51
|
Feng J, Xu Z, Zhuang Y, Luo J, Chen Y, Wu Y, Fei J, Liu M, Xia J, Zhang J, Liu M, Xie X, Yuan Z, Chen M. Establishment and application of recombinase polymerase amplification combined with a lateral flow dipstick for the detection of mcr-1 in uncultured clinical samples. Int J Antimicrob Agents 2024; 63:107140. [PMID: 38490574 DOI: 10.1016/j.ijantimicag.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
OBJECTIVES The rapid dissemination of the mcr-1 gene via plasmid-mediated transfer has raised concerns regarding the efficacy of colistin as a last-resort treatment for multidrug-resistant Gram-negative bacterial infections. Current mcr-1 gene detection methods mainly focus on cultured bacteria, which is a complex and time-consuming process requiring skilled personnel, making it unsuitable for field analysis. METHODS A rapid detection technique combining recombinase polymerase amplification with a lateral flow dipstick targeting uncultured clinical samples was developed. RESULTS This new method targeting the mcr-1 gene region (23 232-23 642 bp, no. KP347127.1) achieved a low detection limit of 10 copies/μL. The whole process was carried out with high specificity and was completed within 20 min. The evaluation assay was conducted using 45 human faecal samples; 16 strains yielded a 98% accuracy, closely matching antimicrobial susceptibility outcomes. CONCLUSIONS The novel method integrates nucleic acid extraction, isothermal amplification, and a test assay, suggesting the potential for timely colistin resistance surveillance in frontline disease control and healthcare settings, supporting future prevention and clinical standardization efforts.
Collapse
|
52
|
Wang X, Sun Q, Li X, Wang G, Xing B, Li Z. Novel method for determination of colistin sulfate in human plasma by high-performance liquid chromatography-tandem mass spectrometry and its clinical applications in critically ill patients. J Pharmacol Toxicol Methods 2024; 127:107502. [PMID: 38555058 DOI: 10.1016/j.vascn.2024.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Colistin is a last-resort antibiotic used for treating infections caused by carbapenem-resistant Gram-negative bacteria, particularly in critically patients, nevertheless its therapeutic window is narrow, and requires monitoring. A determination method suitable for clinical detection is conducive to ensure its efficacy and safety of patients with severe infection. We developed and validated a concise and accurate high-performance liquid chromatography-tandem mass spectrometry method for the determination of colistin A and B in human plasma. We used a Kinetex C18 column (50 mm × 2.1 mm, 2.6 μm) with acetonitrile (containing 0.1% formic acid) as the protein precipitant and water (containing 0.2% formic acid and 5 mmol/L ammonium formate) - acetonitrile (containing 0.2% formic acid) as the gradient elution. The calibration curves were linear over concentration ranges of 0.06-4.00 μg/mL (colistin A) and 0.1-7.0 μg/mL (colistin B). The precision, accuracy, matrix effect, extraction recovery, and stability were all validated. This method was applied to the therapeutic drug monitoring for 50 critically ill patients. The trough, peak, and average steady-state concentrations of these patients were 0.8 ± 0.4, 1.4 ± 0.5, and 1.0 ± 0.4 μg/mL, respectively. And the concentrations of colistin in human plasma were closely related to the patient's renal function.
Collapse
|
53
|
Jeon CH, Kim SH, Kim HT, Park KJ, Wi YM. Ineffectiveness of colistin monotherapy in treating carbapenem-resistant Acinetobacter baumannii Pneumonia: A retrospective single-center cohort study. J Infect Public Health 2024; 17:774-779. [PMID: 38518683 DOI: 10.1016/j.jiph.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii, a common carbapenem-resistant gram-negative bacillus, usually causes nosocomial infections. Colistin has been used for carbapenem-resistant A. baumannii (CRAB) infections; however, only a few studies have evaluated colistin as a treatment option compared to appropriate controls. We investigated the effectiveness of colistin monotherapy in treating CRAB pneumonia compared to those treated without an active drug. METHODS Adult patients (≥ 18 years) with CRAB isolated from respiratory specimens were screened from September 2017 to August 2022. Only patients with pneumonia treated with colistin monotherapy (colistin group) were included and compared to those without any active antibiotics (no active antibiotics [NAA] group). The primary and secondary outcomes were 30-day all-cause mortality and acute kidney injury within 30 days. The inverse probability of the treatment-weighted Cox proportional hazard model was used to compare mortality between groups. RESULTS Among the 826 adult patients with CRAB in their respiratory specimens, 45 and 123 patients were included in the colistin and NAA groups, respectively. Most of the CRAB pneumonia (91.1%) cases were hospital-acquired pneumonia. The 30-day all-cause mortality rates in the colistin and NAA groups were 58.3% and 56.1%, respectively, and no difference was observed after adjustments (adjusted hazard ratio, 0.74; 95% CI, 0.47-1.17). The incidence of acute kidney injury was higher in the colistin group (65.3%) compared to the NAA group (39.0%) (P = 0.143). CONCLUSIONS Colistin monotherapy did not significantly improve treatment outcomes for CRAB pneumonia. The development and evaluation of new antimicrobials for CRAB pneumonia should be advocated in clinical practice.
Collapse
|
54
|
Katip W, Rayanakorn A, Oberdorfer P, Taruangsri P, Nampuan T, Okonogi S. Comparative effectiveness and mortality of colistin monotherapy versus colistin-fosfomycin combination therapy for the treatment of carbapenem-resistant Enterobacteriaceae (CRE) infections: A propensity score analysis. J Infect Public Health 2024; 17:727-734. [PMID: 38513335 DOI: 10.1016/j.jiph.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/21/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) infections pose a significant threat to global health due to limited treatment options and high mortality rates. Colistin-based regimens have emerged as a primary treatment approach, but the effectiveness and mortality outcomes of colistin monotherapy versus colistin-fosfomycin combination therapy remain uncertain. This study aims to compare the effectiveness and mortality of colistin monotherapy and colistin-fosfomycin combination therapy for CRE infections. Notably, our study is the first to undertake a comprehensive examination of the effectiveness and mortality outcomes between colistin monotherapy and colistin-fosfomycin combination therapy in the context of CRE infections. METHODS A retrospective cohort study was conducted using data from patients diagnosed with carbapenem-resistant Enterobacteriaceae (CRE) infections at Nakornping Hospital during 2015 to 2022. Inverse probability weighting (IPW) was employed to create balanced cohorts of patients receiving either colistin monotherapy or colistin-fosfomycin combination therapy. The primary outcome measure was treatment effectiveness, assessed by 30-day mortality. Secondary outcome measures included clinical response, mortality at the end of treatment, and microbiologic response. Univariate and multivariate logistic regression analysis were employed after applying propensity score weighting using inverse probability of weighting (IPW). RESULTS A total of 220 patients were included in the analysis, with 67 receiving colistin monotherapy and 153 receiving colistin-fosfomycin combination therapy. Propensity score weighting using IPW balanced the baseline characteristics between the two groups. The effectiveness of treatment, as measured by 30-day mortality, was not significantly different between the colistin monotherapy group and the colistin-fosfomycin combination therapy group (adjusted odds ratio [aOR] = 1.51, 95% confidence interval [CI]: 0.60-3.78, p = 0.383). Similarly, no significant difference was observed in the mortality at the end of treatment between the two groups (aOR = 1.26, 95% CI: 0.55-2.90, p = 0.576). The clinical response (aOR = 1.48, 95% CI: 0.61-3.59, p = 0.383) and microbiologic response (aOR = 0.66, 95% CI: 0.18-2.38, p = 0.527) were similar between the colistin monotherapy and colistin-fosfomycin combination therapy groups. CONCLUSION The propensity score analysis among 220 matched patients showed comparable treatment effectiveness and mortality between colistin monotherapy and colistin-fosfomycin combination therapy for CRE infections. These results suggest that colistin monotherapy may be as effective as combination therapy. More prospective randomized controlled trials are needed to confirm these findings and establish optimal CRE treatment strategies.
Collapse
|
55
|
Wang X, Cui Y, Wang Z, Jiang H, Ma L, Li W, Yang X, Zhang J, Zhao Y, Li G. NhaA: A promising adjuvant target for colistin against resistant Escherichia coli. Int J Biol Macromol 2024; 268:131833. [PMID: 38663703 DOI: 10.1016/j.ijbiomac.2024.131833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
The emergence and widespread of multidrug-resistant Gram-negative bacteria have posed a severe threat to human health and environmental safety, escalating into a global medical crisis. Utilization of antibiotic adjuvants is a rapid approach to combat bacterial resistance effectively since the development of new antimicrobial agents is a formidable challenge. NhaA, driven by proton motive force, is a crucial secondary transporter on the cytoplasmic membrane of Escherichia coli. We found that 2-Aminoperimidine (2-AP), which is a specific inhibitor of NhaA, could enhance the activity of colistin against sensitive E. coli and reverse the resistance in mcr-1 positive E. coli. Mechanistic studies indicated that 2-AP induced dysfunction in cytoplasmic membrane through the suppression of NhaA, leading to metabolic inhibition and ultimately enhancing the sensitivity of E. coli to colistin. Moreover, 2-AP restored the efficacy of colistin against resistant E. coli in two animal infection models. Our findings reveal the potential of NhaA as a novel target for colistin adjuvants, providing new possibilities for the clinical application of colistin.
Collapse
|
56
|
Son JY, Kim S, Porsuk T, Shin S, Choi YJ. Clinical outcomes of colistin methanesulfonate sodium in correlation with pharmacokinetic parameters in critically ill patients with multi-drug resistant bacteria-mediated infection: A systematic review and meta-analysis. J Infect Public Health 2024; 17:843-853. [PMID: 38554590 DOI: 10.1016/j.jiph.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Colistin is a viable option for multidrug resistant gram-negative bacteria emerged from inappropriate antibiotic use. Nonetheless, suboptimal colistin concentrations and nephrotoxicity risks hinder its clinical use. Thus, the aim of this study is to investigate clinical outcomes in correlation with pharmacokinetic differences and infection types in critically ill patients on intravenous colistin methanesulfornate sodium (CMS). METHODS A systematic literature search of Embase, Google Scholars, and PubMed was performed to identify clinical trials evaluating pharmacokinetic parameters along with clinical outcomes of CMS treatment from inception to July 2023. The pooled analyses of clinical impact of CMS on nephrotoxicity, mortality, clinical cure, and colistin concentration at steady state (Css,avg) were performed. This study was registered in the PROSPERO (CRD 42023456120). RESULTS Total of 695 critically ill patients from 17 studies were included. The mortality was substantially lower in clinically cured patients (OR 0.05; 95% CI 0.02 - 0.14), whereas the mortality rate was statistically insignificant between nephrotoxic and non-nephrotoxic patients. Inter-patient variability of pharmacokinetic parameters of CMS and colistin was observed in critically ill patients. The standard mean differences of Css,avg were statistically insignificant between clinically cure and clinically failure groups (standard mean difference (SMD) -0.25; 95% CI -0.69 - 0.19) and between nephrotoxic and non-nephrotoxic groups (SMD 0.67; 95% CI -0.27-1.61). The clinical cure rate is substantially lower in pneumonia patients (OR 0.09; 95% CI 0.01 - 0.56), and pharmacokinetic parameters pertaining to microbiological cure were different among strains. CONCLUSION The mortality rate was substantially lower in clinically cured patients with CMS. However, no significant differences in Css,avg of colistin were examined to determine the impact of pharmacokinetic differences on clinical outcomes including mortality rate and nephrotoxicity risk. Nevertheless, the clinical cure rate is substantially lower in patients with respiratory infection than patients with urinary tract infection.
Collapse
|
57
|
Thadtapong N, Chaturongakul S, Napaswad C, Dubbs P, Soodvilai S. Enhancing effect of natural adjuvant, panduratin A, on antibacterial activity of colistin against multidrug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:9863. [PMID: 38684853 PMCID: PMC11059350 DOI: 10.1038/s41598-024-60627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Colistin- and carbapenem-resistant Acinetobacter baumannii is a serious multidrug resistant (MDR) bacterium in clinical settings. Discovery of new antibacterial drugs against MDR is facing multiple challenges in drug development. Combination of known antibiotics with a robust adjuvant might be an alternative effective strategy for MDR treatment. In the study herein, we report an antibiotic adjuvant activity of a natural compound panduratin A from fingerroot (Boesenbergia rotunda) as a potent adjuvant to colistin. The present study investigated the antibiotic adjuvant effect of panduratin A against 10 colistin- and carbapenem-resistant A. baumannii. Antibacterial activities were tested by broth microdilution method. Biofilm assay was used to determine the efficacy of panduratin A in biofilm formation inhibition on two representative strains Aci46 and Aci44. Genomic and transcriptomic analyses of colistin- and carbapenem-resistant A. baumannii strains were used to identify potential resistance and tolerance mechanism in the bacteria. Panduratin A-colistin combination showed an increased effect on antibacterial in the A. baumannii. However, panduratin A did not improve the antibacterial activity of imipenem. In addition, panduratin A improves anti-biofilm activity of colistin against Aci44 and Aci46, the colistin- and carbapenem-resistant A. baumannii. Panduratin A markedly enhances bactericidal and anti-biofilm activity of colistin against colistin- resistant A. baumannii. Based on genome comparisons, single nucleotide polymorphism (SNP) patterns in six genes encoding biofilm and lipid A biosynthesis were shared in Aci44 and Aci46. In Aci44, we identified a partial sequence of pmrB encoding a polymyxin resistant component PmrB, whereas a full length of pmrB was observed in Aci46. RNA-seq analyses of Aci44 revealed that panduratin A-colistin combination induced expression of ribosomal proteins and oxidative stress response proteins, whereas iron transporter and MFS-type transporter systems were suppressed. Panduratin A-colistin combination could promote intracellular reactive oxygen species (ROS) accumulation could lead to the cidal effect on colistin-resistant A. baumannii. Combination of panduratin A and colistin showed a significant increase in colistin efficacy against colistin- resistant A. baumannii in comparison of colistin alone. Genomic comparison between Aci44 and Aci46 showed mutations and SNPs that might affect different phenotypes. Additionally, based on RNA-Seq, panduratin A-colistin combination could lead to ROS production and accumulation. These findings confirmed the potency of panduratin as colistin adjuvant against multidrug resistant A. baumannii.
Collapse
|
58
|
Sohrabi M, Pirbonyeh N, Alizade Naini M, Rasekhi A, Ayoub A, Hashemizadeh Z, Shahcheraghi F. A challenging case of carbapenem resistant Klebsiella pneumoniae-related pyogenic liver abscess with capsular polysaccharide hyperproduction: a case report. BMC Infect Dis 2024; 24:433. [PMID: 38654215 PMCID: PMC11040961 DOI: 10.1186/s12879-024-09314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a major public health problem, necessitating the administration of polymyxin E (colistin) as a last-line antibiotic. Meanwhile, the mortality rate associated with colistin-resistant K. pneumoniae infections is seriously increasing. On the other hand, importance of administration of carbapenems in promoting colistin resistance in K. pneumoniae is unknown. CASE PRESENTATION We report a case of K. pneumoniae-related pyogenic liver abscess in which susceptible K. pneumoniae transformed into carbapenem- and colistin-resistant K. pneumoniae during treatment with imipenem. The case of pyogenic liver abscess was a 50-year-old man with diabetes and liver transplant who was admitted to Abu Ali Sina Hospital in Shiraz. The K. pneumoniae isolate responsible for community-acquired pyogenic liver abscess was isolated and identified. The K. pneumoniae isolate was sensitive to all tested antibiotics except ampicillin in the antimicrobial susceptibility test and was identified as a non-K1/K2 classical K. pneumoniae (cKp) strain. Multilocus sequence typing (MLST) identified the isolate as sequence type 54 (ST54). Based on the patient's request, he was discharged to continue treatment at another center. After two months, he was readmitted due to fever and progressive constitutional symptoms. During treatment with imipenem, the strain acquired blaOXA-48 and showed resistance to carbapenems and was identified as a multidrug resistant (MDR) strain. The minimum inhibitory concentration (MIC) test for colistin was performed by broth microdilution method and the strain was sensitive to colistin (MIC < 2 µg/mL). Meanwhile, on blood agar, the colonies had a sticky consistency and adhered to the culture medium (sticky mucoviscous colonies). Quantitative real-time PCR and biofilm formation assay revealed that the CRKP strain increased capsule wzi gene expression and produced slime in response to imipenem. Finally, K. pneumoniae-related pyogenic liver abscess with resistance to a wide range of antibiotics, including the last-line antibiotics colistin and tigecycline, led to sepsis and death. CONCLUSIONS Based on this information, can we have a theoretical hypothesis that imipenem is a promoter of resistance to carbapenems and colistin in K. pneumoniae? This needs more attention.
Collapse
|
59
|
Ardino C, Sannio F, Poli G, Galati S, Dreassi E, Botta L, Docquier JD, D'Agostino I. An update on antibacterial AlkylGuanidino Ureas: Design of new derivatives, synergism with colistin and data analysis of the whole library. Eur J Med Chem 2024; 270:116362. [PMID: 38574637 DOI: 10.1016/j.ejmech.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Antimicrobial resistance (AMR) represents one of the most challenging global Public Health issues, with an alarmingly increasing rate of attributable mortality. This scenario highlights the urgent need for innovative medicinal strategies showing activity on resistant isolates (especially, carbapenem-resistant Gram-negative bacteria, methicillin-resistant S. aureus, and vancomycin-resistant enterococci) yielding new approaches for the treatment of bacterial infections. We previously reported AlkylGuanidino Ureas (AGUs) with broad-spectrum antibacterial activity and a putative membrane-based mechanism of action. Herein, new tetra- and mono-guanidino derivatives were designed and synthesized to expand the structure-activity relationships (SARs) and, thereby, tested on the same panel of Gram-positive and Gram-negative bacteria. The membrane-active mechanism of selected compounds was then investigated through molecular dynamics (MD) on simulated bacterial membranes. In the end, the newly synthesized series, along with the whole library of compounds (more than 70) developed in the last decade, was tested in combination with subinhibitory concentrations of the last resort antibiotic colistin to assess putative synergistic or additive effects. Moreover, all the AGUs were subjected to cheminformatic and machine learning analyses to gain a deeper knowledge of the key features required for bioactivity.
Collapse
|
60
|
Kroneislová G, Závora J, Adámková VG, Rýdlová A, Adámková V. In vitro activity of antibiotics potentially effective against difficult-to-treat strains of Gram-negative rods: retrospective study. Sci Rep 2024; 14:8310. [PMID: 38594467 PMCID: PMC11004177 DOI: 10.1038/s41598-024-59036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Bacterial resistance surveillance is one of the main outputs of microbiological laboratories and its results are important part of antimicrobial stewardship (AMS). In this study, the susceptibility of specific bacteria to selected antimicrobial agents was tested. The susceptibility of 90 unique isolates of pathogens of critical priority obtained from clinically valid samples of ICU patients in 2017-2021 was tested. 50% of these fulfilled difficult-to-treat resistance (DTR) criteria and 50% were susceptible to all antibiotics included in the definition. 10 Enterobacterales strains met DTR criteria, and 2 (20%) were resistant to colistin (COL), 2 (20%) to cefiderocol (FCR), 7 (70%) to imipenem/cilastatin/relebactam (I/R), 3 (30%) to ceftazidime/avibactam (CAT) and 5 (50%) to fosfomycin (FOS). For Enterobacterales we also tested aztreonam/avibactam (AZA) for which there are no breakpoints yet. The highest MIC of AZA observed was 1 mg/l, MIC range in the susceptible cohort was 0.032-0.064 mg/l and in the DTR cohort (incl. class B beta-lactamase producers) it was 0.064-1 mg/l. Two (13.3%) isolates of Pseudomonas aeruginosa (15 DTR strains) were resistant to COL, 1 (6.7%) to FCR, 13 (86.7%) to I/R, 5 (33.3%) to CAT, and 5 (33.3%) to ceftolozane/tazobactam. All isolates of Acinetobacter baumannii with DTR were susceptible to COL and FCR, and at the same time resistant to I/R and ampicillin/sulbactam. New antimicrobial agents are not 100% effective against DTR. Therefore, it is necessary to perform susceptibility testing of these antibiotics, use the data for surveillance (including local surveillance) and conform to AMS standards.
Collapse
|
61
|
Wang CH, Siu LK, Chang FY, Tsai YK, Huang LY, Lin JC. Influence of PhoPQ and PmrAB two component system alternations on colistin resistance from non-mcr colistin resistant clinical E. Coli strains. BMC Microbiol 2024; 24:109. [PMID: 38565985 PMCID: PMC10986093 DOI: 10.1186/s12866-024-03259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The current understanding of acquired chromosomal colistin resistance mechanisms in Enterobacterales primarily involves the disruption of the upstream PmrAB and PhoPQ two-component system (TCS) control caused by mutations in the regulatory genes. Interestingly, previous studies have yielded conflicting results regarding the interaction of regulatory genes related to colistin resistance in Escherichia coli, specifically those surrounding PhoPQ and PmrAB TCS. RESULTS In our study, we focused on two clinical non-mcr colistin-resistant strains of E. coli, TSAREC02 and TSAREC03, to gain a better understanding of their resistance mechanisms. Upon analysis, we discovered that TSAREC02 had a deletion (Δ27-45) in MgrB, as well as substitutions (G206R, Y222H) in PmrB. On the other hand, TSAREC03 exhibited a long deletion (Δ84-224) in PhoP, along with substitutions (M1I, L14P, P178S, T235N) in PmrB. We employed recombinant DNA techniques to explore the interaction between the PhoPQ and PmrAB two-component systems (TCSs) and examine the impact of the mutated phoPQ and pmrB genes on the minimum inhibitory concentrations (MICs) of colistin. We observed significant changes in the expression of the pmrD gene, which encodes a connector protein regulated by the PhoPQ TCS, in the TSAREC02 wild-type (WT)-mgrB replacement mutant and the TSAREC03 WT-phoP replacement mutant, compared to their respective parental strains. However, the expressions of pmrB/pmrA, which reflect PmrAB TCS activity, and the colistin MICs remained unchanged. In contrast, the colistin MICs and pmrB/pmrA expression levels were significantly reduced in the pmrB deletion mutants from both TSAREC02 and TSAREC03, compared to their parental strains. Moreover, we were able to restore colistin resistance and the expressions of pmrB/pmrA by transforming a plasmid containing the parental mutated pmrB back into the TSAREC02 and TSAREC03 mutants, respectively. CONCLUSION While additional data from clinical E. coli isolates are necessary to validate whether our findings could be broadly applied to the E. coli population, our study illuminates distinct regulatory pathway interactions involving colistin resistance in E. coli compared to other species of Enterobacterales. The added information provided by our study contribute to a deeper understanding of the complex pathway interactions within Enterobacterales.
Collapse
|
62
|
Sree RA, Gupta A, Gupta N, Veturi S, Reddy LSK, Begum M, Shravani E, Challa HR, Reddy SS, Singamsetty A, Arumilli M, Reddy PN, Tirlangi PK. Ceftazidime-avibactam alone or in combination with Aztreonam versus Polymyxins in the management of carbapenem-Resistant Klebsiella pneumoniae nosocomial Infections (CAPRI study): a retrospective cohort study from South India. Infection 2024; 52:429-437. [PMID: 37697224 PMCID: PMC10954914 DOI: 10.1007/s15010-023-02094-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections commonly cause hospital-acquired infections. The study aimed to compare the outcomes of CRKP infections between patients receiving ceftazidime avibactam +/- aztreonam and polymyxins in a hospital setting with a high prevalence of New Delhi Metallo Beta Lactamase production. METHODS We conducted a retrospective cohort study from January 2020 to September 2022 in critically ill adult patients admitted to a non-COVID-19 medical intensive care unit with CRKP infection. The patients were followed up for a total of 30 days or death, whichever was later. RESULTS Of a total of 106 patients included in the study, 65 patients received polymyxins and 41 patients received ceftazidime-avibactam +/- aztreonam. Higher 30-day mortality was noted in the polymyxin group (56.9% vs. 29.2%, P = 0.005). The mean time to event (mortality) in ceftazidime-avibactam +/- aztreonam was 23.9 + 1.5 days which was significantly higher compared to polymyxins (17.9 + 1.2 days, p = 0.006). On Cox regression analysis, after adjusting for the covariates, the hazard ratio for time to event with the use of polymyxin was 2.02 (95% CI: 1.03-3.9). CONCLUSION Ceftazidime-avibactam + aztreonam is possibly associated with better clinical outcomes in patients infected with CRKP.
Collapse
|
63
|
Shin JH, Shin D, Kwon KT, Ko KS. Colistin heteroresistance in Citrobacter freundii clinical isolates from Republic of Korea. Diagn Microbiol Infect Dis 2024; 108:116187. [PMID: 38340485 DOI: 10.1016/j.diagmicrobio.2024.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
We investigated colistin heteroresistance in Citrobacter freundii isolates from Korean hospitals. Using population analysis profiling (PAP), we detected colistin heteroresistance in 31.3% of isolates. Among these, ST217 was the most prevalent clone (58.5%), particularly within colistin-heteroresistant isolates (80.0%). Interestingly, the second most common clone, ST248, was not found in heteroresistant isolates. We identified amino acid changes in PhoQ, PmrA, and PmrB, along with mRNA overexpression in pmrB and arnD. Colistin monotherapy showed no efficacy, but a combination of colistin and ciprofloxacin successfully eradicated all five isolates, even at 0.5 × minimum inhibitory concentrations. This study underscores the high prevalence of colistin heteroresistance in C. freundii isolates, limiting the effectiveness of colistin monotherapy. Combining colistin with ciprofloxacin may offer a viable treatment option for C. freundii infections.
Collapse
|
64
|
Soni M, Chaurasia D, Kapoor G. Antibiotic susceptibility profile of Pseudomonas species isolated from clinical specimens to access, watch and reserve drugs across various hospital settings at a tertiary care hospital of central India. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:159-165. [PMID: 38854976 PMCID: PMC11162171 DOI: 10.18502/ijm.v16i2.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background and Objectives Over the last decade, hospital-acquired infections, particularly in the critical care setting, have become more common, with Gram-negative bacterial infections having the highest prevalence. This study aims to determine the prevalence and antibiotic susceptibility pattern of Pseudomonas species to WHO's, aware class of antibiotics, which are commonly prescribed across various ICU's, medical and surgical wards of our tertiary care teaching hospital. Materials and Methods This prospective study conducted from January 2021 to June 2022 at a tertiary care centre of central India identified Pseudomonas species from clinical samples using standard procedures and antimicrobial susceptibility testing performed as per Clinical Laboratory Standards Institute (CLSI) guidelines (M100; 32th Edition). Results A total of 1490 non duplicate Pseudomonas species isolates were grown from 21,019 culture positive clinical samples, of which 1247 were Pseudomonas aeruginosa. Out of these 1247 Pseudomonas aeruginosa 384 were MDR (30.7%). Pseudomonas aeruginosa were most commonly isolated from the pus samples (85%). ICU isolates were significantly more resistant to antibiotics than those from other units. P. aeruginosa strains from ICUs showed the highest rates of resistance to ceftazidime (93.9%). Reserve drug colistin showed good susceptibility (98.2%). All the 18 colistin resistant strains were found to be negative for plasmid mediated mcr-1,2,3 genes. Conclusion The study shall help to generate and disseminate the data so that proper antibiotic policy can be made for judicious use of Access, Watch and Reserve antibiotics and antibiotic de-escalation plan can be put forth.
Collapse
|
65
|
Wang Y, Ma Y, Xiong L, Wang X, Zhou Y, Chi X, Chen T, Fu H, Luo Q, Xiao Y. Comparison of in vitro synergy between polymyxin B or colistin in combination with 16 antimicrobial agents against multidrug-resistant Acinetobacter baumannii isolates. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:300-308. [PMID: 38350840 DOI: 10.1016/j.jmii.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
PURPOSES This study determined the synergy of polymyxin B (POLB) and colistin (COL) with 16 other tested antimicrobial agents in the inhibition of multidrug-resistant Acinetobacter baumannii (MDR-AB). METHODS We used chequerboard assays to determine synergy between the drugs against 50 clinical MDR-AB from a tertiary hospital in the Zhejiang province in 2019, classifying combinations as either antagonistic, independent, additive, or synergistic. The efficacy of hit combinations which showed highest synergistic rate were confirmed using time-kill assays. RESULTS Both POLB and COL displayed similar bactericidal effects when used in combination with these 16 tested drugs. Antagonism was only observed for a few strains (2%) exposed to a combination of POLB and cefoperazone/sulbactam (CSL). A higher percentage of synergistic combinations with POLB and COL were observed with rifabutin (RFB; 90%/96%), rifampicin (RIF; 60%/78%) and rifapentine (RFP; 56%/76%). Time-kill assays also confirmed the synergistic effect of POLB and rifamycin class combinations. 1/2 MIC rifamycin exposure can achieve bacterial clearance when combined with 1/2 MIC POLB or COL. CONCLUSION Nearly no antagonism was observed when combining polymyxins with other drugs by both chequerboard and time-kill assays, suggesting that polymyxins may be effective in combination therapy. The combinations of POLB/COL with RFB, RIF, and RFP displayed neat synergy, with RFB showing the greatest effect.
Collapse
|
66
|
Dubashynskaya NV, Bokatyi AN, Sall TS, Egorova TS, Demyanova EV, Dubrovskii YA, Murashko EA, Anufrikov YA, Shasherina AY, Vlasova EN, Skorik YA. Hyaluronan/B12-chitosan polyelectrolyte complex for oral colistin administration. Int J Biol Macromol 2024; 263:130177. [PMID: 38360229 DOI: 10.1016/j.ijbiomac.2024.130177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Polyelectrolyte complexes (PECs) based on polysaccharides, including hyaluronic acid (HA) and chitosan (CS), are promising delivery systems for antimicrobial agents, including oral administration of the peptide antibiotic colistin (CT). Modification of CS with different targeting ligands to improve intestinal permeability is a suitable way to improve the oral bioavailability of polyelectrolyte particles. This study describes the procedure for obtaining CT-containing PECs based on HA and CS modified with cyanocobalamin (vitamin B12). In this case, vitamin B12 is used as a targeting ligand because it is absorbed in the ileum via specific transporter proteins. The resulting PECs had a hydrodynamic size of about 284 nm and a positive ζ-potential of about 26 mV; the encapsulation efficiency was 88.2 % and the CT content was 42.2 μg/mg. The developed systems provided a two-phase drug release: about 50 % of the CT was released in 0.5-1 h, and about 60 % of the antibiotic was cumulatively released in 5 h. The antimicrobial activity of encapsulated CT was maintained at the same level as the pure drug for at least 24 h (minimum inhibitory concentration against Pseudomonas aeruginosa was 2 μg/mL for both). In addition, the apparent permeability coefficient of CT in the PEC formulation was 2.4 × 10-6 cm/s. Thus, the incorporation of CT into HA- and vitamin B12-modified CS-based PECs can be considered as a simple and convenient method to improve the oral delivery of CT.
Collapse
|
67
|
Bhavya JN, Anugna SS, Premanath R. Sub-inhibitory concentrations of colistin and imipenem impact the expression of biofilm-associated genes in Acinetobacter baumannii. Arch Microbiol 2024; 206:169. [PMID: 38489041 DOI: 10.1007/s00203-024-03869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs.
Collapse
|
68
|
Baek JY, Yang J, Ko JH, Cho SY, Huh K, Chung DR, Peck KR, Ko KS, Kang CI. Extensively drug-resistant Enterobacter ludwigii co-harbouring MCR-9 and a multicopy of bla IMP-1 in South Korea. J Glob Antimicrob Resist 2024; 36:217-222. [PMID: 38157935 DOI: 10.1016/j.jgar.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
In this study, we describe an Enterobacter ludwigii clinical isolate that is resistant to both carbapenems and colistin in South Korea. Antimicrobial susceptibility testing revealed that E. ludwigii CRE2104-31 was non-susceptible to all tested antibiotics except fosfomycin. Whole genome sequencing identified a 323-kbp IncHI2 plasmid, pCRE2104-31a, that was co-harbouring mobile colistin resistance (mcr)-9.1 and blaIMP-1. In comparison with other full plasmids, pCRE2104-31a exhibited the closest similarity to a plasmid from the Klebsiella pneumoniae strain CNR48 from France, with 19.9% query coverage and 99% identity. Notably, we observed five tandem repeats of blaIMP-1 and aac(6')-Il genes, accompanied by multiple attCs within a class I integron on the Tn402-like transposon. The unit of blaIMP-1-attC-aac(6')-Il-attC might have accumulated due to multiple convergent events. In addition to mcr-9.1 and blaIMP-1, various other antibiotic resistance-associated genes were identified in the plasmid, as follows: blaTEM-1B, aph(3')-I, aph(3')-Ia, aac(6')-Il, aac(6')-IIc, aac(6')-IIa, aph(6)-Id, aph(3'')-Ib, aadA2b, aac(6')-Ib3, sul, dfrA19, qnrB2, aac(6')-Ib-cr, ere(A), and qacE. A conjugation assay showed that the mcr-9.1/blaIMP-1-co-bearing plasmid was self-transmissible to E. coli J53. However, colistin and carbapenem resistance could not be transferred to E. coli due to high incompatibility. The convergence of mcr and carbapenemase genes is thought to be host-dependent among Enterobacteriaceae. The emergence of extensively drug-resistant E. ludwigii co-harbouring MCR-9.1 and a multicopy of blaIMP-1 would pose a significant threat within the compatible Enterobacteriaceae.
Collapse
|
69
|
Jalil AT, Alrawe RTA, Al-Saffar MA, Shaghnab ML, Merza MS, Abosaooda M, Latef R. The use of combination therapy for the improvement of colistin activity against bacterial biofilm. Braz J Microbiol 2024; 55:411-427. [PMID: 38030866 PMCID: PMC10920569 DOI: 10.1007/s42770-023-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Colistin is used as a last resort for the management of infections caused by multi-drug resistant (MDR) bacteria. However, the use of this antibiotic could lead to different side effects, such as nephrotoxicity, in most patients, and the high prevalence of colistin-resistant strains restricts the use of colistin in the clinical setting. Additionally, colistin could induce resistance through the increased formation of biofilm; biofilm-embedded cells are highly resistant to antibiotics, and as with other antibiotics, colistin is impaired by bacteria in the biofilm community. In this regard, the researchers used combination therapy for the enhancement of colistin activity against bacterial biofilm, especially MDR bacteria. Different antibacterial agents, such as antimicrobial peptides, bacteriophages, natural compounds, antibiotics from different families, N-acetylcysteine, and quorum-sensing inhibitors, showed promising results when combined with colistin. Additionally, the use of different drug platforms could also boost the efficacy of this antibiotic against biofilm. The mentioned colistin-based combination therapy not only could suppress the formation of biofilm but also could destroy the established biofilm. These kinds of treatments also avoided the emergence of colistin-resistant subpopulations, reduced the required dosage of colistin for inhibition of biofilm, and finally enhanced the dosage of this antibiotic at the site of infection. However, the exact interaction of colistin with other antibacterial agents has not been elucidated yet; therefore, further studies are required to identify the precise mechanism underlying the efficient removal of biofilms by colistin-based combination therapy.
Collapse
|
70
|
Khanchandani H, Chaudhury M, Rao MS, Ramakrishna N, Venkataramana B, Chaudhury A. In vitro activity of the newly approved antimicrobial agent Cefiderocol against Carbapenem resistant Gram negative clinical isolates. Indian J Med Microbiol 2024; 48:100556. [PMID: 38447857 DOI: 10.1016/j.ijmmb.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/16/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Carbapenem resistant Gram negative bacteria have emerged as priority pathogens in recent years. Cefiderocol is a siderophore cephalosporin licensed in 2019 with claimed activity against ESBL producing and carbapenem resistant bacteria with much better safety margin compared to colistin. The present study was undertaken to assess the in vitro activity of cefiderocol against carbapenem resistant clinical isolates, compared to some select antimicrobial agents including colistin. MATERIALS AND METHODS Seventy-seven isolates of Gram negative bacteria belonging to the three commonly encountered groups of Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter spp were included. Susceptibility testing for Cefiderocol was determined by Kirby-Bauer's disk diffusion technique as per CLSI guidelines using Cefiderocol disc (30 μg). Sensitivity for the other agents were determined using automated system. RESULTS Of the 77 isolates, 58.4% belonged to Enterobacterales, followed by P.aeruginosa (27.3%) and Acinetobacter spp (14.3%). Three out of 45 Enterobacterales isolates, one out of 21 P.aeruginosa and none in the Acinetobacter group were found resistant to cefiderocol. All the isolates were intermediate sensitive (I) for colistin since the "susceptible" interpretive category has been eliminated. Tigecycline showed good activity (80.0% sensitive) against Enterobacterales followed by aztreonam (71.1% sensitive). CONCLUSION Cefiderocol is not yet available in India and our study is possibly the second one from this country demonstrating in vitro resistance to this important antimicrobial agent. However, with a relatively better safety profile compared to colistin, cefiderocol can be an important agent to combat these highly resistant pathogens.
Collapse
|
71
|
Bhatia M, Shamanna V, Nagaraj G, Gupta P, Omar BJ, Diksha, Rohilla R, Ravikumar KL. Assessment of in vitro colistin susceptibility of carbapenem-resistant clinical Gram-negative bacterial isolates using four commercially available systems & Whole-genome sequencing: A diagnostic accuracy study. Diagn Microbiol Infect Dis 2024; 108:116155. [PMID: 38219381 DOI: 10.1016/j.diagmicrobio.2023.116155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/11/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
AIM To analyze the diagnostic utility of commercially available platforms and Whole-genome sequencing (WGS) for accurate determination of colistin susceptibility test results. MATERIAL & METHODS An exploratory diagnostic accuracy study was conducted in which sixty carbapenem-resistant Gram-negative bacteria were subjected to identification and AST using MALDI-TOF MS & MicroScan walkaway 96 Plus. Additional AST was performed using the BD Phoenix system and Mikrolatest colistin kit. The test isolates were subjected to Vitek-2 and WGS at CRL, Bengaluru. RESULTS There was no statistically significant agreement between the colistin susceptibility results obtained by WGS, with those of commercial phenotypic platforms. The MicroScan 96 Plus had the highest sensitivity (31 %) & NPV (77 %), and the BD Phoenix system had the highest specificity (97 %) and PPV (50 %), respectively, for determining colistin resistance. CONCLUSION The utility of WGS as a tool in AMR surveillance and validation of phenotypic AST methods should be explored further.
Collapse
|
72
|
Hsueh SC, Huang YT, Ko WC, Liu IM, Hsieh PC, Jean SS. In vitro antimicrobial susceptibility data of global meropenem-resistant Acinetobacter baumannii isolates causing pneumonia: Data from the Antimicrobial Testing Leadership and Surveillance Program, 2014-2021, and re-estimations of susceptibility breakpoints and appropriate dosages of important antibiotics for pneumonia treatment. J Glob Antimicrob Resist 2024; 36:411-418. [PMID: 38331030 DOI: 10.1016/j.jgar.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVES To evaluate the susceptibility of globally pneumonia-causing meropenem-resistant (MEM-R) Acinetobacter baumannii isolates against important antibiotics and estimate appropriate dosages of indicated antibiotics. METHODS We extracted the 2014-2021 Antimicrobial Testing of Leadership Surveillance database regarding the susceptibility of MEM-R A. baumannii isolates causing pneumonia against important antibiotics. The susceptibility and carbapenemase-encoding gene (CPEG) data of pneumonia-causing MEM-R A. baumannii isolates from patients hospitalized in intensive care units of five major regions were analyzed. The susceptibility breakpoints (SBP) recommended by the Clinical and Laboratory Standards Institute (CLSI) in 2022, other necessary criteria [SBP of MIC for colistin, 2 mg/L, in the CLSI 2018; and cefoperazone-sulbactam (CFP-SUL), 16 mg/L], and the pharmacokinetic and pharmacodynamic data of indicated antibiotics were employed. RESULTS Applying the aforementioned criteria, we observed the susceptible rates of colistin, minocycline, and CFP-SUL against the pneumonia-causing MEM-R A. baumannii isolates globally (n = 2905) were 93.2%, 69.1%, and 26.3%, respectively. Minocycline was significantly more active in vitro (MIC ≤4 mg/L) against the pneumonia-causing MEM-R A. baumannii isolates collected from North and South America compared to those from other regions (>90% vs. 58-72%). Additionally, blaOXA-23 and blaOXA-72 were the predominant CPEG in pneumonia-causing MEM-R A. baumannii isolates. CONCLUSIONS After deliberative estimations, dosages of 200 mg minocycline intravenously every 12 h (SBP, 8 mg/L), 100 mg tigecycline intravenously every 12 h (SBP, 1 mg/L), and 160 mg nebulized colistin methanesulphonate every 8 h (SBP, 2 mg/L) are needed for the effective treatment of pneumonia-causing MEM-R A. baumannii isolates.
Collapse
|
73
|
Ananda T, Vandana KE, Mukhopadhyay C. Comparative evaluation of Vitek®2 and broth microdilution method for colistin susceptibility testing of Gram-negative isolates from intensive care unit in a tertiary care hospital. Indian J Med Microbiol 2024; 48:100559. [PMID: 38447856 DOI: 10.1016/j.ijmmb.2024.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Colistin is the last resort treatment against resistant Gram-negative bacteria, necessitating reliable and rapid means for sensitivity testing of colistin. Automated systems like VITEK®2 are adopted to determine the minimum inhibitory concentration (MIC) due to easy usage. Broth microdilution (BMD) for colistin MIC was suggested by EUCAST and CLSI. OBJECTIVE To compare and evaluate colistin MIC by BMD and VITEK®2 against Gram-negative organisms from the ICU in a tertiary care hospital. METHOD Clinically significant organisms isolated from ICU patients were included. MIC was determined using BMD and VITEK®2. Very major error (VME), major error (ME), essential agreement (EA), categorical agreement (CA), positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity were analysed. RESULT 533 isolates were obtained from blood (435,81.60%), respiratory samples (57,10.70%), pus and exudates (20,3.80%), urine (18,3.40%), and CSF (3,0.60%). The Enterobacterales were K. pneumoniae (185,34.70%) E. coli (73,13.70%) and E. cloacae (26,4.90%) while non-fermenters were A. baumannii (209,39.20%) and P. aeruginosa (40,7.50%). The VITEK®2 sensitivity was >99%; specificity ranged from 14.28 to 52.94%. PPV was 93.81% while NPV was 93.75%. VME ranged from 47 to 100% between isolates. ME was up to 20%. The highest VME was obtained in E. coli (100%). The total EA and CA observed were 68.5% and 99.79% respectively. CONCLUSION Automated system VITEK®2 failed to detect the resistance in 32 (60%) isolates. The obtained VME and ME values were >3%, which is unacceptable as per the standard guidelines. EA of ≥90% wasn't obtained. Sensitivity for VITEK®2 was >99%, but had low specificity (14.28%). Hence, VITEK®2 is not reliable for colistin susceptibility testing.
Collapse
|
74
|
Feizi H, Alizadeh M, Azimi H, Khodadadi E, Kamounah FS, Ganbarov K, Ghotaslou R, Rezaee MA, Kafil HS. Induction of proteome changes involved in the cloning of mcr-1 and mcr-2 genes in Escherichia coli DH5-α strain to evaluate colistin resistance. J Glob Antimicrob Resist 2024; 36:151-159. [PMID: 38154746 DOI: 10.1016/j.jgar.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVES Plasmid genes, termed mobile colistin resistance-1 (mcr-1) and mobile colistin resistance-2 (mcr-2), are associated with resistance to colistin in Escherichia coli (E. coli). These mcr genes result in a range of protein modifications contributing to colistin resistance. This study aims to discern the proteomic characteristics of E. coli-carrying mcr-1 and mcr-2 genes. Furthermore, it evaluates the expression levels of various proteins under different conditions (with and without colistin). METHODS Plasmid extraction was performed using an alkaline lysis-based plasmid extraction kit, whereas polymerase chain reaction was used to detect the presence of mcr-1 and mcr-2 plasmids. The E. coli DH5α strain served as the competent cell for accepting and transforming mcr-1 and mcr-2 plasmids. We assessed proteomic alterations in the E. coli DH5α strain both with and without colistin in the growth medium. Proteomic data were analysed using mass spectrometry. RESULTS The findings revealed significant protein changes in the E. coli DH5α strain following cloning of mcr-1 and mcr-2 plasmids. Of the 20 proteins in the DH5α strain, expression in 8 was suppressed following transformation. In the presence of colistin in the culture medium, 39 new proteins were expressed following transformation with mcr-1 and mcr-2 plasmids. The proteins with altered expression play various roles. CONCLUSION The results of this study highlight numerous protein alterations in E. coli resulting from mcr-1 and mcr-2-mediated resistance to colistin. This understanding can shed light on the resistance mechanism. Additionally, the proteomic variations observed in the presence and absence of colistin might indicate potential adverse effects of indiscriminate antibiotic exposure on treatment efficacy and heightened pathogenicity of microorganisms.
Collapse
|
75
|
Wang Q, Zhang M, Liu Y, Li J, Chen R, Wang Y, Jin Y, Bai Y, Song Z, Lu X, Wang C, Hao Y. Co-transfer of IncFII/IncFIB and IncFII plasmids mediated by IS26 facilitates the transmission of mcr-8.1 and tmexCD1-toprJ1. Ann Clin Microbiol Antimicrob 2024; 23:14. [PMID: 38350903 PMCID: PMC10865577 DOI: 10.1186/s12941-024-00676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/04/2024] [Indexed: 02/15/2024] Open
Abstract
PURPOSE This study aimed to characterise the whole-genome structure of two clinical Klebsiella pneumoniae strains co-harbouring mcr-8.1 and tmexCD1-toprJ1, both resistant to colistin and tigecycline. METHODS K. pneumoniae strains TGC-02 (ST656) and TGC-05 (ST273) were isolated from urine samples of different patients hospitalised at separate times in 2021. Characterisation involved antimicrobial susceptibility testing (AST), conjugation assays, whole-genome sequencing (WGS), and bioinformatics analysis. Comparative genomic analysis was conducted on mcr-8.1-carrying and tmexCD1-toprJ1-carrying plasmids. RESULTS Both K. pneumoniae isolates displayed a multidrug-resistant phenotype, exhibiting resistance or reduced susceptibility to ampicillin, ampicillin/sulbactam, cefazolin, aztreonam, amikacin, gentamicin, tobramycin, ciprofloxacin, levofloxacin, nitrofurantoin, trimethoprim/sulfamethoxazole, apramycin, tigecycline and colistin. WGS analysis revealed that clinical strain TGC-02 carried the TmexCD1-toprJ1 gene on a 200-Kb IncFII/IncFIB-type plasmid, while mcr-8 was situated on a 146-Kb IncFII-type plasmid. In clinical strain TGC-05, TmexCD1-toprJ1 was found on a 300-Kb IncFIB/IncHI1B/IncR-type plasmid, and mcr-8 was identified on a 137-Kb IncFII/IncFIA-type plasmid. Conjugation experiments assessed the transferability of these plasmids. While transconjugants were not obtained for TGC-05 despite multiple screening with tigecycline or colistin, pTGC-02-tmex and pTGC-02-mcr8 from clinical K. pneumoniae TGC-02 demonstrated self-transferability through conjugation. Notably, the rearrangement of pTGC-02-tmex and pTGC-02-mcr8 via IS26-based homologous recombination was observed. Moreover, the conjugative and fusion plasmids of the transconjugant co-harboured the tmexCD1-toprJ1 gene cluster and mcr-8.1, potentially resulting from IS26-based homologous recombination. CONCLUSION The emergence of colistin- and tigecycline-resistant K. pneumoniae strains is concerning, and effective surveillance measures should be implemented to prevent further dissemination.
Collapse
|