51
|
Dcunha NJ, Wei Q, Thakral B, Medeiros LJ. From the archives of MD Anderson Cancer Center: Monomorphic epitheliotropic intestinal T-cell lymphoma: A case with an unusual immunophenotype and discussion of differential diagnosis. Ann Diagn Pathol 2024; 70:152293. [PMID: 38484479 DOI: 10.1016/j.anndiagpath.2024.152293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 05/24/2024]
Abstract
Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare and aggressive T-cell neoplasm associated with poor survival. We report a case of MEITL that presented as an ulcerated mass in the jejunum with perforation. Microscopic examination showed that the neoplasm involved the full thickness of the intestinal wall, extended into the mesentery, and was composed of monomorphic, small to medium-size cells. Immunohistochemical analysis showed that the neoplastic cells were positive for T-cell receptor (TCR) delta, CD3, CD7, CD8 (small subset), BCL-2 and TIA-1, and negative for TCR beta, CD4, CD5, CD10, CD20, CD30, CD34, CD56, CD57, CD99, ALK, cyclin D1, granzyme B, MUM1/IRF4, and TdT. The Ki-67 proliferation index was approximately 50 %. In situ hybridization for Epstein-Barr virus-encoded RNA (EBER ISH) was negative. Next-generation sequencing (NGS) analysis showed mutations involving SETD2 and STAT5B. The patient was treated with aggressive chemotherapy and consolidative autologous stem cell transplant and had clinical remission, but relapsed after about one year. Retreatment led to another one-year interval of clinical remission, but at last follow up the patient has relapsed disease involving the ileum and colon. We also discuss the differential diagnosis of MEITL.
Collapse
|
52
|
Malakhova E, Pershin D, Kulakovskaya E, Vedmedskaia V, Fadeeva M, Lodoeva O, Sozonova T, Muzalevskii Y, Kazachenok A, Belchikov V, Shelikhova L, Molostova O, Volkov D, Maschan M. Extended characterization of anti-CD19 CAR T cell products manufactured at the point of care using the CliniMACS Prodigy system: comparison of donor sources and process duration. Cytotherapy 2024; 26:567-578. [PMID: 38493403 DOI: 10.1016/j.jcyt.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AIMS The CliniMACS Prodigy closed system is widely used for the manufacturing of chimeric antigen receptor T cells (CAR-T cells). Our study presents an extensive immunophenotypic and functional characterization and comparison of the properties of anti-CD19 CAR-T cell products obtained during long (11 days) and short (7 days) manufacturing cycles using the CliniMACS Prodigy system, as well as cell products manufactured from different donor sources of T lymphocytes: from patients, from patients who underwent HSCT, and from haploidentical donors. We also present the possibility of assessing the efficiency of transduction by an indirect method. METHODS Seventy-six CD19 CAR-T cell products were manufactured using the CliniMACS Prodigy automated system. Immunophenotypic properties, markers of cell activation and exhaustion, antitumor, anti-CD19 specific activity in vitro of the manufactured cell products were evaluated. As an indirect method for assessing the efficiency of transduction, we used the method of functional assessment of cytokine secretion and expression of the CD107a marker after incubation of CAR-T cells with tumor targets. RESULTS The CliniMACS Prodigy platform can produce a product of CD19 CAR-T cells with sufficient cell expansion (4.6 × 109 cells-median for long process [LP] and 1.6 × 109-for short process [SP]), transduction efficiency (43.5%-median for LP and 41.0%-for SP), represented mainly by T central memory cell population, with low expression of exhaustion markers, and with high specific antitumor activity in vitro. We did not find significant differences in the properties of the products obtained during the 7- and 11-day manufacturing cycles, which is in favor of reducing the duration of production to 7 days, which may accelerate CAR-T therapy. We have shown that donor sources for CAR-T manufacturing do not significantly affect the composition and functional properties of the cell product. CONCLUSIONS This study demonstrates the possibility of using the CliniMACS Prodigy system with a shortened 7-day production cycle to produce sufficient amount of functional CAR-T cells. CAR transduction efficiency can be measured indirectly via functional assays.
Collapse
|
53
|
Ward RY, Stevens M, Bashir S. Metrological traceability in flow cytometry? Evaluation of a new volumetric method for lymphocyte subsets. Int J Lab Hematol 2024; 46:488-494. [PMID: 38114449 DOI: 10.1111/ijlh.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Lymphocyte subset enumeration by flow cytometry is important for the therapeutic monitoring of a range of conditions. However, current bead-based methodologies do not produce metrologically traceable results. Here we compare an established bead-based methodology with a volumetric-based system traceable to an internationally recognised reference method. METHOD A total of 118 samples received for lymphocyte subset analysis were tested using an established bead-based technique (BD Multitest™ 6-colour TBNK assay using Trucount™ tubes on a BD FACSLyric flow cytometer), followed by a volumetric method on the Sysmex XF-1600 flow cytometer using Exbio Kombitest 6-colour TBNK reagent. All samples were tested in accordance with the manufacturer's instructions. RESULTS Absolute count values from both methodologies for CD3+, CD3 + CD4+, CD3 + CD8+, CD19+ and CD3-CD16+/CD56+ lymphocyte populations were compared using linear regression (R2 for all parameters >0.95) and Bland-Altman analysis. There was no significant bias (where p < 0.05) for absolute CD3 + CD4+ lymphocytes in the defined therapeutic range of 0-250 cells/μL (mean bias: 0.27 cells/μL). Although positive biases were seen for CD3 + CD4+ lymphocytes (over the entire range tested: 14-1798 cells/μL) and CD3-CD16+/CD56+ lymphocytes (mean bias: 10.83 cells/μL and 6.79 cells/μL, respectively). Negative biases were seen for CD3 + CD8+ and CD19+ lymphocytes (mean bias: -29.17 cells/μL and - 18.76 cells/μL, respectively). CONCLUSION A high degree of correlation was found for results from both methodologies and observed bias was within the limits of clinical acceptability for all populations. This shows that the metrologically traceable lymphocyte subset absolute counts produced by the Sysmex XF-1600 are robust within clinically required limits.
Collapse
|
54
|
Dorfman DM, Devitt KA, Cui W, Bashleben C, Naharro ECF, Hedley B, Hupp M, Karlon WJ, Murphy CE, Cherian S, Olteanu H, Seifert RP, Rosado FN, Linden MA. PCNEO, a New Proficiency Testing Program for Flow Cytometric Analysis of Plasma Cell Neoplasms From the College of American Pathologists Diagnostic Immunology and Flow Cytometry Committee. Arch Pathol Lab Med 2024; 148:699-704. [PMID: 37776247 DOI: 10.5858/arpa.2023-0035-cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 10/02/2023]
Abstract
CONTEXT.— In 2018 the College of American Pathologists Diagnostic Immunology and Flow Cytometry Committee designed and implemented a new plasma cell neoplasia flow cytometry proficiency testing program-PCNEO-to allow clinical flow cytometry laboratories to monitor and assess their performance compared with a peer group. OBJECTIVE.— To report the results from the first 4 years of the PCNEO program. DESIGN.— Program participants were sent 2 sets of challenges per year, each including 1 wet challenge and 2 dry challenges, with associated clinical and laboratory findings. The wet challenges were composed of myeloma cell line specimens (with or without dilution in preserved whole blood) for flow cytometric analysis. The dry (paper) challenges were composed of clinical case summaries and images of flow cytometric test results from various flow cytometry laboratories of committee members. RESULTS.— A total of 116 to 145 laboratories from 17 countries enrolled in the proficiency testing program. For the wet challenges, almost all participants (97%-100%; cumulative, 98.2%) correctly identified the presence of neoplastic plasma cell populations based on flow cytometric analysis of undiluted myeloma cell lines. Slightly fewer participants (89.0%-97.4%; cumulative, 95.2%) correctly identified the presence of neoplastic plasma cell populations based on flow cytometric analysis of diluted myeloma cell lines (10% or 50% dilutions into peripheral blood) intended to better represent a typical clinical sample. There was generally agreement among 80% or more of participants for positive or negative staining for CD38, CD138, CD19, CD20, and surface and cytoplasmic κ and λ light chains. Similarly, 84% to 100% of participants were able to correctly identify the presence of neoplastic plasma cell populations in paper challenges, including the presence of small, neoplastic plasma cell populations (0.01%-5.0% clonal plasma cells) and the presence of nonneoplastic plasma cell populations (correctly identified by 91%-96% of participants). CONCLUSIONS.— Participant performance in the new proficiency testing program was excellent overall, with the vast majority of participants able to perform flow cytometric analysis and identify neoplastic plasma cell populations and to identify small plasma cell clones or expanded populations of reactive plasma cells in dry challenge flow cytometry results. This program will allow laboratories to verify the accuracy of their testing program and test interpretations for the assessment of patients suspected of having a plasma cell neoplasm.
Collapse
|
55
|
Li X, Eastham J, Giltnane JM, Zou W, Zijlstra A, Tabatsky E, Banchereau R, Chang CW, Nabet BY, Patil NS, Molinero L, Chui S, Harryman M, Lau S, Rangell L, Waumans Y, Kockx M, Orlova D, Koeppen H. Automated tumor immunophenotyping predicts clinical benefit from anti-PD-L1 immunotherapy. J Pathol 2024; 263:190-202. [PMID: 38525811 DOI: 10.1002/path.6274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Cancer immunotherapy has transformed the clinical approach to patients with malignancies, as profound benefits can be seen in a subset of patients. To identify this subset, biomarker analyses increasingly focus on phenotypic and functional evaluation of the tumor microenvironment to determine if density, spatial distribution, and cellular composition of immune cell infiltrates can provide prognostic and/or predictive information. Attempts have been made to develop standardized methods to evaluate immune infiltrates in the routine assessment of certain tumor types; however, broad adoption of this approach in clinical decision-making is still missing. We developed approaches to categorize solid tumors into 'desert', 'excluded', and 'inflamed' types according to the spatial distribution of CD8+ immune effector cells to determine the prognostic and/or predictive implications of such labels. To overcome the limitations of this subjective approach, we incrementally developed four automated analysis pipelines of increasing granularity and complexity for density and pattern assessment of immune effector cells. We show that categorization based on 'manual' observation is predictive for clinical benefit from anti-programmed death ligand 1 therapy in two large cohorts of patients with non-small cell lung cancer or triple-negative breast cancer. For the automated analysis we demonstrate that a combined approach outperforms individual pipelines and successfully relates spatial features to pathologist-based readouts and the patient's response to therapy. Our findings suggest that tumor immunophenotype generated by automated analysis pipelines should be evaluated further as potential predictive biomarkers for cancer immunotherapy. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
|
56
|
Konecny AJ, Mage P, Tyznik AJ, Prlic M, Mair F. OMIP-102: 50-color phenotyping of the human immune system with in-depth assessment of T cells and dendritic cells. Cytometry A 2024; 105:430-436. [PMID: 38634730 PMCID: PMC11178442 DOI: 10.1002/cyto.a.24841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
We report the development of an optimized 50-color spectral flow cytometry panel designed for the in-depth analysis of the immune system in human blood and tissues, with the goal of maximizing the amount of information that can be collected using currently available flow cytometry platforms. We established and tested this panel using peripheral blood mononuclear cells (PBMCs), but included CD45 to enable its future use for the analysis of human tissue samples. The panel contains lineage markers for all major immune cell subsets, and an extensive set of phenotyping markers focused on the activation and differentiation status of the T cell and dendritic cell (DC) compartment. We outline the biological insight that can be gained from the simultaneous measurement of such a large number of proteins and propose that this approach provides a unique opportunity for the comprehensive exploration of the immune status in human samples with a limited number of cells. Of note, we tested the panel to be compatible with cell sorting for further downstream applications. Furthermore, to facilitate the wide-spread implementation of such a panel across different cohorts and samples, we established a trimmed-down 45-color version which can be used with different spectral cytometry platforms. Finally, to generate this panel, we utilized not only existing panel design guidelines, but also developed new metrics to systematically identify the optimal combination of 50 fluorochromes and evaluate fluorochrome-specific resolution in the context of a 50-color unmixing matrix.
Collapse
|
57
|
Gutiérrez-Rios L, Calafat M, Pascual I, Roig C, Teniente-Serra A, Vergés L, González-Muñoza C, Vayreda E, Vázquez D, Gordillo J, Mañosa M, Ramírez C, Garcia-Planella E, Planella M, Domènech E. The Usefulness of Intraepithelial Lymphocyte Immunophenotype Testing for the Diagnosis of Coeliac Disease in Clinical Practice. Nutrients 2024; 16:1633. [PMID: 38892566 PMCID: PMC11174955 DOI: 10.3390/nu16111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The diagnosis of coeliac disease (CD) in adults is based on clinical, serological and histological criteria. The inappropriate performance of intestinal biopsies, non-specificity of mild histological lesions and initiation of a gluten-free diet (GFD) before biopsy may hamper the diagnosis. In these situations, determining the intraepithelial lymphogram of the duodenum by flow cytometry (IEL-FC) can be helpful. OBJECTIVES To describe the clinical scenarios in which the IEL-FC is used and its impact on the diagnosis of CD. METHODS All adult patients with suspected CD at three tertiary centres for whom the duodenal histology and IEL-FC were available were identified. Catassi and Fasano's diagnostic criteria and changes to a CD diagnosis after the IEL-FCs were collected. RESULTS A total of 348 patients were included. The following indications for an IEL-FC formed part of the initial study for CD (38%): negative conventional work-up (32%), already on a GFD before duodenal biopsies (29%) and refractoriness to a GFD (2%). The IEL-FC facilitated a definitive diagnosis in 93% of patients with an uncertain diagnosis who had had a conventional work-up for CD or who were on a GFD before histology. CONCLUSIONS The IEL-FC facilitates the confirmation or rejection of a diagnosis of CD in clinical scenarios in which a conventional work-up may be insufficient.
Collapse
|
58
|
Ishii A, Tsukamoto S, Mimura N, Miyamoto-Nagai Y, Isshiki Y, Matsui S, Nakao S, Shibamiya A, Hino Y, Kayamori K, Oshima-Hasegawa N, Muto T, Takeda Y, Suichi T, Misawa S, Ohwada C, Yokote K, Kuwabara S, Nakaseko C, Takamatsu H, Sakaida E. Detection of clonal plasma cells in POEMS syndrome using multiparameter flow cytometry. Sci Rep 2024; 14:10362. [PMID: 38710832 DOI: 10.1038/s41598-024-61034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, monoclonal protein [M-protein], and skin changes) is a rare systemic disorder characterized by various symptoms caused by underlying plasma cell (PC) dyscrasia. Detection of monoclonal PCs is mandatory for the diagnosis of POEMS syndrome; however, the usefulness of EuroFlow-based next-generation flow cytometry (EuroFlow-NGF) in POEMS syndrome for detecting monoclonal PCs in bone marrow (BM) and the gating strategy suitable for flow cytometry study of POEMS syndrome remain unknown. We employed EuroFlow-NGF-based single-tube eight-color multiparameter flow cytometry (MM-flow) and established a new gating strategy (POEMS-flow) to detect the monoclonal PCs in POEMS syndrome, gating CD38 broadly from dim to bright and CD45 narrowly from negative to dim compared to MM-flow. MM-flow detected monoclonal PCs in 9/25 (36.0%) cases, including 2/2 immunofixation electrophoresis (IFE)-negative cases (100%). However, POEMS-flow detected monoclonal PCs in 18/25 cases (72.0%), including 2/2 IFE-negative cases (100%). POEMS-flow detected monoclonal PCs with immunophenotypes of CD19- in 17/18 (94.4%). In six cases where post-treatment samples were available, the size of the clones was significantly reduced after the treatment (P = 0.031). POEMS-flow can enhance the identification rate of monoclonal PCs in POEMS syndrome and become a valuable tool for the diagnosis of POEMS syndrome.
Collapse
|
59
|
Tarfi S, Kern W, Goulas E, Selimoglu-Buet D, Wagner-Ballon O. Technical, gating and interpretation recommendations for the partitioning of circulating monocyte subsets assessed by flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:203-215. [PMID: 38656036 DOI: 10.1002/cyto.b.22176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The monocyte subset partitioning by flow cytometry, known as "monocyte assay," is now integrated into the new classifications as a supporting criterion for CMML diagnosis, if a relative accumulation of classical monocytes above 94% of total circulating monocytes is observed. Here we provide clinical flow cytometry laboratories with technical support adapted for the most commonly used cytometers. Step-by-step explanations of the gating strategy developed on whole peripheral blood are presented while underlining the most common difficulties. In a second part, interpretation recommendations of circulating monocyte partitioning from the dedicated French working group "CytHem-LMMC" are shared as well as the main pitfalls, including false positive and false negative cases. The particular flow-defined inflammatory profile is described and the usefulness of the nonclassical monocyte specific marker, namely slan, highlighted. Examples of reporting to the physician with frequent situations encountered when using the monocyte assay are also presented.
Collapse
|
60
|
Mukhopadhyay R, Chandel P, Prasad K, Chakraborty U. Machine learning aided single cell image analysis improves understanding of morphometric heterogeneity of human mesenchymal stem cells. Methods 2024; 225:62-73. [PMID: 38490594 DOI: 10.1016/j.ymeth.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024] Open
Abstract
The multipotent stem cells of our body have been largely harnessed in biotherapeutics. However, as they are derived from multiple anatomical sources, from different tissues, human mesenchymal stem cells (hMSCs) are a heterogeneous population showing ambiguity in their in vitro behavior. Intra-clonal population heterogeneity has also been identified and pre-clinical mechanistic studies suggest that these cumulatively depreciate the therapeutic effects of hMSC transplantation. Although various biomarkers identify these specific stem cell populations, recent artificial intelligence-based methods have capitalized on the cellular morphologies of hMSCs, opening a new approach to understand their attributes. A robust and rapid platform is required to accommodate and eliminate the heterogeneity observed in the cell population, to standardize the quality of hMSC therapeutics globally. Here, we report our primary findings of morphological heterogeneity observed within and across two sources of hMSCs namely, stem cells from human exfoliated deciduous teeth (SHEDs) and human Wharton jelly mesenchymal stem cells (hWJ MSCs), using real-time single-cell images generated on immunophenotyping by imaging flow cytometry (IFC). We used the ImageJ software for identification and comparison between the two types of hMSCs using statistically significant morphometric descriptors that are biologically relevant. To expand on these insights, we have further applied deep learning methods and successfully report the development of a Convolutional Neural Network-based image classifier. In our research, we introduced a machine learning methodology to streamline the entire procedure, utilizing convolutional neural networks and transfer learning for binary classification, achieving an accuracy rate of 97.54%. We have also critically discussed the challenges, comparisons between solutions and future directions of machine learning in hMSC classification in biotherapeutics.
Collapse
|
61
|
Francois F, Waeckel L, Berger AE, Lambert C. Anti-HLA-B7/HLA-B44 strong cross immunoreactivity observed in flow cytometry HLA-B27 immunotyping. Cytometry A 2024; 105:376-381. [PMID: 38379087 DOI: 10.1002/cyto.a.24824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Cross reactivities are known for human leukocyte antigen inside HLA-B7 related Cross-Reactive Group (B7CREG). Some CE-IVD flow-cytometry kits use double monoclonal antibodies (mAb) to distinguish HLA-B27 and HLA-B7 but practice reveals more complexes results. This study explores the performances of this test. Analysis of 466 consecutive cases using HLA-B27 IOTest™ kit on a Navios™ cytometer from Beckman-Coulter, partially compared to their genotypes. Expected haplotypes HLA-B27-/HLA-B7- (undoubtedly HLA-B27 negative) and HLA-B27+/HLA-B7- (undoubtedly HLA-B27+) were clearly identified according to the manufacturer's instructions. On the opposite, patients strongly labeled with anti-HLA-B7 showed three different phenotypes regarding anti-HLA-B27 labeling: (1) most of the cases were poorly labeled in accordance with cross reactivity inside B7CREG (HLA-B27-/HLA-B7+ haplotype); (2) rare cases had strong B7 and B27 labeling corresponding to HLA-B27+/HLA-B7+ haplotype; (3) even less cases had strong labeling by anti-HLA-B7 but non for anti-HLA-B27, all expressing HLA-B44 and no B7CREG molecules. Surprisingly, more cases were not labeled with anti-HLA-B7 antibody but partially labeled with anti-HLA-B27 suggesting another cross reactivity out of B7CREG. mAb HLA typing suggests new, cross reactivities of anti-HLA-B27 antibody to more molecules out of B7CREG and of anti-HLA-B7 antibody but not anti-HLA-B27 to HLA-B44 molecule also out of B7CREG. HLA-B27 could surely be excluded in most samples labeled with HLA-B27, below a "grey zone" on intermediate intensity. More comparison is needed in future studies.
Collapse
|
62
|
Lebecque B, Besombes J, Dannus LT, De Antonio M, Cacheux V, Grèze V, Montagnon V, Veronese L, Tchirkov A, Tournilhac O, Berger MG, Veyrat-Masson R. Faster clinical decisions in B-cell acute lymphoblastic leukaemia: A single flow cytometric 12-colour tube improves diagnosis and minimal residual disease follow-up. Br J Haematol 2024; 204:1872-1881. [PMID: 38432068 DOI: 10.1111/bjh.19390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Assessing minimal residual disease (MRD) in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) is essential for adjusting therapeutic strategies and predicting relapse. Quantitative polymerase chain reaction (qPCR) is the gold standard for MRD. Alternatively, flow cytometry is a quicker and cost-effective method that typically uses leukaemia-associated immunophenotype (LAIP) or different-from-normal (DFN) approaches for MRD assessment. This study describes an optimized 12-colour flow cytometry antibody panel designed for BCP-ALL diagnosis and MRD monitoring in a single tube. This method robustly differentiated hematogones and BCP-ALL cells using two specific markers: CD43 and CD81. These and other markers (e.g. CD73, CD66c and CD49f) enhanced the specificity of BCP-ALL cell detection. This innovative approach, based on a dual DFN/LAIP strategy with a principal component analysis method, can be used for all patients and enables MRD analysis even in the absence of a diagnostic sample. The robustness of our method for MRD monitoring was confirmed by the strong correlation (r = 0.87) with the qPCR results. Moreover, it simplifies and accelerates the preanalytical process through the use of a stain/lysis/wash method within a single tube (<2 h). Our flow cytometry-based methodology improves the BCP-ALL diagnosis efficiency and MRD management, offering a complementary method with considerable benefits for clinical laboratories.
Collapse
|
63
|
McDermott MF. A nosology of immune diseases from deep immunophenotyping. Nat Rev Rheumatol 2024; 20:256-257. [PMID: 38467781 DOI: 10.1038/s41584-024-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
|
64
|
Expression of Concern: Development of a 43 color panel for the characterization of conventional and unconventional T-cell subsets, B cells, NK cells, monocytes, dendritic cells, and innate lymphoid cells using spectral flow cytometry. Cytometry A 2024; 105:411. [PMID: 38758703 PMCID: PMC11524668 DOI: 10.1002/cyto.a.24850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
|
65
|
Chen X, Chen X, Zhao S, Shi Y, Zhang N, Guo Z, Qiao C, Jin H, Zhu L, Zhu H, Li J, Wu Y. Performance of a novel eight-color flow cytometry panel for measurable residual disease assessment of chronic lymphocytic leukemia. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:181-191. [PMID: 38535092 DOI: 10.1002/cyto.b.22170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Measurable residual disease (MRD) is an important prognostic indicator of chronic lymphocytic leukemia (CLL). Different flow cytometric panels have been developed for the MRD assessment of CLL in Western countries; however, the application of these panels in China remains largely unexplored. METHODS Owing to the requirements for high accuracy, reproducibility, and comparability of MRD assessment in China, we investigated the performance of a flow cytometric approach (CD45-ROR1 panel) to assess MRD in patients with CLL. The European Research Initiative on CLL (ERIC) eight-color panel was used as the "gold standard." RESULTS The sensitivity, specificity, and concordance rate of the CD45-ROR1 panel in the MRD assessment of CLL were 100% (87/87), 88.5% (23/26), and 97.3% (110/113), respectively. Two of the three inconsistent samples were further verified using next-generation sequencing. In addition, the MRD results obtained from the CD45-ROR1 panel were positively associated with the ERIC eight-color panel results for MRD assessment (R = 0.98, p < 0.0001). MRD detection at low levels (≤1.0%) demonstrated a smaller difference between the two methods (bias, -0.11; 95% CI, -0.90 to 0.68) than that at high levels (>1%). In the reproducibility assessment, the bias was smaller at three data points (within 24, 48, and 72 h) in the CD45-ROR1 panel than in the ERIC eight-color panel. Moreover, MRD levels detected using the CD45-ROR1 panel for the same samples from different laboratories showed a strong statistical correlation (R = 0.99, p < 0.0001) with trivial interlaboratory variation (bias, 0.135; 95% CI, -0.439 to 0.709). In addition, the positivity rate of MRD in the bone marrow samples was higher than that in the peripheral blood samples. CONCLUSIONS Collectively, this study demonstrated that the CD45-ROR1 panel is a reliable method for MRD assessment of CLL with high sensitivity, reproducibility, and reliability.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Flow Cytometry/methods
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/pathology
- Middle Aged
- Leukocyte Common Antigens/analysis
- Male
- Female
- Aged
- Reproducibility of Results
- Immunophenotyping/methods
- Adult
- Sensitivity and Specificity
- Aged, 80 and over
Collapse
|
66
|
Devitt KA, Kern W, Li W, Wang X, Wong AJ, Furtado FM, Oak JS, Illingworth A. TRBC1 in flow cytometry: Assay development, validation, and reporting considerations. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:192-202. [PMID: 38700195 DOI: 10.1002/cyto.b.22175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024]
Abstract
The assessment of T-cell clonality by flow cytometry has long been suboptimal, relying on aberrant marker expression and/or intensity. The introduction of TRBC1 shows much promise for improving the diagnosis of T-cell neoplasms in the clinical flow laboratory. Most laboratories considering this marker already have existing panels designed for T-cell workups and will be determining how best to incorporate TRBC1. We present this comprehensive summary of TRBC1 and supplemental case examples to familiarize the flow cytometry community with its potential for routine application, provide examples of how to incorporate it into T-cell panels, and signal caution in interpreting the results in certain diagnostic scenarios where appropriate.
Collapse
|
67
|
Xue X, Guo C, Fan C, Lei D. The causal role of circulating immunity-inflammation in preeclampsia: A Mendelian randomization. J Clin Hypertens (Greenwich) 2024; 26:474-482. [PMID: 38476059 PMCID: PMC11088432 DOI: 10.1111/jch.14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 03/14/2024]
Abstract
Patients with systemic autoimmune diseases, such as systemic lupus erythematosus, were at a higher risk for preeclampsia. The causal relationship between immunological inflammation and preeclampsia (PE) remains uncertain. We aimed to investigate the causal relationship between circulating immune inflammation and PE. Genetically predicted blood immune cells and circulating inflammatory proteins were identified using two genome-wide association studies (GWAS). We used a two-sample Mendelian randomization (MR) method to determine whether circulating immunological inflammation causes PE. Our findings indicated that ten immunophenotypes were identified to be significantly associated with PE risk: CD62L- Dendritic Cell Absolute Count, CD86+ myeloid Dendritic Cell %Dendritic Cell, CD62L- myeloid Dendritic Cell Absolute Count, CD86+ myeloid Dendritic Cell Absolute Count, CD62L- myeloid Dendritic Cell %Dendritic Cell, CD62L- CD86+ myeloid Dendritic Cell %Dendritic Cell, CD62L- CD86+ myeloid Dendritic Cell Absolute Count, CD16 on CD14+ CD16+ monocyte, HLA DR+ Natural Killer Absolute Count, and T cell Absolute Count. Ninety-one inflammation-related proteins had no statistically significant effect on PE following false discovery rate (FDR) correction. Certain proteins exhibited unadjusted low p-values that merited mention. These proteins include interleukin-10 (OR = 0.76, 95%CI = 0.63-0.93, p = .006), fibroblast growth factor 21 (OR = 1.23, 95%CI = 1.01-1.47, p = .035), and Caspase 8 (OR = 0.65, 95%CI = 0.50-0.85, p = .001). The ELISA analysis demonstrated elevated levels of FGF-21 and decreased levels of IL-10 and Caspase-8 in the plasma of patients with PE. These findings reveal that immunophenotypes and circulating inflammatory proteins may induce PE, confirming the importance of peripheral Immunity-Inflammation in PE. The discovery has the potential to lead to earlier detection and more effective treatment techniques.
Collapse
|
68
|
Pajarillo R, Paruzzo L, Carturan A, Ugwuanyi O, White G, Guruprasad P, Ballard HJ, Patel RP, Zhang Y, Lee YG, Hong SJA, Dittami GM, Ruella M. Streamlined measurement of chimeric antigen receptor T-cell concentration, size, viability and two-color phenotyping during manufacturing. Cytotherapy 2024; 26:506-511. [PMID: 38483365 PMCID: PMC11259153 DOI: 10.1016/j.jcyt.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/10/2024] [Accepted: 01/27/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND AIMS The successful development of CD19-targeted chimeric antigen receptor (CAR) T-cell therapies has led to an exponential increase in the number of patients recieving treatment and the advancement of novel CAR T products. Therefore, there is a strong need to develop streamlined platforms that allow rapid, cost-effective, and accurate measurement of the key characteristics of CAR T cells during manufacturing (i.e., cell number, cell size, viability, and basic phenotype). METHODS In this study, we compared the novel benchtop cell analyzer Moxi GO II (ORFLO Technologies), which enables simultaneous evaluation of all the aforementioned parameters, with current gold standards in the field: the Multisizer Coulter Counter (cell counter) and the BD LSRFortessa (flow cytometer). RESULTS Our results demonstrated that the Moxi GO II can accurately measure cell number and cell size (i.e., cell volume) while simultaneously assessing simple two-color flow cytometry parameters, such as CAR T-cell viability and CD4 or CAR expression. CONCLUSIONS These measurements are comparable with those of gold standard instruments, demonstrating that the Moxi GO II is a promising platform for quickly monitoring CAR T-cell growth and phenotype in research-grade and clinical samples.
Collapse
|
69
|
Hemon P, Ben-Guigui D, Geier M, Castillon M, Paranthoen C, Pers JO, Le Rochais M, Uguen A. Coupling imaging mass cytometry with Alcian blue histochemical staining for a single-slide approach. Front Immunol 2024; 15:1379154. [PMID: 38742102 PMCID: PMC11089220 DOI: 10.3389/fimmu.2024.1379154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Imaging mass cytometry (IMC) is a metal mass spectrometry-based method allowing highly multiplex immunophenotyping of cells within tissue samples. However, some limitations of IMC are its 1-µm resolution and its time and costs of analysis limiting respectively the detailed histopathological analysis of IMC-produced images and its application to small selected tissue regions of interest (ROI) of one to few square millimeters. Coupling on a single-tissue section, IMC and histopathological analyses could permit a better selection of the ROI for IMC analysis as well as co-analysis of immunophenotyping and histopathological data until the single-cell level. The development of this method is the aim of the present study in which we point to the feasibility of applying the IMC process to tissue sections previously Alcian blue-stained and digitalized before IMC tissue destructive analyses. This method could help to improve the process of IMC in terms of ROI selection, time of analysis, and the confrontation between histopathological and immunophenotypic data of cells.
Collapse
|
70
|
Li C, Xiao M, Geng S, Wang Y, Zeng L, Lai P, Gong Y, Chen X. Comprehensive analysis of human monocyte subsets using full-spectrum flow cytometry and hierarchical marker clustering. Front Immunol 2024; 15:1405249. [PMID: 38742110 PMCID: PMC11089106 DOI: 10.3389/fimmu.2024.1405249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Exploring monocytes' roles within the tumor microenvironment is crucial for crafting targeted cancer treatments. Methods This study unveils a novel methodology utilizing four 20-color flow cytometry panels for comprehensive peripheral immune system phenotyping, specifically targeting classical, intermediate, and non-classical monocyte subsets. Results By applying advanced dimensionality reduction techniques like t-distributed stochastic neighbor embedding (tSNE) and FlowSom analysis, we performed an extensive profiling of monocytes, assessing 50 unique cell surface markers related to a wide range of immunological functions, including activation, differentiation, and immune checkpoint regulation. Discussion This in-depth approach significantly refines the identification of monocyte subsets, directly supporting the development of personalized immunotherapies and enhancing diagnostic precision. Our pioneering panel for monocyte phenotyping marks a substantial leap in understanding monocyte biology, with profound implications for the accuracy of disease diagnostics and the success of checkpoint-inhibitor therapies. Key findings include revealing distinct marker expression patterns linked to tumor progression and providing new avenues for targeted therapeutic interventions.
Collapse
|
71
|
Pernes JI, Alsayah A, Tucci F, Bashford-Rogers RJM. Unravelling B cell heterogeneity: insights into flow cytometry-gated B cells from single-cell multi-omics data. Front Immunol 2024; 15:1380386. [PMID: 38707902 PMCID: PMC11067501 DOI: 10.3389/fimmu.2024.1380386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction B cells play a pivotal role in adaptive immunity which has been extensively characterised primarily via flow cytometry-based gating strategies. This study addresses the discrepancies between flow cytometry-defined B cell subsets and their high-confidence molecular signatures using single-cell multi-omics approaches. Methods By analysing multi-omics single-cell data from healthy individuals and patients across diseases, we characterised the level and nature of cellular contamination within standard flow cytometric-based gating, resolved some of the ambiguities in the literature surrounding unconventional B cell subsets, and demonstrated the variable effects of flow cytometric-based gating cellular heterogeneity across diseases. Results We showed that flow cytometric-defined B cell populations are heterogenous, and the composition varies significantly between disease states thus affecting the implications of functional studies performed on these populations. Importantly, this paper draws caution on findings about B cell selection and function of flow cytometric-sorted populations, and their roles in disease. As a solution, we developed a simple tool to identify additional markers that can be used to increase the purity of flow-cytometric gated immune cell populations based on multi-omics data (AlliGateR). Here, we demonstrate that additional non-linear CD20, CD21 and CD24 gating can increase the purity of both naïve and memory populations. Discussion These findings underscore the need to reconsider B cell subset definitions within the literature and propose leveraging single-cell multi-omics data for refined characterisation. We show that single-cell multi-omics technologies represent a powerful tool to bridge the gap between surface marker-based annotations and the intricate molecular characteristics of B cell subsets.
Collapse
|
72
|
Jara C, Veas C, Delgado C, Cabezas C, Chandía M. [Assessment of diagnostic utility of cerebrospinal fluid flow cytometry immunophenotyping and cytology in B cell non- Hodgkin lymphoma in a public chilean hospital]. Rev Med Chil 2024; 152:454-459. [PMID: 39450813 DOI: 10.4067/s0034-98872024000400454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/11/2024] [Indexed: 10/26/2024]
Abstract
Cerebrospinal fluid (CSF) involvement in B cell non-Hodgkin lymphomas is a poor prognostic sign and diagnosis is made using techniques such as flow cytometry (FCM) and conventional cytology (CC). AIM To evaluate the frequency of CSF involvement in B-NHL by both techniques in a public hospital. MATERIAL AND METHODS 97 CSF samples were analyzed in tubes with cell preservative belonging to 70 patients, 71% male, median age 56 years (18-85 years), with a diagnosis of B-NHL and risk of infiltration according to medical criteria. Most were patients from new diagnosis (89%), diffuse large B cell lymphoma (60%), and Ann-Arbor stage III-IV (77%). In 67 samples (69%), CC and CMF were performed simultaneously. RESULTS Of the samples analyzed by CMF, 99% were valuable, while by CC, only 67% (p<0,05). Globally, 25% of the samples showed infiltration by CMF, while 18% by CC (p<0,0001). Forty-four valuable samples were evaluable and analyzed by CC and CMF, finding a similar frequency of positive cases (27%), with two-thirds positive only by CC or CMF. Positive samples in diffuse large B cell lymphoma were 28% by CC and/or CMF. CONCLUSIONS A higher proportion of infiltration cases were detected by CMF than by CC. In valuable cases, CC complements CMF.
Collapse
|
73
|
Schulz AR, Rademacher J, Bockhorn V, Mei HE. Harmonized analysis of PBMC by mass cytometry. Methods Cell Biol 2024; 186:107-130. [PMID: 38705596 DOI: 10.1016/bs.mcb.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Mass cytometry permits the high dimensional analysis of cellular systems at single-cell resolution with high throughput in various areas of biomedical research. Here, we provide a state-of-the-art protocol for the analysis of human peripheral blood mononuclear cells (PBMC) by mass cytometry. We focus on the implementation of measures promoting the harmonization of large and complex studies to aid robustness and reproducibility of immune phenotyping data.
Collapse
|
74
|
Ferrer-Font L, Burn OK, Mayer JU, Price KM. Immunophenotyping challenging tissue types using high-dimensional full spectrum flow cytometry. Methods Cell Biol 2024; 186:51-90. [PMID: 38705606 DOI: 10.1016/bs.mcb.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Technological advancements in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system, have led to the development of large flow cytometry panels, reaching up to 40 markers at the single-cell level. Full spectrum flow cytometry, that measures the full emission range of all the fluorophores present in the panel instead of only the emission peaks is now routinely used in many laboratories internationally, and the demand for this technology is rapidly increasing. With the capacity to use larger and more complex staining panels, optimized protocols are required for the best panel design, panel validation and high-dimensional data analysis outcomes. In addition, for ex vivo experiments, tissue preparation methods for single-cell analysis should also be optimized to ensure that samples are of the highest quality and are truly representative of tissues in situ. Here we provide optimized step-by-step protocols for full spectrum flow cytometry panel design, tissue digestion and panel optimization to facilitate the analysis of challenging tissue types.
Collapse
|
75
|
Fernández E, Vásquez C, Urrutia L, Jara C, Veas C, Chandía M. [Assessment of the Diagnostic Utility of Cerebrospinal Fluid Flow Cytometry Immunophenotyping and Cytology in Acute Leukemias at a Public Chilean Hospital]. Rev Med Chil 2024; 152:376-381. [PMID: 39450841 DOI: 10.4067/s0034-98872024000300376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/11/2024] [Indexed: 10/26/2024]
Abstract
The diagnosis of blast cell presence in cerebrospinal fluid (CSF) in acute leukemias (AL) is made using techniques such as flow cytometry (FCM) and conventional cytology (CC). This study aims to evaluate CSF blast cell presence frequency in LA using both techniques (CC and FCM) in our center. METHODS We analyzed three hundred and eight CSF samples belonging to 175 patients, 57% male, with a median age of 46 years (1-70 years) were analyzed. Diagnoses were acute B lymphoblastic leukemia (B-ALL, 84%), acute T lymphoblastic leukemia (T-ALL 5%), acute myeloblastic leukemia (AML, 11%). The immunophenotype was performed with an 8-color panel adapted to the diagnosis. RESULTS The proportion of non-assessable CSF samples in LA was higher for CC (46%) than FCM (4%) (p<0.05). Overall, infiltration was found in 78/308 samples by FCM (25.3%) and in 8/77 by CC (10.4%) (p<0.0001). Seventy of 259 samples were positive in B-ALL (27%) and 6/34 in AML (17%). There were no CC+ cases in AML or T-ALL. The samples that were FCM+/CC+ had more significant infiltration (59.5%) than CMF+/CC-ones (30%) (p<0.0001). CONCLUSIONS CMF detects more than twice as many CSF blast-positive cases in LA as CC and is, therefore, suitable for routine use along with CC.
Collapse
|