51
|
Yıltırak S, Kocadağlı T, Evrim Çelik E, Özkaynak Kanmaz E, Gökmen V. Effects of sprouting and fermentation on the formation of Maillard reaction products in different cereals heated as wholemeal. Food Chem 2022; 389:133075. [PMID: 35489263 DOI: 10.1016/j.foodchem.2022.133075] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
The concentration and composition of reducing sugars and free amino acids as Maillard reaction (MR) precursors change with grain sprouting. The formation of early and advanced glycation products, and α-dicarbonyl compounds as intermediates were monitored during heating native and sprouted wholemeals, as well as during heating of yeast and sourdough fermented native and sprouted wholemeals. Sprouting increased the concentration of all MR products because of an increase in reducing sugar concentrations. Although reducing sugars were lowered due to their consumption by yeasts, fermentation did not lower the furosine concentration. Sourdough fermentation unexpectedly increased furosine because the low pH caused glucose release from polysaccharides. Glyoxal, methylglyoxal and diacetyl were found to be formed as metabolites during yeast and sourdough fermentation. Another factor affecting the MR in sprouted/fermented wholemeals was revealed to be the increased amount of total free amino acids that compete with bound lysine to react with reducing sugars.
Collapse
|
52
|
Zhang H, Wang M, Xiao J. Stability of polyphenols in food processing. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:1-45. [PMID: 36064291 DOI: 10.1016/bs.afnr.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, polyphenols have attracted considerable attention due to their diverse potential health-beneficial effects on humans. Polyphenols are widely distributed in natural plants, and therefore play an important role in human food. Thermal processing, irradiation, fermentation, high pressure, microwave, and drying are several popular food processing methods. However, polyphenols are instable in food processing, which easily degrade and react with other components because of their polyhydroxy characteristic. Traditional and advanced technologies have been used to characterize the stability of polyphenols. The main influence factors of stability of polyphenols such as pH, temperature, light, oxygen, enzymes, metal ions, as well as macromolecules, are summarized. Besides, thermal processing greatly promoted the degradation of polyphenols. Thermal degradation mechanisms and products of some polyphenols, such as quercetin and rutin, have been intensively demonstrated. Nevertheless, the structural changes of polyphenols caused by food processing, may lead to different bioactivities from the obtained results based on unprocessed polyphenols. Therefore, to maximize the beneficial effects of polyphenols ingested by human from processed food, the stability of polyphenols in food processing must be thoroughly investigated to assess their real bioactivities. In addition, some available technologies for improving the stability of polyphenols in food processing have been proposed.
Collapse
|
53
|
Liang R, Lin S, Chen D, Sun N. Differentiation of Penaeus vannamei from different thermal processing methods in physico-chemical, flavor and sensory characteristics. Food Chem 2022; 378:132092. [PMID: 35032796 DOI: 10.1016/j.foodchem.2022.132092] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
Differentiation in physico-chemical, flavor and sensory characteristics of shrimps (Penaeus vannamei) after direct roasting (DR, 200 °C), boiling (100 °C/2 min) + roasting (BR), steaming (100 °C/2 min) + roasting (SR) and microwaving (280 W/2 min) + roasting (MR) was investigated. BR, SR, and MR endowed shrimps with better texture to varying degrees and significantly (P < 0.05) increased lightness when compared to DR, which closely related to their different water status. High correlations between nuclear magnetic resonance data and quality properties were found by partial-least-squares regression (PLSR). Shrimps possessed by SR significantly (P < 0.05) increased the proportion of sweet amino acids (63.89 ± 0.92%), with superior umami and richness detected by electronic tongue. Compared with DR, both SR and MR endowed shrimps with richer ester, while BR endowed shrimps with richer hydrocarbons. Roasting combined with other thermal processing would favor improving the quality of shrimp products.
Collapse
|
54
|
Bai YP, Zhou HM, Zhu KR, Li Q. Impact of thermally induced wall breakage on the structural properties of water-soluble polysaccharides in chickpeas. Int J Biol Macromol 2022; 208:869-882. [PMID: 35367273 DOI: 10.1016/j.ijbiomac.2022.03.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 01/13/2023]
Abstract
The present work aimed to elucidate the influence of wall breakage induced by thermal processing on the molecular, structural, and antioxidant activities of water-soluble polysaccharides in chickpeas. Different extents of cell wall disruption were observed by fluorescence microscopy in chickpea cotyledons. Moreover, a decreasing fluorescence intensity of cell wall fragments was observed in the flour residues upon heat fluidization, autoclaving, and microwave heating, and the polysaccharide extraction rates were increased by 31.47%, 25.52%, and 9.79%, respectively. Furthermore, WPUCP, WPHCP, WPMCP, and WPACP (water-soluble polysaccharides from unprocessed, heat fluidized, microwaved, and autoclaved chickpeas, respectively) were RG-I (rhamnogalacturonan-I)-enriched pectic polysaccharides composed of galactose, arabinose, galacturonic acid, and rhamnose. After chickpea thermal processing, the degrees of branching decreased to 2.87, 3.79, and 2.53 in WPHCP, WPMCP, and WPACP, respectively, and the molecular weights were reduced by 46.46%, 24.83%, and 59.91%, respectively. Structural analysis showed that the semicrystalline regions of WPHCP, WPMCP, and WPACP were slightly damaged without changing the functional groups, but their thermal stability decreased. Interestingly, WPACP formed an ordered conformation (microporous network structure) through the formation of hydrogen bonds. Moreover, the antioxidant activities of WPHCP, WPMCP, and WPACP were enhanced, and the strongest radical scavenging activity was observed for WPHCP.
Collapse
|
55
|
Response to "Non-thermal microwave effects: Conceptual and methodological problems". Food Chem 2022; 390:133216. [PMID: 35594767 DOI: 10.1016/j.foodchem.2022.133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
Abstract
The objective of this response letter is to expose the reader of Food Chemistry to the most recent advances and discussions about non-thermal effects of microwaves on microorganisms and enzymes. Although these effects showed to be too subtle for any practical use in food processing, experimental and molecular dynamics studies bring evidences that electric fields at low frequencies or with high intensity can have non-thermal effects, such as activity changes in enzymes during ohmic processing or electroporation of cells in pulsed electric field processing. This brief review broadens the scope of this controversial topic to show that innovative experiments and simulations are collaborating with the advance of emerging electro technologies in food processing. .
Collapse
|
56
|
Sushama Babu P, Kundukulangara Pulissery S, Jaganath B, Chitradurga Obaiah M. Effect of thermal processing on quality of tender jackfruit in tin-free-steel cans. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2035-2046. [PMID: 35531387 PMCID: PMC9046495 DOI: 10.1007/s13197-021-05218-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/30/2021] [Accepted: 07/25/2021] [Indexed: 05/03/2023]
Abstract
Thermal processing is the most efficient and economical technique for the long-term preservation of tender jackfruit in ready-to-cook form on a commercial-scale. Although, thermal processing primarily focus on microbiological safety of the product, the associated quality changes need to be examined as it is decisive of consumer acceptance. The present study investigated the effect of two pasteurization (90 and 100 °C) and sterilization temperatures (110 and 121 °C) at different lethality on microbiological, colour, texture, ascorbic acid (AA), total flavonoid (TFC) and phenol (TPC) contents of tender jackfruit processed in tin-free-steel (TFS) cans. Time required for thermal processing was computed from respective heat penetration curve. Thermal processing improved both the TFC and TPC of tender jackfruit, while colour, texture and AA had degraded. Based on microbiological and physicochemical quality analyses, the study adjudged pasteurization at 90 °C for 19 min and sterilization at 121 °C for 8 min as the best temperature-time combination for thermal processing of tender jackfruit in TFS cans.
Collapse
|
57
|
Wang K, Xu Z. Comparison of freshly squeezed, Non-thermally and thermally processed orange juice based on traditional quality characters, untargeted metabolomics, and volatile overview. Food Chem 2022; 373:131430. [PMID: 34731802 DOI: 10.1016/j.foodchem.2021.131430] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/11/2023]
Abstract
The NOVA food classification system, divides foods into four categories, namely unprocessed and minimally processed foods, processed culinary ingredients, processed foods, and ultra-processed foods. With the recently increasing pursuit of healthy diets, special attention to minimally processed foods has become crucial. According to NOVA, freshly squeezed, high pressure processing (HPP) and pasteurized orange juice are minimally processed foods. In this study, the differences in the quality and composition of these minimally processed juice are explored, as it was found that their traditional quality characteristics were too weak to illustrate their difference. However, based on untargeted metabolomics, two differential compounds were identified between freshly squeezed and HPP orange juice, in addition to 15 differential compounds between freshly squeezed and pasteurized orange juice. Moreover, all the pasteurized orange juice in this study was deemed to be out of the acceptance area of freshly squeezed and HPP orange juice in a data-driven soft independent modeling of class analogy (dd-SIMCA) model based on volatile overview. The results of this study provide data for clarifying the compositional differences between minimally processed juice for their further subclassification.
Collapse
|
58
|
Comprehensive proteomic analysis of sea cucumbers (Stichopus japonicus) in thermal processing by HPLC-MS/MS. Food Chem 2022; 373:131368. [PMID: 34717088 DOI: 10.1016/j.foodchem.2021.131368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/11/2021] [Accepted: 10/06/2021] [Indexed: 01/22/2023]
Abstract
Thermal processing is the most frequently adopted processing technology for sea cucumbers, which can significantly affect their protein composition. In this paper, three thermal processing methods high pressure steaming (HPS), atmospheric pressure boiling (APB), and atmospheric pressure steaming (APS) were adopted and protein compositions of both body walls and cooking liquors by thermal processing stichopus japonicus were systematically analysis by proteomic strategy. The total proteins loss rates of body walls were 11.6%, 13.0%, and 14.8% for HPS, APS, and APB methods, respectively. However, the main types of protein composition were retained. Similar mechanisms of protein loss may exist even if different thermal processing were applied. The most frequent hydrolysis sites in thermal processing were phenylalanine, leucine, asparagine, and tyrosine at both C and N terminals. This study provides theoretical guidance for optimizing the industry thermal processing of sea cucumbers.
Collapse
|
59
|
Redan BW, Morrissey TR, Rolfe CA, Aguilar VL, Skinner GE, Reddy NR. Rapid detection and quantitation of dipicolinic acid from Clostridium botulinum spores using mixed-mode liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2022; 414:2767-2774. [PMID: 35106614 PMCID: PMC9109463 DOI: 10.1007/s00216-022-03926-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/01/2022]
Abstract
Analysis of the dipicolinic acid (DPA) released from Clostridium botulinum spores during thermal processing is crucial to obtaining a mechanistic understanding of the factors involved in spore heat resistance and related food safety applications. Here, we developed a novel mixed-mode liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detection of the DPA released from C. botulinum type A, nonproteolytic types B and F strains, and nonpathogenic surrogate Clostridium sporogenes PA3679 spores. DPA was retained on a mixed-mode C18/anion exchange column and was detected using electrospray ionization (ESI) positive mode within a 4-min analysis time. The intraday and interday precision (%CV) was 1.94-3.46% and 4.04-8.28%, respectively. Matrix effects were minimal across proteolytic type A Giorgio-A, nonproteolytic types QC-B and 202-F, and C. sporogenes PA3679 spore suspensions (90.1-114% of spiked DPA concentrations). DPA recovery in carrot juice and beef broth ranged from 105 to 118%, indicating limited matrix effects of these food products. Experiments that assessed the DPA released from Giorgio-A spores over the course of a 5-min thermal treatment at 108 °C found a significant correlation (R = 0.907; P < 0.05) between the log reduction of spores and amount of DPA released. This mixed-mode LC-MS/MS method provides a means for rapid detection of DPA released from C. botulinum spores during thermal processing and has the potential to be used for experiments in the field of food safety that assess the thermal resistance characteristics of various C. botulinum spore types.
Collapse
|
60
|
The processing factors of canning and pasteurization for the most frequently occurring fungicides and insecticides in apples and their application into dietary risk assessment. Food Chem 2022; 371:131179. [PMID: 34808762 DOI: 10.1016/j.foodchem.2021.131179] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022]
Abstract
The challenge of the present comprehensive work was to study, from apple orchards to consumer's plate, the influence of high- and low-temperature thermal treatments on the most frequently occurring fungicides (boscalid, captan, pyraclostrobin) and insecticides (acetamiprid, methoxyfenozide) in apples and processing factor (PF) application for more realistic dietary risk assessment in the new EFSA methodology. Dry pasteurization and canning combined with previous preliminary treatment gave PFs = 0.25-1.8 of the five active substances. Acute exposure (expressed as %ARfD) in the raw commodity was demonstrated to be 168.1% for acetamiprid in the worst case (input - highest residue) and 307.9% for boscalid in the most critical case (input - MRL), and after re-calculation for PF, decreased to 139.5% for acetamiprid in canned product and 203.2% for boscalid in pasteurized apples. These novel data may be helpful in estimating new threshold residue levels significant in food safety especially intended for children.
Collapse
|
61
|
Shetge SA, Redan BW. Assessment of Dry Heating, Water Rinsing, and Baking on Concentrations of the Opium Alkaloid Noscapine in Poppy Seeds. ACS FOOD SCIENCE & TECHNOLOGY 2022; 2:541-547. [PMID: 35558138 PMCID: PMC9087206 DOI: 10.1021/acsfoodscitech.1c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Limited information is available on methods to reduce concentrations of the opium alkaloid noscapine in poppy seeds. A series of experiment were conducted using poppy seeds to evaluate the impact of thermal treatments, water rinsing, and baking on noscapine concentrations. A sample set of commercially available poppy seeds (n=15) was screened for noscapine using liquid chromatography-tandem mass spectrometry. The mean and median noscapine concentrations for poppy seed samples above the limit of quantitation (LOQ) was 89.9 and 28.4 mg kg-1, respectively. Six out of 15 samples were less than the LOQ. Poppy seed samples containing a mean noscapine concentration of 121 mg kg-1 were subjected to dry heat treatments ranging from 120-200 °C and a 5 min rinse with water. Baking experiments were also done by incorporating the poppy seeds into a muffin batter and baking in an oven at 200 °C. The dry heat treatment experiments showed that noscapine degraded at 160-200 °C, with a 50% loss of noscapine observed after 3.44 ± 0.46 min at 200 °C. Although the mean concentration of noscapine decreased when a muffin containing poppy seeds was baked at 200 °C for 16 min, these changes were not statistically significant (P>0.05). Rinsing the poppy seeds with water did not have a significant effect on noscapine concentrations. Together, these data allow for better characterization of potential dietary exposure to noscapine and indicate that certain thermal treatments can be effective for reduction of noscapine in poppy seeds.
Collapse
|
62
|
Zhao J, Li Y, Xu L, Ji Y, Zeng J, Timira V, Zhang Z, Chen G, Lin H, Li Z. Insight into IgG/IgE binding ability, in vitro digestibility and structural changes of shrimp (Litopenaeus vannamei) soluble extracts with thermal processing. Food Chem 2022; 381:132177. [PMID: 35121318 DOI: 10.1016/j.foodchem.2022.132177] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/27/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
Abstract
The effects of six kinds of thermal processing on soluble protein recovery, potential allergenicity, in vitro digestibility and structural characteristics of shrimp soluble proteins were evaluated. Obtained results confirmed soluble protein recovery and IgG/IgE reactivity of shrimp soluble extracts were markedly suppressed by various thermal treatments with enhanced digestibility depended on the extent and type of heating applied, which correlated well with the structural alterations and modification. The maximum reduction of IgG/IgE-binding capacity and digestive stability were observed in the autoclaved shrimps because of unfolding of protein and hydrophobic residues exposed. Notably, tropomyosin (TM) and sarcoplasmic calcium-binding protein (SCP) were still IgG/IgE-reactive in various heat-processed shrimps, even higher IgG reactivity were found in heat-treated shrimps TM according to TM antiserum western-blotting and indirect ELISA results. Shrimp TM and SCP maintains its IgE/IgG-binding capacity after various cooking methods, thus most probably initiating allergic sensitization to both raw and cooked shrimps.
Collapse
|
63
|
Feed form and nutritional level for rearing growing broilers in thermoneutral or heat stress environments. J Therm Biol 2022; 103:103159. [PMID: 35027203 DOI: 10.1016/j.jtherbio.2021.103159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022]
Abstract
The present study aimed to investigate the effects of different physical forms of feed and feeding programs on nutrient digestibility and performance of grower-finisher broilers under thermoneutrality or thermal stress. Three experiments were conducted using male broiler chickens (n = 720) aged 19-42 d. The design of two of the experiments was fully randomized in a 2 × 2 factorial arrangement with two forms of feed (mash and pellet) and two nutritional levels (13.19 MJ/kg and 194.8 g/kg CP - normal level and 13.61 MJ/kg and 210.3 g/kg CP - high level). The experiments took place in a climate-controlled room: Experiment 1 at thermoneutrality (21-23 °C and 58-60% relative humidity) for 24 h/day; Experiment 2 under thermal stress cycle (31-32 °C and 63-65% relative humidity), for 6h/day and thermoneutrality (21-23 °C, 58-60% relative humidity) for 18h/day. The nutrient digestibility and performance was analyzed. The design of the third experiment was fully randomized with two ambient condition treatments (thermoneutral and thermal stress) on heat production, caloric increment and net energy. Pellet feed obtained higher digestibility of dry matter, digestibility of crude protein, AME and AMEn (P < 0.05) than mash feed for broilers reared in the thermoneutral environment. At the high nutritional level there was no effect of treatments on the coefficient of dry matter and crude protein (DCCP) (P > 0.05), while the highest digestibility of AME and AMEn were obtained by the high nutritional level diet (P < 0.05). Pellet feed had higher DCCP (P < 0.05) than mash feed for broilers reared under cyclic heat stress. Broiler chickens under cyclic stress experienced increased caloric increment, rectal temperature and respiratory rate. The appropriate strategy to minimize these effects in both ambient conditions is to pellet feed.
Collapse
|
64
|
Effects of whey protein on the in vitro digestibility and physicochemical properties of potato starch. Int J Biol Macromol 2021; 193:1744-1751. [PMID: 34748784 DOI: 10.1016/j.ijbiomac.2021.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022]
Abstract
The aim of this study was to examine the effect of whey protein isolate (WPI) on the digestibility and physicochemical properties of potato starch (PS) after heat treatment. WPI reduced the digestibility of PS and increased the order and aggregation structure of gelatinized PS. Examination of the rheological properties of the PS-WPI mixed system before and after adding different chemicals (sodium chloride, urea, and sodium dodecyl sulfate) indicated an involvement of hydrogen bonds and hydrophobic interactions in the PS-WPI gelatinization system. The pasting properties, swelling power, and thermal properties indicated that WPI suppressed the swelling and gelatinization of PS. The addition of WPI reduced the amylose leaching rate from the starch granules, indicating that the presence of exogenous protein could prevent amylose diffusion from the starch granules. Native WPI and its hydrolysate also inhibited amyloglucosidase activity. These findings indicated that the mechanism by which WPI reduces PS digestion involves hydrophobic interactions and hydrogen bonding between WPI and PS, as well as enzyme activity inhibition.
Collapse
|
65
|
Effects of thermal processing on N,N-dimethylpiperidinium (mepiquat) formation in meat and vegetable products. Food Res Int 2021; 150:110771. [PMID: 34865786 DOI: 10.1016/j.foodres.2021.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
N,N-dimethylpiperidinium (mepiquat) is an important food contaminant formed from natural ingredients during thermal processing. In this study, mepiquat formation in meat (pork and beef) and vegetables (potatoes and broccoli) was investigated via HPLC-MS/MS; the investigated cooking methods were oven baking, pan cooking, deep frying, and microwaving. The results showed that, among all foods, oven-baked potatoes showed the highest mepiquat level of 1064 μg/kg, which appeared after 20 min at 240 °C. The residual rates of mepiquat precursors, pipecolic acid (PipAc), betaine, choline, and trigonelline, were determined in oven-baked potatoes to investigate their correlation with mepiquat formation. The PipAc levels reduced by 99.8% at 260 °C after 30 min of oven baking, exhibiting a significantly high decomposition rate. Therefore, PipAc could be used as a marker of quality for the detection of mepiquat in thermally processed foodstuffs.
Collapse
|
66
|
An Y, Wen L, Li W, Zhang X, Hu Y, Xiong S. Insight into the evolution of aroma compounds during thermal processing of surimi gel from silver carp (Hypophthalmichthys molitrix). Food Chem 2021; 374:131762. [PMID: 34922165 DOI: 10.1016/j.foodchem.2021.131762] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
This study aimed to investigate the formation of odor properties in surimi products by exploring changes in aroma compounds and their precursors at setting (40 °C) and gelling (90 °C) stages during surimi gel formation by solvent-assisted flavor evaporation, gas chromatography-mass spectrometry, and ultra performance liquid chromatography. Results revealed a gradual increase in the contents of most aldehydes, alcohols, and phenolics during surimi gel formation, while a decrease in the contents of (E)-2-pentenal, (E)-2-hexnenal, (Z)-4-heptenal, (E)-2-heptenal, and most ketones at gelling stage. During thermal process, 50 % decrease was observed in the contents of some unsaturated fatty acids (palmitoleic acid, oleic acid, etc.), and the contents of tyrosine, phenylalanine, methionine, isoleucine, and leucine decreased significantly (P < 0.05) at gelling stage. Moreover, lipoxygenase activity reached 4.19-4.81 U/min·g at setting stage. Overall, amino acid degradation and lipid auto-oxidation mainly occurred at gelling stage to promote the formation of related compounds.
Collapse
|
67
|
Abt E, Incorvati V, Robin LP, Redan BW. Occurrence of Ethyl Carbamate in Foods and Beverages: Review of the Formation Mechanisms, Advances in Analytical Methods, and Mitigation Strategies. J Food Prot 2021; 84:2195-2212. [PMID: 34347857 PMCID: PMC9092314 DOI: 10.4315/jfp-21-219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/02/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Ethyl carbamate (EC) is a process contaminant that can be formed as a by-product during fermentation and processing of foods and beverages. Elevated EC concentrations are primarily associated with distilled spirits, but this compound has also been found at lower concentrations in foods and beverages, including breads, soy sauce, and wine. Evidence from animal studies suggests that EC is a probable human carcinogen. Consequently, several governmental institutions have established allowable limits for EC in the food supply. This review includes EC formation mechanisms, occurrence of EC in the food supply, and EC dietary exposure assessments. Current analytical methods used to detect EC will be covered, in addition to emerging technologies, such as nanosensors and surface-enhanced Raman spectroscopy. Various mitigation methods have been used to maintain EC concentrations below allowable limits, including distillation, enzymatic treatments, and genetic engineering of yeast. More research in this field is needed to refine mitigation strategies and develop methods to rapidly detect EC in the food supply. HIGHLIGHTS
Collapse
|
68
|
Li X, Xie W, Bai F, Wang J, Zhou X, Gao R, Xu X, Zhao Y. Influence of thermal processing on flavor and sensory profile of sturgeon meat. Food Chem 2021; 374:131689. [PMID: 34875433 DOI: 10.1016/j.foodchem.2021.131689] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 11/04/2022]
Abstract
Sensory analysis and instrumental techniques were used to investigate the effect of thermal processing on sturgeon meat flavor. A lexicon consisted of 26 descriptors was established for the sensory evaluation of raw and steamed sturgeon meat (4, 8, 12, 16, 20 min at 100 °C). Ten odor attributes generated by Check-all-that-apply and Free Choice Profiling methods were selected as characteristic descriptors, which were "fishy, meaty, oily/fatty, salty, umami, ammonia/rancid, grass, fresh, earthy, and visceral". Aroma compounds were extracted by headspace-solid phase micro extraction (HS-SPME). A total of 63 and 62 volatiles were identified by gas chromatography equipped with mass spectrometry and olfactometry (GC-MS-O) and GC-ion mobility spectrometry (GC-IMS). Phospholipids accounted for 67.05% in 173 differential metabolites identified via untargeted metabolomics. 47 kinds of phosphatidylethanolamines were significantly correlated with the formation of aldehydes. This study provides a theoretical basis for regulating the flavor formation of thermal-processed aquatic products.
Collapse
|
69
|
Bull SP, Khutoryanskiy VV, Parker JK, Faka M, Methven L. Oral retention of thermally denatured whey protein: In vivo measurement and structural observations by CD and NMR. Food Chem 2021; 374:131650. [PMID: 34915364 DOI: 10.1016/j.foodchem.2021.131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/04/2022]
Abstract
This study investigated structural changes and the in vivo retention in the oral cavity of heated whey protein concentrate (WPC). Heated WPC was shown to have both a higher retention time in the oral cavity compared to unheated whey protein up to 1 min post swallow, and a concomitant increase in free thiol concentration. Nuclear magnetic resonance and circular dichroism demonstrated structural changes in the secondary and tertiary structures of the WPC upon heating. Structural loss of the β-barrel was shown to increase during heating, leading to the exposure of hydrophobic regions. The increase in free thiols and hydrophobic regions are two factors which are known to increase mucoadhesive strength and hence increase oral retention of heated whey protein which may subsequently increase the perception of mouthdrying.
Collapse
|
70
|
Lamberti C, Nebbia S, Cirrincione S, Brussino L, Giorgis V, Romito A, Marchese C, Manfredi M, Marengo E, Giuffrida MG, Rolla G, Cavallarin L. Thermal processing of insect allergens and IgE cross-recognition in Italian patients allergic to shrimp, house dust mite and mealworm. Food Res Int 2021; 148:110567. [PMID: 34507722 DOI: 10.1016/j.foodres.2021.110567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Edible insects are considered as a promising and sustainable alternative protein source for humans, although risk assessments, with particular reference to the allergic potential of insect proteins, are required. Considering that insects are likely to be consumed after processing, it is crucial to assess how processing can influence allergenicity. In our study, we investigated how boiling and frying affect the IgE cross-recognition of proteins from five edible insects (mealworm, buffalo worm, silkworm, cricket and grasshopper). We considered three groups of Italian patients allergic to shrimps and to house dust mites, who had never consumed insects before and two subjects with occupational allergy and food sensitization to mealworm. Our data suggest that thermal processing may change the solubility of proteins, thereby resulting in a protein shift from water-soluble fractions to water-insoluble fractions. Immunoblot and LC-MS/MS analyses have shown that tropomyosin may play an important role as a cross-allergen for house dust mite and shrimp allergic patients, while larval cuticle protein seems to play a major role in the cross-reactivity of patients primarily sensitized to mealworm. On the basis of our results, the effects of processing appear to be protein-, species- and treatment-specific. Therefore, house dust mite, shrimp and mealworm allergic patients should consume insects with caution, even after thermal processing.
Collapse
|
71
|
Izydorczyk G, Mikula K, Skrzypczak D, Trzaska K, Moustakas K, Witek-Krowiak A, Chojnacka K. Agricultural and non-agricultural directions of bio-based sewage sludge valorization by chemical conditioning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47725-47740. [PMID: 34278553 PMCID: PMC8410704 DOI: 10.1007/s11356-021-15293-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
This literature review outlines the most important-agricultural and non-agricultural-types of sewage sludge management. The potential of waste sludge protein hydrolysates obtained by chemical sludge conditioning was reported. The discussed areas include acidic and alkaline hydrolysis, lime conditioning, polyelectrolyte dewatering and other supporting techniques such as ultrasounds, microwave or thermal methods. The legislative aspects related to the indication of the development method and admission to various applications based on specified criteria were discussed. Particular attention was devoted to the legally regulated content of toxic elements: cadmium, lead, nickel, mercury, chromium and microelements that may be toxic: copper and zinc. Various methods of extracting valuable proteins from sewage sludge have been proposed: chemical, physical and enzymatic. While developing the process concept, you need to consider extraction efficiency (time, temperature, humidity, pH), drainage efficiency of post-extraction residues and directions of their management. The final process optimization is crucial. Despite the development of assumptions for various technologies, excess sewage sludge remains a big problem for sewage treatment plants. The high costs of enzymatic hydrolysis, thermal hydrolysis and ultrasonic methods and the need for a neutralizing agent in acid solubilization limit the rapid implementation of these processes in industrial practice.
Collapse
|
72
|
Zhao GH, Hu YY, Liu ZY, Xie HK, Zhang M, Zheng R, Qin L, Yin FW, Zhou DY. Simultaneous quantification of 24 aldehydes and ketones in oysters (Crassostrea gigas) with different thermal processing procedures by HPLC-electrospray tandem mass spectrometry. Food Res Int 2021; 147:110559. [PMID: 34399536 DOI: 10.1016/j.foodres.2021.110559] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023]
Abstract
Aldehydes and ketones are secondary oxidation products resulting from lipid oxidation that occurs during food processing. These small molecule compounds not only have an impact on the quality, odor and flavor of food, but also play a role in the pathogenesis of many human diseases. In this study, a HPLC-MS/MS analytical method was developed and validated for the simultaneous determination of 24 aldehydes and ketones. The coefficients of determination (R2) for all aldehydes and ketones were higher than 0.9975 at the range of 0.2-2000 ng/mL. The recoveries were in the range 71.20-108.13% with RSD < 10%. The method was tested by analyzing lipids from oysters with different thermal processing (boiling, frying, roasting and air frying) procedures; the highest concentration for saturated aldehydes and ketones while the highest content of unsaturated aldehydes in boiling treatment. Meanwhile, fatty acid oxidative decomposition was in agreement with aldehydes and ketones formation. Moreover, principal component analysis, orthogonal partial least-squares discriminant analysis and variable importance in projection value showed that lipid oxidation is positively related to the formation of a variety of aldehydes and ketones.
Collapse
|
73
|
Jia W, Zhang R, Liu L, Zhu Z, Mo H, Xu M, Shi L, Zhang H. Proteomics analysis to investigate the impact of diversified thermal processing on meat tenderness in Hengshan goat meat. Meat Sci 2021; 183:108655. [PMID: 34403850 DOI: 10.1016/j.meatsci.2021.108655] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
During the thermal processing, proteins of Hengshan goat meat undergo structural modifications such as degradation, oxidation and denaturation, ultimately affect the palatability and acceptability. The results of several objective metrics demonstrated that thermal processing exhibited significant impacts on the tenderness of goat meat. The 551, 84, 72, and 121 proteins were identified in the control and thermal processed groups (boiled, steamed, and roasted), respectively. Compared with the control group, the 101, 98, and 109 differentially-expressed proteins were explored in the treatment groups. Furthermore, the functions of metabolic and skeletal muscle proteome were investigated and discussed. Sensory evaluation and proteomics analysis showed that steaming and boiling treatment had no significant effect on the tenderness of goat meat, while roasting significantly reduced the tenderness, indicating that the available thermal processing methods to ensure the tenderness of goat meat were steaming and boiling treatments. Thus, the established proteomics database of goat meat provided the valuable reference for rational selection of thermal processing methods.
Collapse
|
74
|
Effect of thermal processing on the molecular, structural, and antioxidant characteristics of highland barley β-glucan. Carbohydr Polym 2021; 271:118416. [PMID: 34364557 DOI: 10.1016/j.carbpol.2021.118416] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/17/2023]
Abstract
This present work evaluated the effect of heat fluidization, microwave roasting and baking treatment of highland barley (HB) on the molecular, structural, thermal and antioxidant characteristics of β-glucan. Fluorescence microscopy results showed that heat fluidization exhibited the greatest disruption effect on endosperm cell walls, resulting in the highest extractability (3.35 ± 0.06 g/100 g flour) and purity (92.67 ± 0.73%) of β-glucan. After HB thermal processing, the molecular weight and polydispersity index of β-glucan were respectively reduced by 3.68%-90.35% and 26.45%-39.83%, and its microscopic molecular morphology transformed from large sphere aggregate to alveolate gel network structure. Meanwhile, the structural elucidation by X-ray diffraction and infrared spectroscopy revealed that thermal processing induced the scission of polymeric chain and formation of lattice-type microgels without changing the primary functional groups of β-glucan. Furthermore, thermogravimetry and antioxidant results indicated the thermal stability and antioxidant activity of β-glucan were enhanced by thermal processing.
Collapse
|
75
|
Park H, Kim J, Kim M, Park Y, Ryu S. Development of new strategy combining heat treatment and phage cocktail for post-contamination prevention. Food Res Int 2021; 145:110415. [PMID: 34112418 DOI: 10.1016/j.foodres.2021.110415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Heat treatment is an effective method for ensuring food safety and quality by controlling microbial contamination. However, food poisoning outbreaks have continuously occurred in heat-treated products due to improper thermal treatment and/or post-contamination of foodborne pathogens. This study proposes a novel strategy combining thermostable bacteriophages with thermal processing of food production plants to control foodborne pathogens and even bacterial contamination. Typically, bacteriophages' susceptibility to heat is a major challenge to their application with thermal processing, we isolated thermostable bacteriophages by a modified isolation method of applying heat to samples and characterized the thermostable bacteriophages. Furthermore, we optimized the bacteriophage cocktail components to expand the controllable host range and reduce the risk of bacteriophage resistance development. Finally, we verified this antibacterial strategy by combining heat treatment with thermostable bacteriophages in model systems, including milk and chicken breast. After the phage cocktail and heat treatment, we artificially contaminated the food products to mimic the post-contamination event. Surprisingly, the remaining bacteriophages that withstood heat treatment significantly reduced the number of post-contaminated Salmonella. Altogether, thermostable phages could be applied as complementary tools to control post-contamination after thermal processing of food products.
Collapse
|