spleen, which enabled expression of the heme-responsive gene encoding the transcription factor SPI-C. Increased amounts of SPI-C coupled with TLR signaling promoted the expression of Gdf15 and Bmp4, both of which encode ligands that initiate the expansion of stress erythroid progenitors (SEPs) in the spleen. Furthermore, despite their inhibition of steady-state erythropoiesis in the bone marrow, the proinflammatory cytokines TNF-α and IL-1β promoted the expansion and differentiation of SEPs in the spleen. These data suggest that inflammatory signals induce stress erythropoiesis to maintain erythroid homeostasis when inflammation inhibits steady-state erythropoiesis.
Collapse
|
59
|
Vijay-Kumar M, Saha P, Yeoh BS, Golonka R, McCarthy C, Spegele A, Abokor A, Chakraborty S, Mell B, Koch L, Joe B. Abstract P1126: Neutrophil Extracellular Traps: New Players in Hypertension. Hypertension 2019. [DOI: 10.1161/hyp.74.suppl_1.p1126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant immune responses are linked to hypertension; yet, neutrophils remain relatively understudied. Both neutrophilia and elevated neutrophil-to-lymphocyte (N/L) ratio are used as clinical biomarkers of hypertension. Likewise, neutrophilia is reported in spontaneously hypertensive rats. Whether these features are associated with an increase in neutrophil extracellular traps (NETs) generation is unknown. We hypothesized that neutrophilia and NETs directly correlate with hypertension whereby lowering neutrophilia and NETs are therapeutically beneficial to lower blood pressure (BP). Herein, we used various, genetic rat models divergent in BP to study the neutrophil-hypertension axis. These include the Dahl Salt-Sensitive (S) and Resistant (R) rats, and the low (LCR) and high (HCR) exercise capacity runner rats. LCR (2.1±0.3 10
9
/l) and S rats (1.2±0.5 10
9
/l) exhibited neutrophilia compared to HCR (0.98±0.5 10
9
/l) and R rats (1.04±0.5 10
9
/l), p<0.05, respectively. To determine whether neutrophil function was also augmented, peripheral neutrophils were stimulated with either PMA or LPS to induce ROS and NETs generation, respectively. LCR and S rats generated ~2-3 folds more ROS and NETs compared to their HCR and R counterparts. Intriguingly, LCR (11.4±1.0 U/ml) displayed reduced DNase I activity than HCR (17.8±0.8 U/ml), p<0.05, which indicated an inadequate clearance of NETs. Systemic and renal lipocalin-2 were 2-3 folds higher in the S rats compared to R rats, suggesting low-grade inflammation associated with NETs overabundance. Introducing a high-salt diet to S and R rats further potentiated neutrophilia, ROS and NETs, the extent of elevation being higher in S rats. Opposingly, oral administration of β-hydroxybutyrate (βOHB; a hypotensive ketone body) to S and R rats reduced neutrophilia, NETs and ROS. Similarly, subjecting LCR to exercise and fasting, both of which lower BP and increase βOHB, substantially attenuated neutrophilia, NETs and ROS. Collectively, our results demonstrate that NETs are an important feature directly linked to elevated BP in a strain-independent manner. Thus, blunting neutrophil responses through dietary intervention or exercise could serve as a novel therapeutic strategy against hypertension.
Collapse
|
60
|
Golonka R, Yeoh BS, Vijay-Kumar M. Dietary Additives and Supplements Revisited: The Fewer, the Safer for Liver and Gut Health. ACTA ACUST UNITED AC 2019; 5:303-316. [PMID: 32864300 DOI: 10.1007/s40495-019-00187-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review The supplementation of dietary additives into processed foods has exponentially increased in the past few decades. Similarly, the incidence rates of various diseases, including metabolic syndrome, gut dysbiosis and hepatocarcinogenesis, have been elevating. Current research reveals that there is a positive association between food additives and these pathophysiological diseases. This review highlights the research published within the past 5 years that elucidate and update the effects of dietary supplements on liver and intestinal health. Recent Findings Some of the key findings include: enterocyte dysfunction of fructose clearance causes non-alcoholic fatty liver disease (NAFLD); non-caloric sweeteners are hepatotoxic; dietary emulsifiers instigate gut dysbiosis and hepatocarcinogenesis; and certain prebiotics can induce cholestatic hepatocellular carcinoma (HCC) in gut dysbiotic mice. Overall, multiple reports suggest that the administration of purified, dietary supplements could cause functional damage to both the liver and gut. Summary The extraction of bioactive components from natural resources was considered a brilliant method to modulate human health. However, current research highlights that such purified components may negatively affect individuals with microbiotal dysbiosis, resulting in a deeper break of the symbiotic relationship between the host and gut microbiota, which can lead to repercussions on gut and liver health. Therefore, ingestion of these dietary additives should not go without some caution!
Collapse
|
61
|
Vijay-Kumar M, Yeoh BS, Singh V, Golonka RM, Saha P. Dietary Soluble Fiber Induces HCC in Dysbiotic Mice Through a Spectrum of Immunosuppressive Mediators. THE JOURNAL OF IMMUNOLOGY 2019. [DOI: 10.4049/jimmunol.202.supp.59.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Dietary fermentable, soluble fibers (e.g. inulin) are known for promoting health; yet, ~40% of Toll-like receptor 5 deficient (T5KO) mice fed inulin-containing diet (ICD) develop icteric hepatocellular carcinoma (HCC) (Cell, 2018). Specifically, the disease progresses starting with hepatic cholestasis and neutrophilic inflammation at one month, followed by HCC at 6 months of ICD feeding. This diet-driven HCC was dependent on the gut microbiota and was mediated, largely in part, via surfeit production of immunosuppressive short-chain fatty acids (SCFA) and secondary bile acids, presumably as compensatory mechanisms against inflammation in the 40% pre-HCC T5KO mice. What was most striking was the upregulation of systemic bilirubin (a host immunosuppressive metabolite) within one week of ICD feeding. The hyperbilirubinemia was accompanied with an increase in IgA by ~50 and ~10-fold in the serum and liver, respectively, compared to the 60% non-HCC T5KO mice. Markers for anti-tumor T cell exhaustion, i.e. hepatic PD-L1 and layilin, were also upregulated, where the former was elevated within a week of feeding and persisted, while the latter was observed at 6 months. Hepatic immune cell phenotyping after the onset of HCC revealed substantial increase in CD4+FOXP3+PD-L1+T cells and IgA+IL10+PD-L1+Bcells, with the latter denoting a recently identified subset of highly immunosuppressive B cells. Our unprecedented findings collectively demonstrate that dietary fibers and SCFA —which are widely-held to be anti-inflammatory— could potentiate immunosuppression and impede anti-tumor immune surveillance in the tumor microenvironment in mice with gut microbiota dysbiosis.
Collapse
|
62
|
Saha P, Yeoh BS, Xiao X, Golonka RM, Singh V, Wang Y, Vijay-Kumar M. PAD4-dependent NETs generation are indispensable for intestinal clearance of Citrobacter rodentium. Mucosal Immunol 2019; 12:761-771. [PMID: 30710097 PMCID: PMC6519124 DOI: 10.1038/s41385-019-0139-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023]
Abstract
Peptidyl arginine deiminase-4 (PAD4) is indispensable for generation of neutrophil extracellular traps (NETs), which can provide antimicrobial effects during host innate immune response; however, the role of PAD4 against gastrointestinal infection is largely unknown. Herein, we challenged PAD4-deficient (Pad4-/-) mice and wild-type (WT) littermates with Citrobacter rodentium (CR), and investigated bacteria clearance and gut pathology. Luminal colonization of CR in Pad4-/- mice peaked between 11-14 days post-infection, whereas WT mice suppressed the infection by 14 days. We demonstrated that Pad4-/- mice were unable to form NETs, whereas WT mice showed increased NETs formation in the colon during infection. Pad4-/- mice showed aggravated CR-associated inflammation as indicated by elevated systemic and colonic pro-inflammatory markers. Histological analysis revealed that transmissible colonic hyperplasia, goblet cell depletion, and apoptotic cell death were more pronounced in the colon of CR-infected Pad4-/- mice. Treating WT mice with deoxyribonuclease I, which can disrupt NETs generation, recapitulated the exacerbated CR infection and gut pathology associated with the loss of PAD4. Administration of the PAD4 inhibitor, Cl-amidine also aggravated CR infection, but to a lesser extent. Taken together, our findings highlight the importance of PAD4 in the mucosal clearance of CR and in resolving gut-associated inflammation.
Collapse
|
63
|
|
64
|
Jala VR, Singh R, Chandrashekarappa S, Bodduluri SR, Becca BV, Hegde B, Kotla N, Hiwale AA, Saiyed T, Patel P, Vijay-Kumar M, Langille M, Douglas GM, Dryden G, Cheng X, Rouchka E, Waigel SJ, Alatassi H, Zhang HG, Haribabu B, Vemula PK. Enhancement of gut barrier function by microbial metabolite, urolithin A via AhR-Nrf2 dependent pathways in IBD. THE JOURNAL OF IMMUNOLOGY 2019. [DOI: 10.4049/jimmunol.202.supp.192.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Inflammatory bowel diseases (IBD) consisting of Crohn’s and ulcerative colitis are resultant of dysregulation of the immune system leading to intestinal inflammation and microbial dysbiosis. Numerous studies in recent years highlighted the pivotal role of gut microbiota and their metabolites in host physiological processes including in IBD. Urolithin A (UroA) is a microbial metabolite derived from polyphenolics (e.g., ellagitannins/ellagic acid) of pomegranate and berries. We also synthesized a potent structural analogue of UroA (UAS03) and tested their efficacies in preventing and treating colitis in pre-clinical models. Our studies showed that UroA/UAS03 significantly enhance gut barrier function in addition to blocking unwarranted inflammation. We demonstrate that UroA and UAS03 exert their barrier functions through activation of aryl hydrocarbon receptor (AhR)- nuclear factor erythroid 2–related factor 2 (Nrf2)-dependent pathways to upregulate epithelial tight junction proteins. In addition, treatment with these compounds attenuated colitis in pre-clinical models by remedying barrier dysfunction and blocking increased inflammatory mediators such as IL-6, TNF-α and IL-1β. UroA/UAS03 failed to induce tight junction proteins and protect against 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis in AhR−/− and Nrf2−/− mice suggesting an obligatory requirement of AhR and Nrf2 pathways for UroA/UAS03 mediated beneficial activities. Overall, the results highlight how microbial metabolites provide two-pronged beneficial activities at gut epithelium by enhancing barrier functions and reducing systemic and local inflammation to protect from colonic diseases.
Collapse
|
65
|
Yeoh BS, Saha P, Golonka RM, Vijay-Kumar M. Persistent IL-1b Signaling Aggravates Murine Enteropathogen, Citrobacter rodentium Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2019. [DOI: 10.4049/jimmunol.202.supp.192.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
The inflammasome cytokine IL-1b is an important mediator of the inflammatory responses against invading pathogens. However, it is not clear whether sustained IL-1b signaling following the loss of its endogenous inhibitor, secretory IL-1 receptor antagonist (sIL-1Ra), could improve mucosal immunity against the enteropathogen, Citrobacter rodentium (CR). In light of increased prescription of rec-sIL-1Ra (aka Anakinra) to treat inflammatory bowel disease, we undertook this study. At basal levels, sIL-1Ra-deficient (sIL-1RaKO) mice displayed leukocytosis and elevated inflammatory marker, i.e. serum and fecal lipocalin 2. Furthermore, bone marrow-derived macrophages and neutrophils from sIL-1RaKO mice generated higher levels of iNOS and nitrite, and ROS and NETs, respectively. These results collectively suggest sIL-1RaKO mice have low-grade chronic inflammation. Based on these results, we hypothesized that sIL-1RaKO mice with persistent IL1-b signaling could efficiently clear CR infection than their WT littermates. Oral challenge of CR (1×109 CFU/mouse) resulted in luminal colonization, which peaked at day 7 post-infection, in both groups; however, sIL-1RaKO mice displayed a higher CR burden and an exacerbated infection. The aggravated course of infection was further visualized by inoculating sIL-1RaKO mice with bioluminescent CR. Histologic analysis revealed that transmissible colonic hyperplasia was more pronounced in sIL-1RaKO mice. Interestingly, basal ileal Paneth’s cell-specific antimicrobial proteins (Ang4 and Reg3g) were significantly reduced in sIL-1RaKO mice. Collectively, our results demonstrate that a balanced mucosal IL-1b signaling is required to counter and clear enteropathogen infection.
Collapse
|
66
|
Yeoh BS, Gewirtz AT, Vijay-Kumar M. Adaptive Immunity Induces Tolerance to Flagellin by Attenuating TLR5 and NLRC4-Mediated Innate Immune Responses. Front Cell Infect Microbiol 2019; 9:29. [PMID: 30838179 PMCID: PMC6390806 DOI: 10.3389/fcimb.2019.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/31/2019] [Indexed: 12/02/2022] Open
Abstract
The host immune system is constantly exposed to diverse microbial ligands, including flagellin (FliC; a ligand for TLR5 and NLRC4) and lipopolysaccharide (LPS; a ligand for TLR4), which could induce immune tolerance to subsequent exposure. Herein, we investigated the extent to which FliC induces self-tolerance in vivo and the role of adaptive immunity in mediating such effect. Mice pre-treated with FliC displayed attenuated serum keratinocyte-derived chemokine (KC), interleukin (IL)-6 and IL-18 responses to secondary challenge of FliC. A negative correlation was observed between high anti-FliC titer and reduced KC, IL-6, and IL-18 responses upon FliC re-challenge in WT mice, but not Rag1KO mice, suggesting that adaptive immunity could tolerize TLR5 and NLRC4. However, administration of LPS during FliC pre-treatment impaired the generation of anti-FliC antibodies and resulted in a partial loss of self-tolerance to FliC re-challenge. These findings may be relevant in the context of bacterial infection, as we observed that anti-FliC response are protective against systemic infection by Salmonella typhimurium. Taken together, our study delineates a distinct co-operative and reciprocal interaction between the innate and adaptive arms of immunity in modulating their responses to a bacterial protein.
Collapse
|
67
|
Golonka R, Yeoh BS, Vijay-Kumar M. The Iron Tug-of-War between Bacterial Siderophores and Innate Immunity. J Innate Immun 2019; 11:249-262. [PMID: 30605903 DOI: 10.1159/000494627] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
Iron is necessary for the survival of almost all aerobic organisms. In the mammalian host, iron is a required cofactor for the assembly of functional iron-sulfur (Fe-S) cluster proteins, heme-binding proteins and ribonucleotide reductases that regulate various functions, including heme synthesis, oxygen transport and DNA synthesis. However, the bioavailability of iron is low due to its insolubility under aerobic conditions. Moreover, the host coordinates a nutritional immune response to restrict the accessibility of iron against potential pathogens. To counter nutritional immunity, most commensal and pathogenic bacteria synthesize and secrete small iron chelators termed siderophores. Siderophores have potent affinity for iron, which allows them to seize the essential metal from the host iron-binding proteins. To safeguard against iron thievery, the host relies upon the innate immune protein, lipocalin 2 (Lcn2), which could sequester catecholate-type siderophores and thus impede bacterial growth. However, certain bacteria are capable of outmaneuvering the host by either producing "stealth" siderophores or by expressing competitive antagonists that bind Lcn2 in lieu of siderophores. In this review, we summarize the mechanisms underlying the complex iron tug-of-war between host and bacteria with an emphasis on how host innate immunity responds to siderophores.
Collapse
|
68
|
Golonka RM, Yeoh BS, Petrick JL, Weinstein SJ, Albanes D, Gewirtz AT, McGlynn KA, Vijay-Kumar M. Deoxyribonuclease I Activity, Cell-Free DNA, and Risk of Liver Cancer in a Prospective Cohort. JNCI Cancer Spectr 2018; 2:pky083. [PMID: 30815627 PMCID: PMC6383694 DOI: 10.1093/jncics/pky083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) is a proposed latent biomarker for several cancers, including liver cancer. Deoxyribonucleases (DNases) facilitate the timely and efficient degradation of cfDNA, leading us to hypothesize that DNase I and/or II might be a more sensitive early biomarker than cfDNA. To test this hypothesis, a study was conducted in a large, prospective cohort. METHODS A nested case-control study (224 liver cancer case patients and 224 matched control subjects) was conducted in a cohort of Finnish male smokers, followed from baseline (1985-1988) to 2014. The associations among DNase I activity, cfDNA, and the risk of liver cancer were assessed using multivariable-adjusted conditional logistic regression. RESULTS DNase I activity, whether measured as radius (mm) or as units per milliliter, was statistically significantly associated with increased risk of liver cancer (P trend <.01). DNase I activity in the highest quartile was associated with a greater than threefold risk of developing liver cancer (DNase I activity radius >2.7 mm, hazard ratio [HR] = 3.03, 95% confidence interval [CI] = 1.59 to 5.77; DNase I activity >2.72 units/mL, HR = 3.30, 95% CI = 1.64 to 6.65). The strength of this association was not substantially altered by exclusion of cases diagnosed within the first five years of follow-up or those with hepatitis C virus (HCV) infection. In contrast, cfDNA and DNase II was not statistically significantly associated with risk of liver cancer. CONCLUSIONS DNase I activity was a superior latent biomarker of liver cancer than cfDNA. These findings advance the goal of developing a means to detect liver cancer years well before the development of clinical manifestations.
Collapse
|
69
|
Saha P, Xiao X, Yeoh BS, Chen Q, Katkere B, Kirimanjeswara GS, Vijay-Kumar M. The bacterial siderophore enterobactin confers survival advantage to Salmonella in macrophages. Gut Microbes 2018; 10:412-423. [PMID: 30449241 PMCID: PMC6546333 DOI: 10.1080/19490976.2018.1546519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/31/2018] [Accepted: 10/30/2018] [Indexed: 02/03/2023] Open
Abstract
Enterobactin (Ent), a prototypical bacterial siderophore known for its unparalleled affinity for iron, is widely conserved among members of the Enterobacteriaceae family of Gram-negative bacteria. In this study, we demonstrated that, aside from mediating iron acquisition, Ent also dampened the macrophages (MΦs) antimicrobial responses against intracellular infection by Salmonella enterica serovar Typhimurium. Accordingly, the loss of Ent expression (ΔentB) in Salmonella demoted their survivability against MΦs. Addition of exogenous Ent not only rescued the survival of ΔentB Salmonella, but also augmented WT Salmonella to better withstand the microbicidal activity of MΦs. The protection conferred to WT Salmonella was observed only when Ent was administered as iron-free, thus indicating the requirement of iron chelation in this context. In contrast, the exogenous iron-bound Ent retained its ability to promote the survival of ΔentB Salmonella, albeit modestly. Assessment on MΦs labile iron pool (LIP) revealed that iron-free Ent is able to permeate into MΦs, chelate the intracellular LIP, and regulate the expression of several key iron-regulatory proteins, i.e., divalent metal transporter 1, ferroportin, and hepcidin. Chelation of iron by Ent was also observed to promote the MΦs towards M2 polarization. Collectively, our findings demonstrated that Ent not only facilitates bacterial iron uptake but also disrupts MΦs iron homeostasis and M1/M2 polarization to safeguard intracellular bacteria against the anti-bacterial effects of their host.
Collapse
|
70
|
Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Aguilera Olvera R, Lapek JD, Zhang L, Wang WB, Hao S, Flythe MD, Gonzalez DJ, Cani PD, Conejo-Garcia JR, Xiong N, Kennett MJ, Joe B, Patterson AD, Gewirtz AT, Vijay-Kumar M. Dysregulated Microbial Fermentation of Soluble Fiber Induces Cholestatic Liver Cancer. Cell 2018; 175:679-694.e22. [PMID: 30340040 PMCID: PMC6232850 DOI: 10.1016/j.cell.2018.09.004] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 06/03/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022]
Abstract
Dietary soluble fibers are fermented by gut bacteria into short-chain fatty acids (SCFA), which are considered broadly health-promoting. Accordingly, consumption of such fibers ameliorates metabolic syndrome. However, incorporating soluble fiber inulin, but not insoluble fiber, into a compositionally defined diet, induced icteric hepatocellular carcinoma (HCC). Such HCC was microbiota-dependent and observed in multiple strains of dysbiotic mice but not in germ-free nor antibiotics-treated mice. Furthermore, consumption of an inulin-enriched high-fat diet induced both dysbiosis and HCC in wild-type (WT) mice. Inulin-induced HCC progressed via early onset of cholestasis, hepatocyte death, followed by neutrophilic inflammation in liver. Pharmacologic inhibition of fermentation or depletion of fermenting bacteria markedly reduced intestinal SCFA and prevented HCC. Intervening with cholestyramine to prevent reabsorption of bile acids also conferred protection against such HCC. Thus, its benefits notwithstanding, enrichment of foods with fermentable fiber should be approached with great caution as it may increase risk of HCC.
Collapse
|
71
|
Xiao X, Saha P, Yeoh BS, Hipp JA, Singh V, Vijay-Kumar M. Myeloperoxidase deficiency attenuates systemic and dietary iron-induced adverse effects. J Nutr Biochem 2018; 62:28-34. [PMID: 30218980 DOI: 10.1016/j.jnutbio.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/01/2018] [Accepted: 08/11/2018] [Indexed: 02/08/2023]
Abstract
Iron deficiency is routinely treated with oral or systemic iron supplements, which are highly reactive and could induce oxidative stress via augmenting the activity of proinflammatory enzyme myeloperoxidase (MPO). To investigate the extent to which MPO is involved in iron-induced toxicity, acute (24 h) iron toxicity was induced by intraperitoneal administration of FeSO4 (25 mg/kg body weight) to MPO-deficient (MpoKO) mice and their wild-type (WT) littermates. Acute iron toxicity was also assessed in WT mice pretreated with an MPO inhibitor, 4-aminobenzoic acid hydrazide. Systemic iron administration up-regulated circulating MPO and neutrophil elastase and elevated systemic inflammatory and organ damage markers in WT mice. However, genetic deletion of MPO or its inhibition significantly reduced iron-induced organ damage and systemic inflammatory responses. In contrast to the acute model, 8 weeks of 2% carbonyl iron diet feeding to WT mice did not change the levels of circulating MPO and neutrophil elastase but promoted their accumulation in the liver. Even though both MpoKO and WT mice displayed similar levels of diet-induced hyperferremia, MpoKO mice showed significantly reduced inflammatory response and oxidative stress than the WT mice. In addition, WT bone-marrow-derived neutrophils (BMDN) generated more reactive oxygen species than MPO-deficient BMDN upon iron stimulation. Altogether, genetic deficiency or pharmacologic inhibition of MPO substantially attenuated acute and chronic iron-induced toxicity. Our results suggest that targeting MPO during iron supplementation is a promising approach to reduce iron-induced toxicity/side effects in vulnerable population.
Collapse
|
72
|
Galla S, Chakraborty S, Cheng X, Yeo J, Mell B, Zhang H, Mathew AV, Vijay-Kumar M, Joe B. Disparate effects of antibiotics on hypertension. Physiol Genomics 2018; 50:837-845. [PMID: 30095376 DOI: 10.1152/physiolgenomics.00073.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gut microbiota are associated with a variety of complex polygenic diseases. The usage of broad-spectrum antibiotics by patients affected by such diseases is an important environmental factor to consider, because antibiotics, which are widely prescribed to curb pathological bacterial infections, also indiscriminately eliminate gut commensal microbiota. However, the extent to which antibiotics reshape gut microbiota and per se contribute to these complex diseases is understudied. Because genetics play an important role in predisposing individuals to these modern diseases, we hypothesize that the extent to which antibiotics influence complex diseases depends on the host genome and metagenome. The current study tests this hypothesis in the context of hypertension, which is a serious risk factor for cardiovascular diseases. A 3 × 2 factorial design was used to test the blood pressure (BP) and microbiotal effects of three different antibiotics, neomycin, minocycline, and vancomycin, on two well-known, preclinical, genetic models of hypertension, the Dahl salt-sensitive (S) rat and the spontaneously hypertensive rat (SHR), both of which develop hypertension, but for different genetic reasons. Regardless of the class, oral administration of antibiotics increased systolic blood pressure of the S rat, while minocycline and vancomycin, but not neomycin, lowered systolic blood pressure in the SHR. These disparate BP effects were accompanied by significant alterations in gut microbiota. Our study highlights the need to consider an individualized approach for the usage of antibiotics among hypertensives, as their BP could be affected differentially based on their individual genetic and microbiotal communities.
Collapse
|
73
|
Saha P, Yeoh BS, Wang Y, Vijay-Kumar M. Neutrophil extracellular traps deficiency aggravates Citrobacter rodentium infection and the associated intestinal inflammation. THE JOURNAL OF IMMUNOLOGY 2018. [DOI: 10.4049/jimmunol.200.supp.114.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Peptidyl arginine deiminase-4 (PAD4) is required for the formation of neutrophil extracellular traps (NETs), which is part of the host antimicrobial innate immune response. However, the role of NETs in the pathogenesis and clearance of Citrobacter rodentium (a well-characterized mouse enteropathogen) infection remains unclear. In this study, we challenged the PAD4-deficient (Pad4KO; NETs-deficient) and WT littermates with C. rodentium. Luminal colonization of C. rodentium in Pad4KO mice peaked between 11-14 days post-infection (pi), whereas WT mice cleared the infection with no detectable level of the pathogen in fecal shedding after 7-10 days. Bacterial dissemination to spleen and mesenteric lymph node was significantly higher in Pad4KO mice at day 8 and 28 pi compared to WT. Additionally; Pad4KO mice displayed splenomegaly, colomegaly and elevated colonic and systemic pro-inflammatory markers (lipocalin 2 and serum amyloid A). Histological analysis demonstrated that transmissible colonic hyperplasia and goblet cell depletion were more pronounced in Pad4KO mice. Pad4KO mice also exhibited epithelial barrier dysfunction as indicated by their heightened serum immunoreactivity to bacterial proteins. Flow cytometric analysis revealed a substantial reduction in IL-10-producing macrophages and Th17 cells in the lamina propria and spleens of Pad4KO mice compared to WT mice. However, colonic expression of IL-17A and IL-22 were highly elevated in Pad4KO mice on day 8 pi, but were attenuated on day 28 both in Pad4KO and WT mice. Taken together, our findings highlight that NETs are indispensable in promoting clearance of C. rodentium and resolving the associated intestinal inflammation.
Collapse
|
74
|
Saha P, Xiao X, Yeoh BS, Chen Q, Katkere B, Kirimanjeswara GS, Vijay-Kumar M. Dual roles of the bacterial siderophore enterobactin by inducing apoptosis in macrophages and promoting survival advantages to Salmonella typhimurium. THE JOURNAL OF IMMUNOLOGY 2018. [DOI: 10.4049/jimmunol.200.supp.114.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Iron, an essential transition metal ion, is required to facilitate the antimicrobial and redox activity of heme proteins expressed in macrophages (Mφs). In this study, we investigated whether the chelation of iron by enterobactin (Ent; a prototypical bacterial siderophore) can affect the immune responses of macrophages. Herein, we demonstrated that exogenous Ent confers protection to the intracellular pathogen Salmonella enterica serovar Typhimurium from Mφs by promoting M1 to M2 polarization, reducing the expression of pro-inflammatory cytokines and impairing their intracellular killing. Accordingly, WT Salmonella survived better compared to Ent-deficient strain (ΔentB) in Mφs. The addition of apo-Ent (iron-free), but not ferric-Ent, rescued both strains, thus suggesting that the immuno-modulatory effect of Ent could be likely mediated via chelation of Mφs cellular iron. To determine whether the effects of Ent on Mφs could be due to altered cell viability, we next assessed the Mφs for markers of apoptosis via flow cytometry. Interestingly, we observed that apo-Ent, but not ferric-Ent, promoted a time-dependent apoptosis in Mφs, which can be detected as early as 12h after Ent treatment. These findings corroborated with the time-dependent release of lactate dehydrogenase (cytotoxicity marker) from Ent-treated Mφs. Collectively, our findings demonstrate that Ent not only facilitates bacterial iron uptake but also serves to safeguard bacteria against Mφ innate immune responses, which could be mediated, in part, by inducing delayed cellular apoptosis.
Collapse
|
75
|
Singh V, Yeoh BS, Xiao X, Wang Y, Vijay-Kumar M. Deficiency of neutrophil extracellular traps increases susceptibility to colonic inflammation. THE JOURNAL OF IMMUNOLOGY 2018. [DOI: 10.4049/jimmunol.200.supp.172.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Neutrophil extracellular traps (NETs), DNA structures released from neutrophils, are primarily enriched with bactericidal proteins. We envision that the antimicrobial nature of NETs would be an appropriate immune response in the gut, which is continuously exposed to trillions of bacteria. NETs formation is peptidyl arginine deiminase-4 (PAD4)-dependent, therefore, we employed Pad4KO mice and their WT littermates in two well-established models of murine colitis, i.e., loss of IL-10 signaling (immune hyperactivation) and chemical-induced injury (DSS). Upon treatment with αIL-10R mAb, Pad4KO mice developed robust chronic colitis as exemplified by colomegaly, colonic crypt elongation, and increased immune cell infiltration. In comparison, αIL-10R-treated WT mice exhibited modest colitis. We theorized that NETs may function as a ‘safety net’ which confine the pro-inflammatory neutrophil granule proteins (NGP) and prevent them to cause further damage. Indeed, the concentration and activity of NGP [i.e. lipocalin 2 (Lcn2), myeloperoxidase (MPO) and neutrophil elastase (NE)], in serum and in colons, were strikingly elevated in colitic Pad4KO mice, when compared to WT mice. The level of colonic secretory leukocyte protease inhibitor (SLPI) was reduced in the colitic Pad4KO mice. Such impaired SLPI response coupled with the ‘spillover’ of NGPs may, in part, explain the aggravated colitis in mice lacking NETs. Similarly, upon DSS treatment Pad4KO mice developed more severe chronic colitis than WT mice. Taken together, our findings advance the notion that gastrointestinal NETs are beneficial, and elucidation of NETs-mediated signaling, during colitis, may yield a novel therapeutic approach to mitigate intestinal inflammation.
Collapse
|