51
|
LoRaWAN Behaviour Analysis through Dataset Traffic Investigation. SENSORS 2022; 22:s22072470. [PMID: 35408085 PMCID: PMC9003208 DOI: 10.3390/s22072470] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022]
Abstract
The large development of Internet of Things technologies is increasing the use of smart-devices to solve and support several real-life issues. In many cases, the aim is to move toward systems that, even if significant demands are not required in terms of quantity of exchanged data, they should be very reliable in terms of battery life and signal coverage. Networks that have these characteristics are the Low Power WAN (LPWAN). One of the most interesting LPWAN is LoRaWAN. LoRaWAN is a network with four principal components: end-devices, gateways, network servers, and application servers. It uses a LoRa physical layer to exchange messages between end-devices and gateways that forward these messages, through classic TCP/IP protocol, to the network server. In this work, we analyse LoRa and LoRaWAN by looking at its transmission characteristics and network behaviour, respectively, explaining the role of its components and showing the message exchange. This analysis is performed through the exploration of a dataset taken from the literature collecting real LoRaWAN packets. The goal of the work is twofold: (1) to investigate, under different perspectives, how a LoRaWAN works and (2) to provide software tools that can be used in several other LoraWAN datasets to measure the network behaviour. We carry out six different analyses to look at the most important features of LoRaWAN. For each analysis we present the adopted measurement strategy as well as the obtained results in the specific use case.
Collapse
|
52
|
Tamang D, Pozzebon A, Parri L, Fort A, Abrardo A. Designing a Reliable and Low-Latency LoRaWAN Solution for Environmental Monitoring in Factories at Major Accident Risk. SENSORS (BASEL, SWITZERLAND) 2022; 22:2372. [PMID: 35336543 PMCID: PMC8948738 DOI: 10.3390/s22062372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022]
Abstract
In this article, we propose a reliable and low-latency Long Range Wide Area Network (LoRaWAN) solution for environmental monitoring in factories at major accident risk (FMAR). In particular, a low power wearable device for sensing the toxic inflammable gases inside an industrial plant is designed with the purpose of avoiding peculiar risks and unwanted accidents to occur. Moreover, the detected data have to be urgently and reliably delivered to remote server to trigger preventive immediate actions so as to improve the machine operation. In these settings, LoRaWAN has been identified as the most proper communications technology to the needs owing to the availability of off the shelf devices and software. Hence, we assess the technological limits of LoRaWAN in terms of latency and reliability and we propose a fully LoRaWAN compliant solution to overcome these limits. The proposed solution envisages coordinated end device (ED) transmissions through the use of Downlink Control Packets (DCPs). Experimental results validate the proposed method in terms of service requirements for the considered FMAR scenario.
Collapse
|
53
|
Vishnu S, Ramson SRJ, Rukmini MSS, Abu-Mahfouz AM. Sensor-Based Solid Waste Handling Systems: A Survey. SENSORS (BASEL, SWITZERLAND) 2022; 22:2340. [PMID: 35336511 PMCID: PMC8949905 DOI: 10.3390/s22062340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
As a consequence of swiftly growing populations in the urban areas, larger quantities of solid waste also form rapidly. Since urban local bodies are found to be unable to manage this perilous situation effectively, there is a high probability of risks relative to the environment and public health. A sudden change is indispensable in the existing systems that are developed for the collection, transportation, and disposal of solid waste, which are entangled in turmoil. However, Smart sensors and wireless technology enable cyber-physical systems to automate solid waste management, which will revolutionize the industry. This work presents a comprehensive study on the evolution of automation approaches in solid waste management systems. This study is enhanced by dissecting the available literature in solid waste management with Radio Frequency Identification (RFID), Wireless Sensor Networks (WSN), and Internet of Things (IoT)-based approaches and analyzing each category with a typical architecture, respectively. In addition, various communication technologies adopted in the aforementioned categories are critically analyzed to identify the best choice for the deployment of trash bins. From the survey, it is inferred that IoT-based systems are superior to other design approaches, and LoRaWAN is identified as the preferred communication protocol for the automation of solid waste handling systems in urban areas. Furthermore, the critical open research issues on state-of-the-art solid waste handling systems are identified and future directions to address the same topic are suggested.
Collapse
|
54
|
Fujdiak R, Mikhaylov K, Pospisil J, Povalac A, Misurec J. Insights into the Issue of Deploying a Private LoRaWAN. SENSORS (BASEL, SWITZERLAND) 2022; 22:2042. [PMID: 35271189 PMCID: PMC8914651 DOI: 10.3390/s22052042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
The last decade has transformed wireless access technologies and crystallized a new direction for the internet of things (IoT). The modern low-power wide-area network (LPWAN) technologies have been introduced to deliver connectivity for billions of devices while keeping the costs and consumption low, and the range of communication high. While the 5G (fifth generation mobile network) LPWAN-like radio technologies, namely NB-IoT (narrowband internet of things) and LTE-M (long-term evolution machine type communication) are emerging, the long-range wide-area network (LoRaWAN) remains extremely popular. One unique feature of this technology, which distinguishes it from the competitors, is the possibility of supporting both public and private network deployments. In this paper we focus on this aspect and deliver original results comparing the performance of the private and public LoRAWAN deployment options; these results should help understand the LoRaWAN technology and give a clear overview of the advantages and disadvantages of the private versus public approaches. Notably, we carry the comparison along the three dimensions: the communication performance, the security, and the cost analysis. The presented results illustratively demonstrate the differences of the two deployment approaches, and thus can support selection of the most efficient deployment option for a target application.
Collapse
|
55
|
Re-Learning EXP3 Multi-Armed Bandit Algorithm for Enhancing the Massive IoT- LoRaWAN Network Performance. SENSORS 2022; 22:s22041603. [PMID: 35214501 PMCID: PMC8880409 DOI: 10.3390/s22041603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Long-Range Wide Area Network (LoRaWAN) is an open-source protocol for the standard Internet of Things (IoT) Low Power Wide Area Network (LPWAN). This work’s focal point is the LoRa Multi-Armed Bandit decentralized decision-making solution. The contribution of this paper is to study the effect of the re-learning EXP3 Multi-Armed Bandit (MAB) algorithm with previous experts’ advice on the LoRaWAN network performance. LoRa smart node has a self-managed EXP3 algorithm for choosing and updating the transmission parameters based on its observation. The best parameter choice needs previously associated distribution advice (expert) before updating different choices for confidence. The paper proposes a new approach to study the effects of combined expert distribution for each transmission parameter on the LoRaWAN network performance. The successful transmission of the packet with optimized power consumption is the pivot of this paper. The validation of the simulation result has proven that combined expert distribution improves LoRaWAN network’s performance in terms of data throughput and power consumption.
Collapse
|
56
|
Muñoz R, Saez Hidalgo J, Canales F, Dujovne D, Céspedes S. SCHC over LoRaWAN Efficiency: Evaluation and Experimental Performance of Packet Fragmentation. SENSORS (BASEL, SWITZERLAND) 2022; 22:1531. [PMID: 35214429 PMCID: PMC8874547 DOI: 10.3390/s22041531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Low Power Wide Area Networks (LPWAN) are expected to enable the massive connectivity of small and constrained devices to the Internet of Things. Due to the restricted nature of both end devices and network links, LPWAN technologies employ network stacks where there is no interoperable network layer as a general case; instead, application data are usually placed directly into technology-specific two-layer frames. Besides not being able to run standard IP-based protocols at the end device, the lack of an IP layer also causes LPWAN segments to operate in an isolated manner, requiring middleboxes to interface non-IP LPWAN technologies with the IP world. The IETF has standardized a compression and fragmentation scheme, called Static Context Header Compression and Fragmentation (SCHC), which can compress and fragment IPv6 and UDP headers for LPWAN in a way that enables IP-based communications on the constrained end device. This article presents a model to determine the channel occupation efficiency based on the transmission times of SCHC messages in the upstream channel of a LoRaWAN™ link using the ACK-on-Error mode of standard SCHC. The model is compared against experimental data obtained from the transmission of packets that are fragmented using a SCHC over LoRaWAN implementation. This modeling provides a relationship between the channel occupancy efficiency, the spreading factor of LoRa™, and the probability of an error of a SCHC message. The results show that the model correctly predicts the efficiency in channel occupation for all spreading factors. Furthermore, the SCHC ACK-on-Error mode implementation for the upstream channel has been made fully available for further use by the research community.
Collapse
|
57
|
Ivoghlian A, Salcic Z, Wang KIK. Adaptive Wireless Network Management with Multi-Agent Reinforcement Learning. SENSORS (BASEL, SWITZERLAND) 2022; 22:1019. [PMID: 35161765 PMCID: PMC8838395 DOI: 10.3390/s22031019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Wireless networks are trending towards large scale systems, containing thousands of nodes, with multiple co-existing applications. Congestion is an inevitable consequence of this scale and complexity, which leads to inefficient use of the network capacity. This paper proposes an autonomous and adaptive wireless network management framework, utilising multi-agent deep reinforcement learning, to achieve efficient use of the network. Its novel reward function incorporates application awareness and fairness to address both node and network level objectives. Our experimental results demonstrate the proposed approach's ability to be optimised for application-specific requirements, while optimising the fairness of the network. The results reveal significant performance benefits in terms of adaptive data rate and an increase in responsiveness compared to a single-agent approach. Some significant qualitative benefits of the multi-agent approach-network size independence, node-led priorities, variable iteration length, and reduced search space-are also presented and discussed.
Collapse
|
58
|
Briciu-Burghina C, Zhou J, Ali MI, Regan F. Demonstrating the Potential of a Low-Cost Soil Moisture Sensor Network. SENSORS 2022; 22:s22030987. [PMID: 35161733 PMCID: PMC8840329 DOI: 10.3390/s22030987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 12/04/2022]
Abstract
Soil moisture is a key parameter of the climate system as it relates to plant transpiration and photosynthesis and impacts land–atmosphere interactions. Recent developments have seen an increasing number of electromagnetic sensors available commercially (EM) for soil volumetric water content (θ). Their use is constantly expanding, and they are becoming increasingly used for agricultural, ecological, and geotechnical applications and climate research, providing decision support and high-resolution data for models and machine-learning algorithms. In this study, a soil moisture sensor network consisting of 10 Sense Cap capacitance-based sensors is evaluated. Analytical performance of the sensors was determined based on laboratory and field measurements with dielectric permittivity (ε) standards and soil media substrates. Sensor response normalisation to standards of known ε was found to reduce intersensor variability and provide robust estimates of θ in soil samples with known θ. Cross-comparison with a time-domain reflectometry (TDR) instrument carried out in two soil media demonstrates good agreement between the two probes throughout the tested range. The data communication performance of the network was evaluated in terms of packet drop rate at different ranges and sampling frequencies. It was noticed that the drop rate increased with distance from the gateway, while sampling frequency had no effect. Sources of errors associated with probe installation were identified and recommendations are provided for sensor deployment. The off-the-shelf all-in-one solution provided by Sense Cap is low cost, user friendly and suitable for implementation at temporal and spatial scales once the identified shortcomings are addressed. The evaluation presented aims to aid stakeholders and users involved in soil and land management practices including crop production, soil conservation, carbon sequestration and pollutants transport.
Collapse
|
59
|
Towards LoRaWAN without Data Loss: Studying the Performance of Different Channel Access Approaches. SENSORS 2022; 22:s22020691. [PMID: 35062651 PMCID: PMC8780411 DOI: 10.3390/s22020691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
The Long Range Wide Area Network (LoRaWAN) is one of the fastest growing Internet of Things (IoT) access protocols. It operates in the license free 868 MHz band and gives everyone the possibility to create their own small sensor networks. The drawback of this technology is often unscheduled or random channel access, which leads to message collisions and potential data loss. For that reason, recent literature studies alternative approaches for LoRaWAN channel access. In this work, state-of-the-art random channel access is compared with alternative approaches from the literature by means of collision probability. Furthermore, a time scheduled channel access methodology is presented to completely avoid collisions in LoRaWAN. For this approach, an exhaustive simulation study was conducted and the performance was evaluated with random access cross-traffic. In a general theoretical analysis the limits of the time scheduled approach are discussed to comply with duty cycle regulations in LoRaWAN.
Collapse
|
60
|
Analysis of Web-Based IoT through Heterogeneous Networks: Swarm Computing over LoRaWAN. SENSORS 2022; 22:s22020664. [PMID: 35062625 PMCID: PMC8777660 DOI: 10.3390/s22020664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023]
Abstract
The Internet of Things (IoT) leverages added valued services by the wide spread of connected smart devices. The Swarm Computing paradigm considers a single abstraction layer that connects all kinds of devices globally, from sensors to super computers. In this context, the Low-Power Wide-Area Network (LPWAN) emerges, spreading out connection to the IoT end devices. With the upsides of long-range, low power and low cost, LPWAN presents major limitations regarding data transmission capacity, throughput, supported packet length and quantity per day limitation. This situation makes LPWAN systems with limited interoperability integrate with systems based on REpresentational State Transfer (REST). This work investigates how to connect web-based IoT applications with LPWANs. The analysis was carried out studying the number of packets generated for a use case of REST-based IoT over LPWAN, specifically the Swarm OS over LoRaWAN. The work also presents an analysis of the impact of using promising schemes for lower communication load. We evaluated Constrained Application Protocol (CoAP), Static Context Header Compression (SCHC) and Concise Binary Object Representation (CBOR) to make transmission over the restricted links of LPWANs possible. The attained results show the reduction of 98.18% packet sizes while using SCHC and CBOR compared to HTTP and JSON by sending fewer packets with smaller sizes.
Collapse
|
61
|
Ojo MO, Viola I, Baratta M, Giordano S. Practical Experiences of a Smart Livestock Location Monitoring System Leveraging GNSS, LoRaWAN and Cloud Services. SENSORS (BASEL, SWITZERLAND) 2021; 22:273. [PMID: 35009814 PMCID: PMC8749856 DOI: 10.3390/s22010273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
Livestock farming is, in most cases in Europe, unsupervised, thus making it difficult to ensure adequate control of the position of the animals for the improvement of animal welfare. In addition, the geographical areas involved in livestock grazing usually have difficult access with harsh orography and lack of communications infrastructure, thus the need to provide a low-power livestock localization and monitoring system is of paramount importance, which is crucial not for a sustainable agriculture, but also for the protection of native breeds and meats thanks to their controlled supervision. In this context, this work presents an Internet of things (IoT)-based system integrating low-power wide area (LPWA) technology, cloud, and virtualization services to provide real-time livestock location monitoring. Taking into account the constraints coming from the environment in terms of energy supply and network connectivity, our proposed system is based on a wearable device equipped with inertial sensors, Global Positioning System (GPS) receiver, and LoRaWAN transceiver, which can provide a satisfactory compromise between performance, cost, and energy consumption. At first, this article provides the state-of-the-art localization techniques and technologies applied to smart livestock. Then, we proceed to provide the hardware and firmware co-design to achieve very low energy consumption, thus providing a significant positive impact to the battery life. The proposed platform has been evaluated in a pilot test in the northern part of Italy, evaluating different configurations in terms of sampling period, experimental duration, and number of devices. The results are analyzed and discussed for packet delivery ratio, energy consumption, localization accuracy, battery discharge measurement, and delay.
Collapse
|
62
|
Petrariu AI, Coca E, Lavric A. Large-Scale Internet of Things Multi-Sensor Measurement Node for Smart Grid Enhancement. SENSORS 2021; 21:s21238093. [PMID: 34884097 PMCID: PMC8662425 DOI: 10.3390/s21238093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022]
Abstract
Electric power infrastructure has revolutionized our world and our way of living has completely changed. The necessary amount of energy is increasing faster than we realize. In these conditions, the grid is forced to run against its limitations, resulting in more frequent blackouts. Thus, urgent solutions need to be found to meet this greater and greater energy demand. By using the internet of things infrastructure, we can remotely manage distribution points, receiving data that can predict any future failure points on the grid. In this work, we present the design of a fully reconfigurable wireless sensor node that can sense the smart grid environment. The proposed prototype uses a modular developed hardware platform that can be easily integrated into the smart grid concept in a scalable manner and collects data using the LoRaWAN communication protocol. The designed architecture was tested for a period of 6 months, revealing the feasibility and scalability of the system, and opening new directions in the remote failure prediction of low voltage/medium voltage switchgears on the electric grid.
Collapse
|
63
|
Paterova T, Prauzek M, Konecny J, Ozana S, Zmij P, Stankus M, Weise D, Pierer A. Environment-Monitoring IoT Devices Powered by a TEG Which Converts Thermal Flux between Air and Near-Surface Soil into Electrical Energy. SENSORS 2021; 21:s21238098. [PMID: 34884107 PMCID: PMC8662441 DOI: 10.3390/s21238098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Energy harvesting has an essential role in the development of reliable devices for environmental wireless sensor networks (EWSN) in the Internet of Things (IoT), without considering the need to replace discharged batteries. Thermoelectric energy is a renewable energy source that can be exploited in order to efficiently charge a battery. The paper presents a simulation of an environment monitoring device powered by a thermoelectric generator (TEG) that harvests energy from the temperature difference between air and soil. The simulation represents a mathematical description of an EWSN, which consists of a sensor model powered by a DC/DC boost converter via a TEG and a load, which simulates data transmission, a control algorithm and data collection. The results section provides a detailed description of the harvested energy parameters and properties and their possibilities for use. The harvested energy allows supplying the load with an average power of 129.04 μW and maximum power of 752.27 μW. The first part of the results section examines the process of temperature differences and the daily amount of harvested energy. The second part of the results section provides a comprehensive analysis of various settings for the EWSN device’s operational period and sleep consumption. The study investigates the device’s number of operational cycles, quantity of energy used, discharge time, failures and overheads.
Collapse
|
64
|
RM-ADR: Resource Management Adaptive Data Rate for Mobile Application in LoRaWAN. SENSORS 2021; 21:s21237980. [PMID: 34883985 PMCID: PMC8659466 DOI: 10.3390/s21237980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
LoRaWAN is renowned and a mostly supported technology for the Internet of Things, using an energy-efficient Adaptive Data Rate (ADR) to allocate resources (e.g., Spreading Factor (SF)) and Transmit Power (TP) to a large number of End Devices (EDs). When these EDs are mobile, the fixed SF allocation is not efficient owing to the sudden changes caused in the link conditions between the ED and the gateway. As a result of this situation, significant packet loss occurs, increasing the retransmissions from EDs. Therefore, we propose a Resource Management ADR (RM-ADR) at both ED and Network Sides (NS) by considering the packet transmission information and received power to address this issue. Through simulation results, RM-ADR showed improved performance compared to the state-of-the-art ADR techniques. The findings indicate a faster convergence time by minimizing packet loss ratio and retransmission in a mobile LoRaWAN network environment.
Collapse
|
65
|
Energy Performance Analysis and Modelling of LoRa Prototyping Boards. SENSORS 2021; 21:s21237992. [PMID: 34883998 PMCID: PMC8659754 DOI: 10.3390/s21237992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
Abstract
LoRaWAN has gained significant attention for Internet-of-Things (IOT) applications due to its low power consumption and long range potential for data transmission. While there is a significant body of work assessing LoRA coverage and data transmission characteristics, there is a lack of data available about commercially available LoRa prototyping boards and their power consumption, in relation to their features. It is currently difficult to estimate the power consumption of a LoRa module operating under different transmission profiles, due to a lack of manufacturer data available. In this study, power testing has been carried out on physical hardware and significant variation was found in the power consumption of competing boards, all marketed as "extremely low power". In this paper, testing results are presented alongside an experimentally-derived power model for the lowest power LoRa module, and power requirements are compared to firmware settings. The power analysis adds to existing work showing trends in data-rate and transmission power settings effects on electrical power consumption. The model's accuracy is experimentally verified and shows acceptable agreement to estimated values. Finally, applications for the model are presented by way of a hypothetical scenario and calculations performed in order to estimate battery life and energy consumption for varying data transmission intervals.
Collapse
|
66
|
Real-Time Environmental Monitoring for Aquaculture Using a LoRaWAN-Based IoT Sensor Network. SENSORS 2021; 21:s21237963. [PMID: 34883973 PMCID: PMC8659442 DOI: 10.3390/s21237963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 12/15/2022]
Abstract
IoT-enabled devices are making it easier and cheaper than ever to capture in situ environmental data and deliver these data-in the form of graphical visualisations-to farmers in a matter of seconds. In this work we describe an aquaculture focused environmental monitoring network consisting of LoRaWAN-enabled atmospheric and marine sensors attached to buoys on Clyde River, located on the South Coast of New South Wales, Australia. This sensor network provides oyster farmers operating on the river with the capacity to make informed, accurate and rapid decisions that enhance their ability to respond to adverse environmental events-typically flooding and heat waves. The system represents an end-to-end approach that involves deploying a sensor network, analysing the data, creating visualisations in collaboration with farmers and delivering them to them in real-time via a website known as FarmDecisionTECH®. We compared this network with previously available infrastructure, the results of which demonstrate that an in situ weather station was ∼5 ∘C hotter than the closest available real-time weather station (∼20 km away from Clyde River) during a summertime heat wave. Heat waves can result in oysters dying due to exposure if temperatures rise above 30 ∘C for extended periods of time (such as heat waves), which will mean a loss in income for the farmers; thus, this work stresses the need for accurate in situ monitoring to prevent the loss of oysters through informed farm management practices. Finally, an approach is proposed to present high-dimensional datasets captured from the sensor network to oyster farmers in a clear and informative manner.
Collapse
|
67
|
Saavedra E, Mascaraque L, Calderon G, del Campo G, Santamaria A. The Smart Meter Challenge: Feasibility of Autonomous Indoor IoT Devices Depending on Its Energy Harvesting Source and IoT Wireless Technology. SENSORS 2021; 21:s21227433. [PMID: 34833509 PMCID: PMC8621240 DOI: 10.3390/s21227433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022]
Abstract
Most smart meters are connected and powered by the electric mains, requiring the service interruption and qualified personnel for their installation. Wireless technologies and energy harvesting techniques have been proved as alternatives for communications and power supply, respectively. In this work, we analyse the energy consumption of the most used IoT wireless technologies nowadays: Sigfox, LoRaWAN, NB-IoT, Wi-Fi, BLE. Smart meters’ energy consumption accounts for metering, standby and communication processes. Experimental measurements show that communication consumption may vary upon the specific characteristics of each wireless communication technology—payload, connection establishment, transmission time. Results show that the selection of a specific technology will depend on the application requirements (message payload, metering period) and location constraints (communication range, infrastructure availability). Besides, we compare the performance of the most suitable energy harvesting (EH) techniques for smart meters: photovoltaic (PV), radiofrequency (RF) and magnetic induction (MIEH). Thus, EH technique selection will depend on the availability of each source at the smart meter’s location. The most appropriate combination of IoT wireless technology and EH technique must be selected accordingly to the very use case requirements and constraints.
Collapse
|
68
|
Gomez C, Darroudi SM, Naranjo H, Paradells J. On the Energy Performance of Iridium Satellite IoT Technology. SENSORS 2021; 21:s21217235. [PMID: 34770541 PMCID: PMC8587026 DOI: 10.3390/s21217235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Most Internet of Things (IoT) communication technologies rely on terrestrial network infrastructure. When such infrastructure is not available or does not provide sufficient coverage, satellite communication offers an alternative IoT connectivity solution. Satellite-enabled IoT devices are typically powered by a limited energy source. However, as of this writing, and to our best knowledge, the energy performance of satellite IoT technology has not been investigated. In this paper, we model and evaluate the energy performance of Iridium satellite technology for IoT devices. Our work is based on real hardware measurements. We provide average current consumption, device lifetime, and energy cost of data delivery results as a function of different parameters. Results show, among others, that an Iridium-enabled IoT device, running on a 2400 mAh battery and sending a 100-byte message every 100 min, may achieve a lifetime of 0.95 years. However, Iridium device energy performance decreases significantly with message rate.
Collapse
|
69
|
Sánchez-Sutil F, Cano-Ortega A. Smart Control and Energy Efficiency in Irrigation Systems Using LoRaWAN. SENSORS 2021; 21:s21217041. [PMID: 34770348 PMCID: PMC8587614 DOI: 10.3390/s21217041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
Irrigation installations in cities or agricultural operations use large amounts of water and electrical energy in their activity. Therefore, optimising these resources is essential nowadays. Wireless networks offer ideal support for such applications. The long-range wide-area network (LoRaWAN) used in this research offers a large coverage of up to 5 km, has low power consumption and does not need additional hardware such as repeaters or signal amplifiers. This research develops a control and monitoring system for irrigation systems. For this purpose, an irrigation algorithm is designed that uses rainfall probability data to regulate the irrigation of the installation. The algorithm is complemented by checking the sending and receiving of information in the LoRa network to reduce the loss of information packets. In addition, two temperature and humidity measurement devices for LoRaWAN (THMDLs) and an electrovalve control device for LoRaWAN (ECDLs) were developed. The hardware and software were also designed, and prototypes were built with the development of the electronic board. The wide coverage of the LoRaWAN allows the covering of small to large irrigation areas.
Collapse
|
70
|
Casals L, Gomez C, Vidal R. The SF12 Well in LoRaWAN: Problem and End-Device-Based Solutions. SENSORS 2021; 21:s21196478. [PMID: 34640804 PMCID: PMC8512894 DOI: 10.3390/s21196478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 12/04/2022]
Abstract
LoRaWAN has become a popular technology for the Internet of Things (IoT) device connectivity. One of the expected properties of LoRaWAN is high network scalability. However, LoRaWAN network performance may be compromised when even a relatively small number of devices use link-layer reliability. After failed frame delivery, such devices typically tend to reduce their physical layer bit rate by increasing their spreading factor (SF). This reaction increases channel utilization, which may further degrade network performance, even into congestion collapse. When this problem arises, all the devices performing reliable frame transmission end up using SF12 (i.e., the highest SF in LoRaWAN). In this paper, we identify and characterize the described network condition, which we call the SF12 Well, in a range of scenarios and by means of extensive simulations. The results show that by using alternative SF-management techniques it is possible to avoid the problem, while achieving a packet delivery ratio increase of up to a factor of 4.7.
Collapse
|
71
|
Charilaou C, Lavdas S, Khalifeh A, Vassiliou V, Zinonos Z. Firmware Update Using Multiple Gateways in LoRaWAN Networks. SENSORS 2021; 21:s21196488. [PMID: 34640805 PMCID: PMC8512896 DOI: 10.3390/s21196488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
The remarkable evolution of the IoT raised the need for an efficient way to update the device’s firmware. Recently, a new process was released summarizing the steps for firmware updates over the air (FUOTA) on top of the LoRaWAN protocol. The FUOTA process needs to be completed quickly to reduce the systems’ interruption and, at the same time, to update the maximum number of devices with the lowest power consumption. However, as the literature showed, a single gateway cannot optimize the FUOTA procedure and offer the above mentioned goals since various trade-offs arise. In this paper, we conducted extensive experiments via simulation to investigate the impact of multiple gateways during the firmware update process. To achieve that, we extended the FUOTAsim simulation tool to support multiple gateways. The results revealed that several gateways could eliminate the trade-offs that appeared using a single gateway.
Collapse
|
72
|
Maudet S, Andrieux G, Chevillon R, Diouris JF. Refined Node Energy Consumption Modeling in a LoRaWAN Network. SENSORS 2021; 21:s21196398. [PMID: 34640719 PMCID: PMC8512702 DOI: 10.3390/s21196398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
LPWAN technologies such as LoRa are widely used for the deployment of IoT applications, in particular for use cases requiring wide coverage and low energy consumption. To minimize the maintenance cost, which can become significant when the number of sensors deployed is large, it is essential to optimize the lifetime of nodes, which remains an important research topic. For this reason, it is necessary that it is based on a fine energy consumption model. Unfortunately, many existing consumption models do not take into account the specifications of the LoRaWAN protocol. In this paper, a refined energy consumption model based on in-situ measurements is provided for a LoRaWAN node. This improved model takes into account the number of nodes in the network, the collision probability that depends on the density of sensors, and the number of retransmissions. Results show the influence of the number of nodes in a LoRaWAN network on the energy consumption of a node and demonstrate that the number of sensors that can be integrated into a LoRaWAN network is limited due to the probability of collision.
Collapse
|
73
|
Communication protocols evaluation for a wireless rainfall monitoring network in an urban area. Heliyon 2021; 7:e07353. [PMID: 34195448 PMCID: PMC8239730 DOI: 10.1016/j.heliyon.2021.e07353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
Rainfall monitoring networks are key elements for the development of alerts and prediction models for communities at risk of flooding during high intensity rainfall events. Currently, most of these networks send the precipitation measurement to a data center in real-time using wireless communication protocols, avoiding travel to the measurement site. An Early Warning System (EWS) for pluvial flash floods developed in Barranquilla (Colombia), used the GPRS protocol to send rain gauge data in real-time to a web server for further processing; however, this protocol has a high consumption of energy and also high maintenance costs. This article carried out an evaluation in terms of link budget, link profile, energy consumption and devices costs of three low-power wireless communication protocols, Zigbee, LoRaWAN and Sigfox, to determine which one is the most suitable for the EWS of the city of Barranquilla. To perform the evaluation, a wireless sensor network was designed and characterized for Zigbee and LoRaWAN with Radio Mobile tool taking into account the measurement points implemented with GPRS network. The evaluation included the power consumption of Zigbee, LoRaWAN and Sigfox. From the results of simulations, LoRaWAN and Zigbee network has similar radio signal received and the LoRaWAN network obtains the least losses per path. As for power consumption, the LoRaWAN devices has the lowest energy consumption, as well as, the LoRaWAN network sensor nodes are cheaper. Finally, the protocol with the best general performance was LoRAWAN, since complies with the communication, consumption and cost requirements.
Collapse
|
74
|
Jalowiczor J, Rozhon J, Voznak M. Study of the Efficiency of Fog Computing in an Optimized LoRaWAN Cloud Architecture. SENSORS 2021; 21:s21093159. [PMID: 34063234 PMCID: PMC8125713 DOI: 10.3390/s21093159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022]
Abstract
The technologies of the Internet of Things (IoT) have an increasing influence on our daily lives. The expansion of the IoT is associated with the growing number of IoT devices that are connected to the Internet. As the number of connected devices grows, the demand for speed and data volume is also greater. While most IoT network technologies use cloud computing, this solution becomes inefficient for some use-cases. For example, suppose that a company that uses an IoT network with several sensors to collect data within a production hall. The company may require sharing only selected data to the public cloud and responding faster to specific events. In the case of a large amount of data, the off-loading techniques can be utilized to reach higher efficiency. Meeting these requirements is difficult or impossible for solutions adopting cloud computing. The fog computing paradigm addresses these cases by providing data processing closer to end devices. This paper proposes three possible network architectures that adopt fog computing for LoRaWAN because LoRaWAN is already deployed in many locations and offers long-distance communication with low-power consumption. The architecture proposals are further compared in simulations to select the optimal form in terms of total service time. The resulting optimal communication architecture could be deployed to the existing LoRaWAN with minimal cost and effort of the network operator.
Collapse
|
75
|
A Complete Key Management Scheme for LoRaWAN v1.1. SENSORS 2021; 21:s21092962. [PMID: 33922603 PMCID: PMC8122882 DOI: 10.3390/s21092962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Security is one of the major concerns of the Internet of Things (IoT) wireless technologies. LoRaWAN is one of the emerging Low Power Wide Area Networks being developed for IoT applications. The latest LoRaWAN release v.1.1 has provided a security framework that includes data confidentiality protection, data integrity check, device authentication and key management. However, its key management part is only ambiguously defined. In this paper, a complete key management scheme is proposed for LoRaWAN. The scheme addresses key updating, key generation, key backup, and key backward compatibility. The proposed scheme was shown not only to enhance the current LoRaWAN standard, but also to meet the primary design consideration of LoRaWAN, i.e., low power consumption.
Collapse
|