51
|
Gwon DH, Lee WY, Shin N, Kim SI, Jeong K, Lee WH, Kim DW, Hong J, Lee SY. BMAL1 Suppresses Proliferation, Migration, and Invasion of U87MG Cells by Downregulating Cyclin B1, Phospho-AKT, and Metalloproteinase-9. Int J Mol Sci 2020; 21:E2352. [PMID: 32231148 PMCID: PMC7178273 DOI: 10.3390/ijms21072352] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Several studies have shown that brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1), an important molecule for maintaining circadian rhythms, inhibits the growth and metastasis of tumor cells in several types of cancer, including lung, colon, and breast cancer. However, its role in glioblastoma has not yet been established. Here, we addressed the function of BMAL1 in U87MG glioblastoma cells with two approaches-loss and gain of function. In the loss of function experiments, cell proliferation in U87MG cells transfected with small interfering RNA (siRNA) targeting BMAL1 was increased by approximately 24% (small interfering (si)-NC 0.91 ± 0.00 vs. si-BMAL1 1.129 ± 0.08) via upregulation of cyclin B1. In addition, cell migration and invasion of BMAL1 siRNA-treated glioblastoma cells were elevated by approximately 20% (si-NC 51.00 ± 1.53 vs. si-BMAL161.33 ± 0.88) and 209% (si-NC 21.28 ± 1.37 vs. si-BMAL1 44.47 ± 3.48), respectively, through the accumulation of phosphorylated-AKT (p-AKT) and matrix metalloproteinase (MMP)-9. Gain of function experiments revealed that adenovirus-mediated ectopic expression of BMAL1 in U87MG cells resulted in a 19% (Adenovirus (Ad)-vector 0.94± 0.03 vs. Ad-BMAL1 0.76 ± 0.03) decrease in cell proliferation compared with the control via downregulation of cyclin B1 and increased early and late apoptosis due to changes in the levels of BCL2-associated X protein (BAX), B-cell lymphoma 2 (BCL-2), and cleaved caspase-3. Likewise, cell migration and invasion were attenuated by approximately 24% (Ad-vector 55.00 ± 0.00 vs. Ad-BMAL1 41.83 ± 2.90) and 49% (Ad-vector 70.01 ± 1.24 vs. Ad-BMAL1 35.55 ± 1.78), respectively, in BMAL1-overexpressing U87MG cells following downregulation of p-AKT and MMP-9. Taken together, our results suggest that BMAL1 acts as an anti-cancer gene by altering the proliferation, migration, and invasion of glioblastoma cells. Therefore, the BMAL1 gene could be a potential therapeutic target in the treatment of glioblastoma.
Collapse
|
52
|
Yi MH, Zhang E, Kim JJ, Baek H, Shin N, Kim S, Kim SR, Kim HR, Lee SJ, Park JB, Kim Y, Kwon OY, Lee YH, Oh SH, Kim DW. Author Correction: CD200R/Foxp3-mediated signalling regulates microglial activation. Sci Rep 2020; 10:5510. [PMID: 32251352 PMCID: PMC7090081 DOI: 10.1038/s41598-020-62310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
53
|
Shin HJ, Park H, Shin N, Kwon HH, Yin Y, Hwang JA, Kim SI, Kim SR, Kim S, Joo Y, Kim Y, Kim J, Beom J, Kim DW. p47phox siRNA-Loaded PLGA Nanoparticles Suppress ROS/Oxidative Stress-Induced Chondrocyte Damage in Osteoarthritis. Polymers (Basel) 2020; 12:polym12020443. [PMID: 32069893 PMCID: PMC7077645 DOI: 10.3390/polym12020443] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disorder that has had an increasing prevalence due to the aging of the population. Recent studies have concluded that OA progression is related to oxidative stress and reactive oxygen species (ROS). ROS are produced at low levels in articular chondrocytes, mainly by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and ROS production and oxidative stress have been found to be elevated in patients with OA. The cartilage of OA-affected rat exhibits a significant induction of p47phox, a cytosolic subunit of the NADPH oxidase, similarly to human osteoarthritis cartilage. Therefore, this study tested whether siRNA p47phox that is introduced with poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (p47phox si_NPs) can alleviate chondrocyte cell death by reducing ROS production. Here, we confirm that p47phox si_NPs significantly attenuated oxidative stress and decreased cartilage damage in mono-iodoacetate (MIA)-induced OA. In conclusion, these data suggest that p47phox si_NPs may be of therapeutic value in the treatment of osteoarthritis.
Collapse
|
54
|
Hornos Carneiro MF, Shin N, Karthikraj R, Barbosa F, Kannan K, Colaiácovo MP. Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the Caenorhabditis elegans Germline. Genetics 2020; 214:381-395. [PMID: 31852725 PMCID: PMC7017011 DOI: 10.1534/genetics.119.302939] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Endocrine-disrupting chemicals are ubiquitously present in our environment, but the mechanisms by which they adversely affect human reproductive health and strategies to circumvent their effects remain largely unknown. Here, we show in Caenorhabditis elegans that supplementation with the antioxidant Coenzyme Q10 (CoQ10) rescues the reprotoxicity induced by the widely used plasticizer and endocrine disruptor bisphenol A (BPA), in part by neutralizing DNA damage resulting from oxidative stress. CoQ10 significantly reduces BPA-induced elevated levels of germ cell apoptosis, phosphorylated checkpoint kinase 1 (CHK-1), double-strand breaks (DSBs), and chromosome defects in diakinesis oocytes. BPA-induced oxidative stress, mitochondrial dysfunction, and increased gene expression of antioxidant enzymes in the germline are counteracted by CoQ10. Finally, CoQ10 treatment also reduced the levels of aneuploid embryos and BPA-induced defects observed in early embryonic divisions. We propose that CoQ10 may counteract BPA-induced reprotoxicity through the scavenging of reactive oxygen species and free radicals, and that this natural antioxidant could constitute a low-risk and low-cost strategy to attenuate the impact on fertility by BPA.
Collapse
|
55
|
Yin Y, Phạm TL, Shin J, Shin N, Kang DW, Lee SY, Lee W, Kim CS, Kim SR, Hong J, Kim DW. Arginase 2 Deficiency Promotes Neuroinflammation and Pain Behaviors Following Nerve Injury in Mice. J Clin Med 2020; 9:jcm9020305. [PMID: 31979015 PMCID: PMC7073606 DOI: 10.3390/jcm9020305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Microglia, the resident macrophages, act as the first and main form of active immune defense in the central nervous system. Arginase 2 (Arg2) is an enzyme involved in L-arginine metabolism and is expressed in macrophages and nervous tissue. In this study, we determined whether the absence of Arg2 plays a beneficial or detrimental role in the neuroinflammatory process. We then investigated whether the loss of Arg2 potentiated microglia activation and pain behaviors following nerve injury-induced neuropathic pain. A spinal nerve transection (SNT) experimental model was used to induce neuropathic pain in mice. As a result of the peripheral nerve injury, SNT induced microgliosis and astrogliosis in the spinal cord, and upregulated inflammatory signals in both wild-type (WT) and Arg2 knockout (KO) mice. Notably, inflammation increased significantly in the Arg2 KO group compared to the WT group. We also observed a more robust microgliosis and a lower mechanical threshold in the Arg2 KO group than those in the WT group. Furthermore, our data revealed a stronger upregulation of M1 pro-inflammatory cytokines, such as interleukin (IL)-1β, and a stronger downregulation of M2 anti-inflammatory cytokines, including IL4 and IL-10, in Arg2 KO mice. Additionally, stronger formation of enzyme-inducible nitric oxide synthase, oxidative stress, and decreased expression of CD206 were detected in the Arg2 KO group compared to the WT group. These results suggest that Arg2 deficiency contributes to inflammatory response. The reduction or the loss of Arg2 results in the stronger neuroinflammation in the spinal dorsal horn, followed by more severe pain behaviors arising from nerve injury-induced neuropathic pain.
Collapse
|
56
|
Cuenca L, Shin N, Lascarez-Lagunas LI, Martinez-Garcia M, Nadarajan S, Karthikraj R, Kannan K, Colaiácovo MP. Environmentally-relevant exposure to diethylhexyl phthalate (DEHP) alters regulation of double-strand break formation and crossover designation leading to germline dysfunction in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008529. [PMID: 31917788 PMCID: PMC6952080 DOI: 10.1371/journal.pgen.1008529] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Exposure to diethylhexyl phthalate (DEHP), the most abundant plasticizer used in the production of polyvinyl-containing plastics, has been associated to adverse reproductive health outcomes in both males and females. While the effects of DEHP on reproductive health have been widely investigated, the molecular mechanisms by which exposure to environmentally-relevant levels of DEHP and its metabolites impact the female germline in the context of a multicellular organism have remained elusive. Using the Caenorhabditis elegans germline as a model for studying reprotoxicity, we show that exposure to environmentally-relevant levels of DEHP and its metabolites results in increased meiotic double-strand breaks (DSBs), altered DSB repair progression, activation of p53/CEP-1-dependent germ cell apoptosis, defects in chromosome remodeling at late prophase I, aberrant chromosome morphology in diakinesis oocytes, increased chromosome non-disjunction and defects during early embryogenesis. Exposure to DEHP results in a subset of nuclei held in a DSB permissive state in mid to late pachytene that exhibit defects in crossover (CO) designation/formation. In addition, these nuclei show reduced Polo-like kinase-1/2 (PLK-1/2)-dependent phosphorylation of SYP-4, a synaptonemal complex (SC) protein. Moreover, DEHP exposure leads to germline-specific change in the expression of prmt-5, which encodes for an arginine methyltransferase, and both increased SC length and altered CO designation levels on the X chromosome. Taken together, our data suggest a model by which impairment of a PLK-1/2-dependent negative feedback loop set in place to shut down meiotic DSBs, together with alterations in chromosome structure, contribute to the formation of an excess number of DSBs and altered CO designation levels, leading to genomic instability. Faithful chromosome segregation during meiosis, the specialized cell division program that produces haploid gametes (i.e. eggs and sperm) from a diploid organism, is key for successful sexual reproduction. Diethylhexyl phthalate (DEHP), a commonly used plasticizer found in personal care and household products, has emerged as an endocrine disruptor that exerts reprotoxicity in mammals. In this study, we provide mechanistic insight into the modes of action by which environmentally-relevant levels of DEHP and its metabolites impair female meiosis in the C. elegans germline. Exposure to DEHP leads to defects in late prophase I chromosome remodeling, altered chromosome morphology in oocytes at diakinesis, errors in chromosome segregation, and impaired embryogenesis. Underlying these defects are higher levels of DSBs, altered DSB repair, defects in crossover (CO) designation/formation, germline-specific change in prmt-5 gene expression and altered chromosome structure. We propose that DEHP exposure induces an excess number of DSBs by interfering with mechanisms set in place to turn off DSBs once CO designation is accomplished and by altering chromosome structure resulting in increased chromatin accessibility to the DSB machinery.
Collapse
|
57
|
Pandit S, Neupane C, Woo J, Sharma R, Nam MH, Lee GS, Yi MH, Shin N, Kim DW, Cho H, Jeon BH, Kim HW, Lee CJ, Park JB. Bestrophin1-mediated tonic GABA release from reactive astrocytes prevents the development of seizure-prone network in kainate-injected hippocampi. Glia 2019; 68:1065-1080. [PMID: 31833596 DOI: 10.1002/glia.23762] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
Abstract
Tonic extrasynaptic GABAA receptor (GABAA R) activation is under the tight control of tonic GABA release from astrocytes to maintain the brain's excitation/inhibition (E/I) balance; any slight E/I balance disturbance can cause serious pathological conditions including epileptic seizures. However, the pathophysiological role of tonic GABA release from astrocytes has not been tested in epileptic seizures. Here, we report that pharmacological or genetic intervention of the GABA-permeable Bestrophin-1 (Best1) channel prevented the generation of tonic GABA inhibition, disinhibiting CA1 pyramidal neuronal firing and augmenting seizure susceptibility in kainic acid (KA)-induced epileptic mice. Astrocyte-specific Best1 over-expression in KA-injected Best1 knockout mice fully restored the generation of tonic GABA inhibition and effectively suppressed seizure susceptibility. We demonstrate for the first time that tonic GABA from reactive astrocytes strongly contributes to the compensatory shift of E/I balance in epileptic hippocampi, serving as a good therapeutic target against altered E/I balance in epileptic seizures.
Collapse
|
58
|
Shin HJ, Park H, Shin N, Kwon HH, Yin Y, Hwang JA, Song HJ, Kim J, Kim DW, Beom J. Pink1-Mediated Chondrocytic Mitophagy Contributes to Cartilage Degeneration in Osteoarthritis. J Clin Med 2019; 8:jcm8111849. [PMID: 31684073 PMCID: PMC6912334 DOI: 10.3390/jcm8111849] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Cartilage loss is a central event in the pathogenesis of osteoarthritis (OA), though other than mechanical loading, the biochemical mechanisms underlying OA pathology remain poorly elucidated. We investigated the role of Pink1-mediated mitophagy in mitochondrial fission, a crucial process in OA pathogenesis. We used a monosodium iodoacetate (MIA)-induced rodent model of OA, which inhibits the activity of articular chondrocytes, leading to disruption of glycolytic energy metabolism and eventual cell death. The OA rat cartilage exhibits significant induction of autophagy-related proteins LC3B and p62, similar to human osteoarthritic cartilage. Moreover, expression of Pink1 and Parkin proteins were also increased in OA. Here, we confirm that Pink1-mediated mitophagy leads to cell death in chondrocytes following MIA treatment, while deficiency in Pink1 expression was associated with decreased cartilage damage and pain behaviors in MIA-induced OA. Finally, we found that autophagy and mitophagy-related genes are highly expressed in human osteoarthritic cartilage. These results indicate that OA is a degenerative condition associated with mitophagy, and suggest that targeting the Pink1 pathway may provide a therapeutic avenue for OA treatment.
Collapse
|
59
|
Yin Y, Hong J, Phạm TL, Shin J, Gwon DH, Kwon HH, Shin N, Shin HJ, Lee SY, Lee WH, Kim DW. Evans Blue Reduces Neuropathic Pain Behavior by Inhibiting Spinal ATP Release. Int J Mol Sci 2019; 20:ijms20184443. [PMID: 31505901 PMCID: PMC6770806 DOI: 10.3390/ijms20184443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Upon peripheral nerve injury, vesicular ATP is released from damaged primary afferent neurons. This extracellular ATP subsequently activates purinergic receptors of the spinal cord, which play a critical role in neuropathic pain. As an inhibitor of the vesicular nucleotide transporter (VNUT), Evans blue (EB) inhibits the vesicular storage and release of ATP in neurons. Thus, we tested whether EB could attenuate neuropathic pain behavior induced by spinal nerve ligation (SNL) in rats by targeting VNUT. An intrathecal injection of EB efficiently attenuated mechanical allodynia for five days in a dose-dependent manner and enhanced locomotive activity in an SNL rat model. Immunohistochemical analysis showed that EB was found in VNUT immunoreactivity on neurons in the dorsal root ganglion and the spinal dorsal horn. The level of ATP in cerebrospinal fluid in rats with SNL-induced neuropathic pain decreased upon administration of EB. Interestingly, EB blocked ATP release from neurons, but not glial cells in vitro. Eventually, the loss of ATP decreased microglial activity in the ipsilateral dorsal horn of the spinal cord, followed by a reduction in reactive oxygen species and proinflammatory mediators, such as interleukin (IL)-1β and IL-6. Finally, a similar analgesic effect of EB was demonstrated in rats with monoiodoacetate-induced osteoarthritis (OA) pain. Taken together, these data demonstrate that EB prevents ATP release in the spinal dorsal horn and reduces the ATP/purinergic receptor-induced activation of spinal microglia followed by a decline in algogenic substances, thereby relieving neuropathic pain in rats with SNL.
Collapse
|
60
|
Kwon HH, Neupane C, Shin J, Gwon DH, Yin Y, Shin N, Shin HJ, Hong J, Park JB, Yi Y, Kim DW, Kang JW. Calpain 2 contributes prenatal stress-induced epileptic spasms in the infant rat. IBRO Rep 2019. [DOI: 10.1016/j.ibror.2019.07.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
61
|
Kwon HH, Neupane C, Shin J, Gwon DH, Yin Y, Shin N, Shin HJ, Hong J, Park JB, Yi Y, Kim DW, Kang JW. Calpain-2 as a Treatment Target in Prenatal Stress-induced Epileptic Spasms in Infant Rats. Exp Neurobiol 2019; 28:529-536. [PMID: 31495081 PMCID: PMC6751866 DOI: 10.5607/en.2019.28.4.529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/21/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022] Open
Abstract
Stress can induce a serious epileptic encephalopathy that occurs during early infancy. Recent studies have revealed that prenatal stress exposure is a risk factor for the development of infantile spasms. Our previous work demonstrates that prenatal stress with betamethasone-induced alterations to the expression of the K+/Cl- co-transporter (KCC2) in gamma-aminobutyric acid (GABA) interneurons lowers the seizure threshold in exposed animals. Here, we further investigated the mechanisms involved in this KCC2 dysfunction and explored possible treatment options. We stressed Sprague-Dawley rats prenatally and further treated dams with betamethasone on gestational day 15, which increases seizure susceptibility and NMDA (N-Methyl-D-aspartate)-triggered spasms on postnatal day 15. In this animal model, first, we evaluated baseline calpain activity. Second, we examined the cleavage and dephosphorylation of KCC2. Finally, we checked the effect of a calpain inhibitor on seizure occurrence. The phosphorylated-N-methyl-Daspartate Receptor 2B (NR2B):non-phosphorylated NR2B ratio was found to be higher in the cortex of the prenatally stressed betamethasone model. We further found that the betamethasone model exhibited increased phosphorylation of calpain-2 and decreased phosphorylation of KCC2 and Glutamic acid decarboxylase 67 (GAD67). After using a calpain inhibitor in prenatal-stress rats, the seizure frequency decreased, while latency increased. GABAergic depolarization was further normalized in prenatal-stress rats treated with the calpain inhibitor. Our study suggests that calpain-dependent cleavage and dephosphorylation of KCC2 decreased the seizure threshold of rats under prenatal stress. Calpain-2 functions might, thus, be targeted in the future for the development of treatments for epileptic spasms.
Collapse
|
62
|
Shin N, Velmurugan K, Su C, Bauer AK, Tsai CSJ. Assessment of fine particles released during paper printing and shredding processes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1342-1352. [PMID: 31049512 DOI: 10.1039/c9em00015a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we investigated the airborne particles released during paper printing and paper shredding processes in an attempt to characterize and differentiate these particles. Particle characteristics were studied with real time instruments (RTIs) to measure concentrations and with samplers to collect particles for subsequent microscopy and cytotoxicity analysis. The particles released by paper shredding were evaluated for cytotoxicity by using in vitro human lung epithelial cell models. A substantial amount of particles were released during both the shredding and printing processes. We found that the printing process caused substantial release of particles with sizes of less than 300 nm in the form of metal granules and graphite. These released particles contained various elements including Al, Ca, Cu, Fe, Mg, N, K, P, S and Si. The particles released by the paper shredding processes were primarily nanoparticles and had a peak size between 27.4 nm and 36.5 nm. These paper particles contained elements including Al, Br Ca, Cl, Cr, Cu, Fe, Mg, N, Na, Ni P, S and Si, as determined by scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS) and single-particle inductively coupled plasma-mass spectroscopy (SP-ICP-MS) analysis. Although various metals were identified in the paper particles, these particles did not elicit cytotoxicity to simian virus-transformed bronchial epithelial cells (BEAS2B) and immortalized normal human bronchial epithelial cells (HBE1). However, future studies should investigate other cytotoxicity effects of these paper particles in various types of lung cells to identify potential health effects of the particles.
Collapse
|
63
|
Wang SY, Mao H, Shibuya H, Uzawa S, O’Brown ZK, Wesenberg S, Shin N, Saito TT, Gao J, Meyer BJ, Colaiácovo MP, Greer EL. The demethylase NMAD-1 regulates DNA replication and repair in the Caenorhabditis elegans germline. PLoS Genet 2019; 15:e1008252. [PMID: 31283754 PMCID: PMC6638966 DOI: 10.1371/journal.pgen.1008252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/18/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023] Open
Abstract
The biological roles of nucleic acid methylation, other than at the C5-position of cytosines in CpG dinucleotides, are still not well understood. Here, we report genetic evidence for a critical role for the putative DNA demethylase NMAD-1 in regulating meiosis in C. elegans. nmad-1 mutants have reduced fertility. They show defects in prophase I of meiosis, which leads to reduced embryo production and an increased incidence of males due to defective chromosomal segregation. In nmad-1 mutant worms, nuclear staging beginning at the leptotene and zygotene stages is disorganized, the cohesin complex is mislocalized at the diplotene and diakinesis stages, and chromosomes are improperly condensed, fused, or lost by the end of diakinesis. RNA sequencing of the nmad-1 germline revealed reduced induction of DNA replication and DNA damage response genes during meiosis, which was coupled with delayed DNA replication, impaired DNA repair and increased apoptosis of maturing oocytes. To begin to understand how NMAD-1 regulates DNA replication and repair, we used immunoprecipitation and mass spectrometry to identify NMAD-1 binding proteins. NMAD-1 binds to multiple proteins that regulate DNA repair and replication, including topoisomerase TOP-2 and co-localizes with TOP-2 on chromatin. Moreover, the majority of TOP-2 binding to chromatin depends on NMAD-1. These results suggest that NMAD-1 functions at DNA replication sites to regulate DNA replication and repair during meiosis. Errors in meiosis are the leading cause of miscarriages, as well as developmental and intellectual disabilities. We have identified that NMAD-1, an enzyme which removes methyl moieties from nucleic acids, is essential for appropriate DNA damage response, DNA replication and meiosis in the nematode C. elegans. We have cytologically and genetically characterized the defects which occur due to deletion of NMAD-1 in the C. elegans germline. Additionally, we have begun to determine molecularly how NMAD-1 can regulate DNA replication, by demonstrating that NMAD-1 binds to components of the DNA replication machinery and is required for their appropriate localization to DNA. Characterizing how epigenetic modifications and the corresponding enzymes that add or remove epigenetic modifications can control the fundamental process of meiosis will have broad implications for understanding and eventually correcting errors in meiosis that disrupt normal development.
Collapse
|
64
|
Yi MH, Shin J, Shin N, Yin Y, Lee SY, Kim CS, Kim SR, Zhang E, Kim DW. PINK1 mediates spinal cord mitophagy in neuropathic pain. J Pain Res 2019; 12:1685-1699. [PMID: 31239755 PMCID: PMC6554001 DOI: 10.2147/jpr.s198730] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/24/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Mitophagy is the selective engulfment of mitochondria by autophagosomes and the subsequent mitochondrial catabolism by lysosomes. Evidence has suggested an important role for mitochondrial dynamics and mitophagic flux in the development of many different neurodegenerative diseases. Objectives: The potential role of the mechanism underlying mitochondrial dynamics and mitophagic flux as it may relate to neuropathic pain is not well understood. This is a disease that largely remains an area of mechanistic uncertainty. PINK1 is a PTEN-induced mitochondrial kinase that can be selectively activated under mitochondrial stress conditions and lead to the induction of mitophagy. Materials and methods: A neuropathic pain rat model was established via spinal nerve ligation (SNL) and nociception was assayed via the von Frey filament method. Increased expression of PINK1 and the mechanism of mitophagy was detected in GABAergic interneurons of dorsal horn neurons of mice that underwent L5 SNL in comparison to control mice counterparts (n=8, P<0.001) by Western blotting, immunohistochemistry and double immunofluorescence staining. Results: Elevated expression of PINK1 appeared to localize selectively to GABAergic interneurons, particularly within autophagic mitochondria as evidenced by co-localization studies of PINK1 with BECN1, LC3II and COX IV on immunofluorescent microscopy. Furthermore, we also detected a significant increase in autophagosomes in dorsal horn neurons of SNL mice and this was consistent with increased autophagic activity as measured by the p62 autophagic substrate. Conclusion: These results demonstrate that neuropathic pain causes aberrant mitophagic flux selectively in GABAergic interneurons and provide evidence implicating mitophagy as an important area of future molecular studies to enhance our understanding of neuropathic pain.
Collapse
|
65
|
Shin N, Kim HG, Shin HJ, Kim S, Kwon HH, Baek H, Yi MH, Zhang E, Kim JJ, Hong J, Lee SY, Lee W, Triantafillu UL, Kim CS, Kim Y, Kim DW. Uncoupled Endothelial Nitric Oxide Synthase Enhances p-Tau in Chronic Traumatic Encephalopathy Mouse Model. Antioxid Redox Signal 2019; 30:1601-1620. [PMID: 30070145 DOI: 10.1089/ars.2017.7280] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease thought to be caused by repetitive traumatic brain injury (TBI) and subconcussive injuries. While hyperphosphorylation of tau (p-Tau), which is attributed to astrocytic tangles (ATs) and neurofibrillary tangles, is known to be involved in CTE, there are limited neuropathological or molecular data. By utilizing repetitive mild TBI (rmTBI) mouse models, our aim was to examine the pathological changes of CTE-associated structures, specifically the ATs. RESULTS Our rmTBI mouse models showed symptoms of depressive behavior and memory deficit, alongside an increased p-Tau expression in their neurons and astrocytes in both the hippocampus and cortex. rmTBI induced oxidative stress in endothelial cells and nitric oxide (NO) generation in astrocytes, which were mediated by hypoxia and increased hypoxia-inducible factor 1-α (HIF1α). There was also correlated decreased regional cerebral tissue perfusion units, mild activation of astrocytes and NFκB phosphorylation, increased expression of inducible nitric oxide synthase (iNOS), increased endothelial nitric oxide synthase (eNOS) uncoupling with decreased tetrahydrobiopterin, and increased expression of nitrotyrosine, NADPH oxidase 2 (Nox2)/nuclear factor (erythroid-derived 2) factor 2 (Nrf2) signaling proteins. Combined, these effects induced peroxynitrite formation and hyperphosphorylation of tau in the hippocampus and cortex toward the formation of ATs. INNOVATION Our model features molecular pathogenesis events of CTE with clinically relevant latency periods. In particular, this is the first demonstration of an increased astrocytic iNOS expression in an in vivo model. CONCLUSION We propose a novel mechanism of uncoupled eNOS and NO contribution to Tau phosphorylation and AT formation in rmTBI brain, toward an increased molecular understanding of the pathophysiology of human CTE.
Collapse
|
66
|
Shin N, Cuenca L, Karthikraj R, Kannan K, Colaiácovo MP. Assessing effects of germline exposure to environmental toxicants by high-throughput screening in C. elegans. PLoS Genet 2019; 15:e1007975. [PMID: 30763314 PMCID: PMC6375566 DOI: 10.1371/journal.pgen.1007975] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
Chemicals that are highly prevalent in our environment, such as phthalates and pesticides, have been linked to problems associated with reproductive health. However, rapid assessment of their impact on reproductive health and understanding how they cause such deleterious effects, remain challenging due to their fast-growing numbers and the limitations of various current toxicity assessment model systems. Here, we performed a high-throughput screen in C. elegans to identify chemicals inducing aneuploidy as a result of impaired germline function. We screened 46 chemicals that are widely present in our environment, but for which effects in the germline remain poorly understood. These included pesticides, phthalates, and chemicals used in hydraulic fracturing and crude oil processing. Of the 46 chemicals tested, 41% exhibited levels of aneuploidy higher than those detected for bisphenol A (BPA), an endocrine disruptor shown to affect meiosis, at concentrations correlating well with mammalian reproductive endpoints. We further examined three candidates eliciting aneuploidy: dibutyl phthalate (DBP), a likely endocrine disruptor and frequently used plasticizer, and the pesticides 2-(thiocyanomethylthio) benzothiazole (TCMTB) and permethrin. Exposure to these chemicals resulted in increased embryonic lethality, elevated DNA double-strand break (DSB) formation, activation of p53/CEP-1-dependent germ cell apoptosis, chromosomal abnormalities in oocytes at diakinesis, impaired chromosome segregation during early embryogenesis, and germline-specific alterations in gene expression. This study indicates that this high-throughput screening system is highly reliable for the identification of environmental chemicals inducing aneuploidy, and provides new insights into the impact of exposure to three widely used chemicals on meiosis and germline function. The ever-increasing number of new chemicals introduced into our environment poses a significant problem for risk assessment. In addition, assessing the direct impact of toxicants on human meiosis remains challenging. We successfully utilized a high-throughput platform in the nematode C. elegans, a genetically tractable model organism which shares a high degree of gene conservation with humans, to identify chemicals that affect the germline leading to aneuploidy. We assessed chemicals that are highly prevalent in the environment in worms carrying a fluorescent reporter construct allowing for the identification of X chromosome nondisjunction combined with a mutation increasing cuticle permeability for analysis of low doses of exposure. Follow up analysis of three chemicals: DBP, permethrin and TCMTB, further validated the use of this strategy. Exposure to these chemicals resulted in elevated levels of DNA double-strand breaks, activation of a DNA damage checkpoint, chromosome morphology defects in late meiotic prophase I as well as impaired early embryogenesis and germline-specific changes in gene expression. Our results support the use of this high-throughput screening system to identify environmental chemicals inducing aneuploidy, and provide new insights into the effects of exposure to DBP, permethrin, and TCMTB on meiosis and germline function.
Collapse
|
67
|
Zessin J, Xu Z, Shin N, Hambsch M, Mannsfeld SCB. Threshold Voltage Control in Organic Field-Effect Transistors by Surface Doping with a Fluorinated Alkylsilane. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2177-2188. [PMID: 30596425 DOI: 10.1021/acsami.8b12346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Doping is a powerful tool to control the majority charge carrier density in organic field-effect transistors and the threshold voltage of these devices. Here, a surface doping approach is shown, where the dopant is deposited on the prefabricated polycrystalline semiconducting layer. In this study, (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (FTCS), a fluorinated alkylsilane is used as a dopant, which is solution processable and much cheaper than conventional p-type dopants, such as 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). In this work, the depositions from the gas phase and from solution are compared. Both deposition approaches led to an increased conductivity and to a shift in the threshold voltage to more positive values, both of which indicate a p-type doping effect. The magnitude of the threshold voltage shift could be controlled by the FTCS deposition time (from vapor) or FTCS concentration (from solution); for short deposition times and low concentrations, the off current stayed constant and the mobility decreased only slightly. In the low doping concentration regime, both approaches resulted in similar transistor characteristics, i.e., similar values of shift in the threshold and turn-on voltage as well as mobility, ION/ IOFF ratio and amount of introduced free charge carriers. In comparison with vapor deposition, the solution-based approach can be conducted with less material and in a shorter time, which is critical for industrial applications.
Collapse
|
68
|
Hornos Carneiro M, Shin N, Colaiacovo M. Coenzyme Q10 supplementation rescues infertility and reproductive outcomes following exposure to the endocrine disruptor bisphenol A in Caenorhabditis elegans. Toxicol Lett 2018. [DOI: 10.1016/j.toxlet.2018.06.976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
69
|
Hong B, Lee S, Shin N, Ko Y, Kim D, Lee J, Lee W. Bone regeneration with umbilical cord blood mesenchymal stem cells in femoral defects of ovariectomized rats. Osteoporos Sarcopenia 2018; 4:95-101. [PMID: 30775550 PMCID: PMC6362973 DOI: 10.1016/j.afos.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/04/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Current treatments for osteoporosis were prevention of progression, yet it has been questionable in the stimulation of bone growth. The mesenchymal stem cells (MSCs) treatment for osteoporosis aims to induce differentiation of bone progenitor cells into bone-forming osteoblasts. We investigate whether human umbilical cord blood (hUCB)-MSCs transplantation may induce bone regeneration for osteoporotic rat model induced by ovariectomy. METHODS The ovariectomized (OVX) group (n = 10) and OVX-MSCs group (n = 10) underwent bilateral ovariectomy to induce osteoporosis, while the Sham group (n = 10) underwent sham operation at aged 12 weeks. After a femoral defect was made at 9 months, Sham group and OVX group were injected with Hartmann solution, while the OVX-MSCs group was injected with Hartmann solution containing 1 × 107 hUCB-MSCs. The volume of regenerated bone was evaluated using micro-computed tomography at 4 and 8 weeks postoperation. RESULTS At 4- and 8-week postoperation, the OVX group (5.0% ± 1.5%; 6.1% ± 0.7%) had a significantly lower regenerated bone volume than the Sham group (8.6% ± 1.3%; 12.0% ± 1.8%, P < 0.01), respectively. However, there was no significant difference between the OVX-MSCs and Sham groups. The OVX-MSCs group resulted in about 53% and 65% significantly higher new bone formation than the OVX group (7.7% ± 1.9%; 10.0% ± 2.9%, P < 0.05). CONCLUSIONS hUCB-MSCs in bone defects may enhance bone regeneration in osteoporotic rat model similar to nonosteoporotic bone regeneration. hUCB-MSCs may be a promising alternative stem cell therapy for osteoporosis.
Collapse
|
70
|
Choi SJ, Piao S, Nagar H, Jung SB, Kim S, Lee I, Kim SM, Song HJ, Shin N, Kim DW, Irani K, Jeon BH, Park JW, Kim CS. Isocitrate dehydrogenase 2 deficiency induces endothelial inflammation via p66sh-mediated mitochondrial oxidative stress. Biochem Biophys Res Commun 2018; 503:1805-1811. [PMID: 30072100 DOI: 10.1016/j.bbrc.2018.07.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023]
Abstract
Isocitrate dehydrogenase 2 (IDH2) is an essential enzyme in the mitochondrial antioxidant system, which produces nicotinamide adenine dinucleotide phosphate, and thereby defends against oxidative stress. We have shown that IDH2 downregulation results in mitochondrial dysfunction and reactive oxygen species (ROS) generation in mouse endothelial cells. The redox enzyme p66shc is a key factor in regulating the level of ROS in endothelial cells. In this study, we hypothesized that IDH2 knockdown-induced mitochondrial dysfunction stimulates endothelial inflammation, which might be regulated by p66shc-mediated oxidative stress. Our results showed that IDH2 downregulation led to mitochondrial dysfunction by decreasing the expression of mitochondrial oxidative phosphorylation complexes I, II, and IV, reducing oxygen consumption, and depolarizing mitochondrial membrane potential in human umbilical vein endothelial cells (HUVECs). The dysfunction not only increased mitochondrial ROS levels but also activated p66shc expression in HUVECs and IDH2 knockout mice. IDH2 deficiency increased intercellular adhesion molecule (ICAM)-1 expression and mRNA levels of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, and interleukin [IL]-1β) in HUVECs. The mRNA expression of ICAM-1 in endothelial cells and plasma levels of TNF-α and IL-1β were also markedly elevated in IDH2 knockout mice. However, p66shc knockdown rescued IDH2 deficiency-induced mitochondrial ROS levels, monocyte adhesion, ICAM-1, TNF-α, and IL-1β expression in HUVECs. These findings suggest that IDH2 deficiency induced endothelial inflammation via p66shc-mediated mitochondrial oxidative stress.
Collapse
|
71
|
Kim YC, Shin N, Lee S, Hyuk H, Kim YH, Kim H, Park SK, Cho JH, Kim CD, Ha J, Chae DW, Lee JP, Kim YS. Effect of post-transplant glycemic control on long-term clinical outcomes in kidney transplant recipients with diabetic nephropathy: A multicenter cohort study in Korea. PLoS One 2018; 13:e0195566. [PMID: 29668755 PMCID: PMC5906016 DOI: 10.1371/journal.pone.0195566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/26/2018] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Diabetic nephropathy is the leading cause of end stage renal disease. The number of kidney transplantation (KT) due to diabetic nephropathy is increasing and there is debate on glycemic control after KT. In this study, we used a multi-center database to determine the relationship between post-transplant glycemic control and the outcomes of KT in patients with diabetic nephropathy. METHODS We conducted a retrospective chart review of kidney transplant recipients (KTRs) with diabetic nephropathy from three tertiary hospitals to analyze the association between post-transplant glycemic control and the clinical outcomes of graft failure, including patient death and biopsy-proven acute rejection (BPAR). We assessed time-averaged glucose level and hemoglobin A1c (HbA1c) for 36 months after KT. RESULTS Among 3,538 KTRs, a total of 476 patients received kidney transplantation because of diabetic nephropathy. Mean time-averaged glucose and HbA1c levels were 147 ± 46 mg/dl and 7.7 ± 1.5%, respectively. Patients with diabetic nephropathy had poor graft and patient survival rate compared with non-diabetic nephropathy. Among KTRs with diabetic nephropathy, the highest quartile of time-averaged glucose was related to poor graft outcomes and the 3rd quartile of time-averaged HbA1c was associated with significantly better graft outcomes than the 1st, 2nd or 4th quartiles. There were no significant differences in the risk of BPAR across the 4 quartiles of glucose and HbA1c. CONCLUSIONS Strict glycemic control before KT might not be related to successful outcomes but poor glycemic control after KT is associated with poor graft outcomes. There was no significant relationship between pre- or post-transplant glycemic control and BPAR.
Collapse
|
72
|
Piao Y, Gwon DH, Kang DW, Hwang TW, Shin N, Kwon HH, Shin HJ, Yin Y, Kim JJ, Hong J, Kim HW, Kim Y, Kim SR, Oh SH, Kim DW. TLR4-mediated autophagic impairment contributes to neuropathic pain in chronic constriction injury mice. Mol Brain 2018; 11:11. [PMID: 29486776 PMCID: PMC5830083 DOI: 10.1186/s13041-018-0354-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/19/2018] [Indexed: 03/12/2023] Open
Abstract
Neuropathic pain is a complex, chronic pain state characterized by hyperalgesia, allodynia, and spontaneous pain. Accumulating evidence has indicated that the microglial Toll-like receptor 4 (TLR4) and autophagy are implicated in neurodegenerative diseases, but their relationship and role in neuropathic pain remain unclear. In this study, we examined TLR4 and its association with autophagic activity using a chronic constriction injury (CCI)-induced neuropathic pain model in wild-type (WT) and TLR4-knockout (KO) mice. The mice were assigned into four groups: WT-Contralateral (Contra), WT-Ipsilateral (Ipsi), TLR4 KO-Contra, and TLR4 KO-Ipsi. Behavioral and mechanical allodynia tests and biochemical analysis of spinal cord tissue were conducted following CCI to the sciatic nerve. Compared with the Contra group, mechanical allodynia in both the WT- and TLR4 KO-Ipsi groups was significantly increased, and a marked decrease of allodynia was observed in the TLR4 KO-Ipsi group. Although glial cells were upregulated in the WT-Ipsi group, no significant change was observed in the TLR4 KO groups. Moreover, protein expression and immunoreactive cell regulation of autophagy (Beclin 1, p62) were significantly increased in the neurons, but not microglia, of WT-Ipsi group compared with the WT-Contra group. The level of PINK1, a marker for mitophagy was increased in the neurons of WT, but not in TLR4 KO mice. Together, these results show that TLR4-mediated p62 autophagic impairment plays an important role in the occurrence and development of neuropathic pain. And what is more, microglial TLR4-mediated microglial activation might be indirectly coupled to neuronal autophage.
Collapse
|
73
|
Piao S, Lee JW, Nagar H, Jung SB, Choi S, Kim S, Lee I, Kim SM, Shin N, Lee YR, Lee SD, Park JB, Irani K, Won M, Hur GM, Jeon BH, Kim DW, Kim CS. CR6 interacting factor 1 deficiency promotes endothelial inflammation by SIRT1 downregulation. PLoS One 2018; 13:e0192693. [PMID: 29474366 PMCID: PMC5825004 DOI: 10.1371/journal.pone.0192693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/29/2018] [Indexed: 11/29/2022] Open
Abstract
Aims CR6 interacting factor 1 (CRIF1) deficiency impairs mitochondrial oxidative phosphorylation complexes, contributing to increased mitochondrial and cellular reactive oxygen species (ROS) production. CRIF1 downregulation has also been revealed to decrease sirtuin 1 (SIRT1) expression and impair vascular function. Inhibition of SIRT1 disturbs oxidative energy metabolism and stimulates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-induced inflammation. Therefore, we hypothesized that both CRIF1 deficiency-induced mitochondrial ROS production and SIRT1 reduction play stimulatory roles in vascular inflammation. Methods and results Plasma levels and mRNA expression of proinflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6) were markedly elevated in endothelium-specific CRIF1-knockout mice and CRIF1-silenced endothelial cells, respectively. Moreover, CRIF1 deficiency-induced vascular adhesion molecule-1 (VCAM-1) expression was consistently attenuated by the antioxidant N-acetyl-cysteine and NF-κB inhibitor (BAY11). We next showed that siRNA-mediated CRIF1 downregulation markedly activated NF-κB. SIRT1 overexpression not only rescued CRIF1 deficiency-induced NF-κB activation but also decreased inflammatory cytokines (TNF-α, IL-1β, and IL-6) and VCAM-1 expression levels in endothelial cells. Conclusions These results strongly suggest that CRIF1 deficiency promotes endothelial cell inflammation by increasing VCAM-1 expression, elevating inflammatory cytokines levels, and activating the transcription factor NF-κB, all of which were inhibited by SIRT1 overexpression.
Collapse
|
74
|
Shin N. The impact of information technology on financial performance: the importance of strategic choice. EUR J INFORM SYST 2017. [DOI: 10.1057/palgrave.ejis.3000409] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
75
|
Baek H, Shin HJ, Kim JJ, Shin N, Kim S, Yi MH, Zhang E, Hong J, Kang JW, Kim Y, Kim CS, Kim DW. Primary cilia modulate TLR4-mediated inflammatory responses in hippocampal neurons. J Neuroinflammation 2017; 14:189. [PMID: 28927423 PMCID: PMC5606072 DOI: 10.1186/s12974-017-0958-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 09/03/2017] [Indexed: 12/15/2022] Open
Abstract
Background The primary cilium is an organelle that can act as a master regulator of cellular signaling. Despite the presence of primary cilia in hippocampal neurons, their function is not fully understood. Recent studies have demonstrated that the primary cilium influences interleukin (IL)-1β-induced NF-κB signaling, ultimately mediating the inflammatory response. We, therefore, investigated ciliary function and NF-κB signaling in lipopolysaccharide (LPS)-induced neuroinflammation in conjunction with ciliary length analysis. Methods Since TLR4/NF-κB signaling is a well-known inflammatory pathway, we measured ciliary length and inflammatory mediators in wild type (WT) and TLR4−/− mice injected with LPS. Next, to exclude the effects of microglial TLR4, we examined the ciliary length, ciliary components, inflammatory cytokine, and mediators in HT22 hippocampal neuronal cells. Results Primary ciliary length decreased in hippocampal pyramidal neurons after intracerebroventricular injection of LPS in WT mice, whereas it increased in TLR4−/− mice. LPS treatment decreased primary ciliary length, activated NF-κB signaling, and increased Cox2 and iNOS levels in HT22 hippocampal neurons. In contrast, silencing Kif3a, a key protein component of cilia, increased ARL13B ciliary protein levels and suppressed NF-κB signaling and expression of inflammatory mediators. Conclusions These data suggest that LPS-induced NF-κB signaling and inflammatory mediator expression are modulated by cilia and that the blockade of primary cilium formation by Kif3a siRNA regulates TLR4-induced NF-κB signaling. We propose that primary cilia are critical for regulating NF-κB signaling events in neuroinflammation and in the innate immune response. Electronic supplementary material The online version of this article (10.1186/s12974-017-0958-7) contains supplementary material, which is available to authorized users.
Collapse
|