51
|
Tan Y, Zhang Z, Wen J, Dong J, Wu C, Li Y, Yang D, Yu H. Preparation of magnesium potassium phosphate cement using by-product MgO from Qarhan Salt Lake for low-carbon and sustainable cement production. ENVIRONMENTAL RESEARCH 2022; 214:113912. [PMID: 35863442 DOI: 10.1016/j.envres.2022.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Herein, to reduce CO2 emissions and energy consumption and to promote the recycling of waste resources, two types of boron-containing MgO by-products, which were obtained by lithium extraction from Qarhan Salt Lake, China, were used as substitutes for dead-burned MgO to prepare magnesium phosphate potassium cement (MKPC) as a rapid repair material. First, the phase composition and particle-size distribution of the MgO by-product were investigated. The effects of different MgO sources, molar ratio of MgO to KH2PO4 (M/P), and curing age on the setting time and mechanical properties of MKPC were then studied. Based on the results, the mix proportion of MKPC was optimized. Finally, X-ray diffractometry, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), differential thermogravimetric (DTG) analysis, and mercury intrusion porosimetry were used to characterize the phase and microstructure evolution of MKPC prepared with different MgO contents. The results demonstrated that the by-product MgO prolonged the setting time of MKPC to more than 40 min. In addition, in the initial stage of hydration, the compressive strength of the MgO by-product was slightly lower than that of the dead-burned MgO; however, with increasing age, the mechanical properties of MKPC prepared by by-product MgO were excellent (up to 60 MPa). The phase and microstructure results revealed that the main hydration product of MKPC prepared using the three types of MgO was MgKPO4·6H2O. Combined with the physical and chemical properties of the raw materials, it was confirmed that the larger particle size and the coexisting impurities from the salt lake were the main reasons for the longer setting time of the MKPC prepared by the by-product MgO. We believe that this research will be of great significance for the preparation of low-carbon, low-cost, and high-performance MKPC materials.
Collapse
|
52
|
Yang Y, Xu W, Yang Q, Sun L, Dai Y, Liu Z, Zeng M, Yang W, Zhou C. Exploring the role of potassium ferrate and straw fiber in enhancing the strength of cement-based solidified municipal sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2358-2374. [PMID: 36378185 DOI: 10.2166/wst.2022.336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effect of potassium ferrate (PF) and straw fiber (SF) on the strength of cement-based solidified municipal sludge, including the influence of reducing the organic matter in the sludge on the efficiency of the hydration of the cement, was studied. Single-factor tests, orthogonal tests, and linear weighted optimization methods were used to obtain suitable ratios to meet practical requirements, and then SEM and XRD analyses were used to explore the solidification mechanism. The results showed that PF and SF had significant influence on the strength, with SF having the greatest influence and the strength increasing with the amount of both admixtures, and cement had no significant influence on the strength. After linear weighting optimization, the ideal dosage was found to be 20% cement, 20% PF, and 5% SF, which produced a solidified sludge that had an strength of 126.87 kPa, far higher than the 50 kPa required to qualify for disposal in landfills. Analysis of the mineral content and microstructure showed that PF and SF could promote cement hydration and produce more hydration products, and the density of the optimized sample was much higher than that of the raw sludge and a sludge sample mixed with 20% cement alone.
Collapse
|
53
|
Mei J, Li B, Su L, Zhou X, Duan E. Effects of potassium persulfate on nitrogen loss and microbial community during cow manure and corn straw composting. BIORESOURCE TECHNOLOGY 2022; 363:127919. [PMID: 36089132 DOI: 10.1016/j.biortech.2022.127919] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Strong oxidants can reduce the emission of NH3 during composting. But as a commonly used oxidant, the influence of persulfate on nitrogen transformation during composting is unclear. In this study, the effects of 0.3 %-1.2 % potassium persulfate (PS) on nitrogen losses and microbial community during air-dried cow manure composting were investigated. The results showed that PS could reduce nitrogen losses compared to the control. This was because it decreased pH and the maximum NH4+-N content of treatments, which was beneficial to nitrogen retention. In addition, Pseudoxanthomonas and Chelativorans were enriched compared to the control, which might be associated with NH4+-N transformation and nitrogen fixation. Meanwhile, PS increased the abundance of thermophilic lignocellulose degrading bacteria, and 0.3 % and 0.6 % PS increased the maximum temperature and the duration of the thermophilic period. This study indicated that PS could reduce nitrogen losses in composting and greatly influence nitrogen transforming and lignocellulose degrading bacteria.
Collapse
|
54
|
Demnitz M, Schymura S, Neumann J, Schmidt M, Schäfer T, Stumpf T, Müller K. Mechanistic understanding of Curium(III) sorption on natural K-feldspar surfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156920. [PMID: 35753478 DOI: 10.1016/j.scitotenv.2022.156920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/29/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
To assess a reliable safety case for future deep underground repositories for highly active nuclear waste the retention of radionuclides by the surrounding host rock must be understood comprehensively. Retention is influenced by several parameters such as mineral heterogeneity and surface roughness, as well as pore water chemistry (e.g., pH). However, the interplay between those parameters is not yet well understood. Therefore, we present a correlative spectromicroscopic approach to investigate sorption of the actinide Cm(III) on: 1) bulk K-feldspar crystals to determine the effect of surface roughness and pH (5.5 and 6.9) and 2) a large feldspar grain as part of a complex crystalline rock system to observe how sorption is influenced by the surrounding heterogeneous mineralogy. Our findings show that rougher K-feldspar surfaces exhibit increased Cm(III) uptake and stronger complexation. Similarly, increasing pH leads to higher surface loading and stronger Cm(III) binding to the surface. Within a heterogeneous mineralogical system sorption is further affected by neighboring mineral dissolution and competitive sorption between mineral phases such as mica and feldspar. The obtained results express a need for investigating relevant processes on multiple scales of dimension and complexity to better understand trivalent radionuclide retention by a potential repository host rock.
Collapse
|
55
|
Hanif M, Bhatti IA, Zahid M, Shahid M. Production of biodiesel from non-edible feedstocks using environment friendly nano-magnetic Fe/SnO catalyst. Sci Rep 2022; 12:16705. [PMID: 36202925 PMCID: PMC9537295 DOI: 10.1038/s41598-022-20856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Environmental problems associated with chemical catalysts to fulfil an ever-increasing energy demand have led to the search for an alternative environment friendly heterogeneous catalyst. If a catalyst being used in the biodiesel production is not environment friendly, then the environment is being contaminated in another way while trying to avoid pollution caused by burning of fossil fuels. The present study reports the use of nano-magnetic catalyst Fe/SnO supported on feldspar for the transesterification of various non-edible feedstocks oil, including Pongamia pinnata (karanja), Carthamus oxyacantha (wild safflower), Citrullus colocynthis (bitter apple), Sinapis arvensis (wild mustard) and Ricinus communis (castor). The optimized transesterification parameter was oil to methanol ratio (1:5, 1:10, 1:15, 1:20 and 1:25), catalyst amount (0.5, 1, 1.5, 2, 2.5%), temperature (40, 50, 60, 70 and 80 °C), and reaction times (30, 60, 90, 120 and 150 min). The biodiesel yield was found to be more than 97% for all the tested feedstocks with a maximum biodiesel yield of 98.1 ± 0.6% obtained for bitter apple seed oil under optimum conditions (oil to methanol ratio of 1:10, catalyst amount of 1% at 50 °C for 120 min). The catalysts used for transesterification were magnetically extracted after completion of the reaction. Different physico-chemical parameters like pour point, density, cloud point, iodine value, acid value, saponification and cetane number were determined and the quality of all the biodiesel samples were found to be in the standard range (ASTM D6751 and EN 1404). Different techniques like XRD, FTIR, SEM and EDX were used to characterize the prepared nano-magnetic (Fe/SnO/Feldspar) catalyst.
Collapse
|
56
|
Qiao Z, Xu S, Zhang W, Shi S, Zhang W, Liu H. Potassium ferrate pretreatment promotes short chain fatty acids yield and antibiotics reduction in acidogenic fermentation of sewage sludge. J Environ Sci (China) 2022; 120:41-52. [PMID: 35623771 DOI: 10.1016/j.jes.2022.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 06/15/2023]
Abstract
During the acidogenic fermentation converting waste activated sludge (WAS) into short-chain fatty acids (SCFA), hydrolysis of complex organic polymers is a limiting step and the transformation of harmful substances (such as antibiotics) during acidogenic fermentation is unknown. In this study, potassium ferrate (K2FeO4) oxidation was used as a pretreatment strategy for WAS acidogenic fermentation to increase the hydrolysis of sludge and destruct the harmful antibiotics. Pretreatment with K2FeO4 can effectively increase the SCFA production during acidogenic fermentation and change the distribution of SCFA components. With the dosage of 0.2 g/g TS, the maximum SCFA yield was 4823 mg COD/L, which is 28.3 times that of the control group; acetic acid accounts for more than 90% of the total SCFA. The higher dosage (0.5 g/g TS) can further increase the proportion of acetic acid, but inhibit the overall performance of SCFA production. Apart from the promotion of hydrolysis and acidogenesis, K2FeO4 pretreatment can also simultaneously oxidizes and degrades part of the antibiotics in the sludge. When the dosage is 0.5 g/g TS, the degradation efficacy of antibiotics is the most significant, and the contents of ofloxacin, azithromycin, and tetracycline in the sludge are reduced by 69%, 42%, and 50%, respectively. In addition, K2FeO4 pretreatment can also promote the release of antibiotics from sludge flocs, which is conducive to the simultaneous degradation of antibiotics in the subsequent biological treatment process.
Collapse
|
57
|
Zou S, Ruan Y, Liu H, Wong J, Xu S. pH regulated potassium ferrate oxidation promotes acetic acid yield and phosphorous recovery rate from waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 362:127816. [PMID: 36028050 DOI: 10.1016/j.biortech.2022.127816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
To improve the dose efficiency of K2FeO4 in waste activated sludge (WAS) treatment, pH regulation on K2FeO4 pretreatment and acidogenic fermentation was investigated. Four pretreatments were compared, i.e. pH3 + 50 g/kg-TS, pH10 + 50 g/kg-TS, neutral pH + 50 g/kg-TS and neutral pH + 100 g/kg-TS (without pH adjustment). The higher short chain fatty acids (SCFAs) yield and phosphorous dissolution rate was found under the condition of pH 10.0. In pH10 + 50 g/kg-TS, the maximum concentration of SCFAs was 5591 mg-COD/L, which yield was 22.6 times higher than that of the neutral pH + 50 g/kg-TS (237 mg COD/L). The acidogenic fermentation period could be shortened to 5 days and acetic acid accounted for 70 % of SCFAs. Furthermore, PO43--P in the hydrolysate (346.5 mg/L) accounted for 47.59 % of TP, which is easier to be recovered by chemical precipitation. Therefore, a more economical and feasible utilization mode of potassium ferrate was proposed.
Collapse
|
58
|
Reh B, Wang X, Feng Y, Bhandari RK. Potassium perchlorate effects on primordial germ cells of developing medaka larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106283. [PMID: 36063761 DOI: 10.1016/j.aquatox.2022.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Perchlorate is a chemical compound commonly used in military artillery and equipment. It has been detected in drinking water, air, soil, and breast milk. Exposure of humans to perchlorate can occur in the theater of war and areas adjacent to military training grounds. A high concentration of perchlorate has been found to affect reproduction in vertebrates, including fish. However, whether environmental concentrations of perchlorate can affect primordial germ cells (PGCs), the founders of sperm and eggs, is not clearly understood. In the present study, we examined the effects of 0, 10, 100, and 1000 μg/L potassium perchlorate exposure on the embryonic development of medaka and their PGCs. Perchlorate exposure delayed hatching time, reduced heartbeat, inhibited migration of PGCs, and increased developmental deformities in the larvae. The 10 and 20 mg/L concentrations of perchlorate were lethal to embryos, whereas vitamin C co-treatment (1 mg/L) completely blocked perchlorate-induced mortality. RNA-seq analysis of isolated PGCs showed a non-linear pattern in expression profiles of differentially altered genes. Significantly upregulated genes were found in PGCs from the 10 and 1000 μg/L groups, whereas the 100 μg/L groups showed the highest number of significantly downregulated genes. Gene ontology analysis predicted differentially expressed genes to be involved in proteolysis, metabolic processes, peptides activity, hydrolase activity, and hormone activity. Among the cellular components, extracellular, intracellular, sarcoplasmic, and 6-phosphofructokinase and membrane-bounded processes were affected. Ingenuity Pathway Analysis of PGC transcriptomes revealed thyroid hormone signaling to be affected by all concentrations of perchlorate. The present results suggested that perchlorate affected the development of medaka larvae and vitamin C was able to ameliorate perchlorate-induced embryo mortality. Additionally, perchlorate altered the global transcriptional network in PGCs in a non-linear fashion suggesting its potential effects on developing germ cells and fertility.
Collapse
|
59
|
Simerl N, Beavers J, Bahadori AA, McNeil W. Aerial and Collimated Sensor Radiological Mapping Following Dispersal of Activated Potassium Bromide. HEALTH PHYSICS 2022; 123:267-277. [PMID: 36049133 DOI: 10.1097/hp.0000000000001591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The exposure rate distribution was quantified over a site of three activated potassium bromide radiological dispersal device detonations at the Idaho National Laboratory Radiological Response Training Range with unmanned aerial vehicle (UAV) and ground-based methods. Discussions on the methods' survey characteristics, such as survey time, data spatial resolution, and area coverage, serve to inform those concerned with radiological response and cleanup efforts. Raster scans over the site at 4 m s-1 with 6 m between passes at an altitude of 4 m above ground level were executed with a 2.54 cm × 2.54 cm × 7.62 cm cesium iodide, sodium-doped [CsI(Na)] sensor mounted to a UAV. Exposure rates were calculated from the spectra obtained by the CsI(Na) using a flux unfolding method. Data obtained from the UAV raster were interpolated to produce a continuous exposure rate map across the site. The activity on the ground, inferred from collimated, ground-based sensor (Nomad) measurements in previous work, was used to calculate exposure rate distributions at the same altitude as the UAV-mounted CsI(Na) sensor. Agreement between Nomad and UAV exposure rate distributions is observed at rates up to 1.0 mR h-1 after corrections for ground effects were implemented on the Nomad data. Discrepancies in exposure rate contours are present at higher rates, directly above the detonation locations. In areas of high exposure rate gradients, it is anticipated that a faster UAV-mounted sensor and more refined scans by the UAV will improve characterization of the distribution.
Collapse
|
60
|
Zhang Y, Kong X, Yang Y, Ran Y. Role of the sedimentary organic matter structure and microporosity on the degradation of nonylphenol by potassium ferrate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119740. [PMID: 35817300 DOI: 10.1016/j.envpol.2022.119740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In this study, the role of organic matter structure and microporosity in the adsorption and degradation of radioactive nonylphenol in sediments treated with potassium ferrate solutions was investigated. The demineralized fractions and acid non-hydrolyzable fractions were isolated and characterized via advanced solid-state 13C nuclear magnetic resonance and CO2 gas adsorption technology, respectively. Radioactive nonylphenol in the sediments was also fractionated into 14CO2, water-soluble residues, extractable residues, and strongly bound residues after treatment with potassium ferrate. A first-order, two-compartment kinetic model well described the mineralization and degradation kinetics of radioactive nonylphenol in the sediment (R2 > 0.99). The degradation percentages of spiked nonylphenol were highly negatively correlated with aromatic carbon, aliphatic carbon, and microporosity estimated from acid-non-hydrolyzable fractions in the bulk sediments (R2 > 0.82, p < 0.01). The percentages of adsorbed parent nonylphenol residues were highly positively correlated with aromatic carbon, aliphatic carbon, and microporosity estimated from acid-non-hydrolyzable fractions in the bulk sediments (R2 > 0.90, p < 0.01). The parent nonylphenol compound desorbed into the aqueous phase and was completely degraded. This study is the first to demonstrate the important role of aromatic carbon, aliphatic carbon, and microporosity in acid non-hydrolyzable fractions on the degradation of nonylphenol during the potassium ferrate oxidation treatment process.
Collapse
|
61
|
Yazdanpanah F, Willems LAJ, He H, Hilhorst HWM, Bentsink L. A Role for Allantoate Amidohydrolase (AtAAH) in the Germination of Arabidopsis thaliana Seeds. PLANT & CELL PHYSIOLOGY 2022; 63:1298-1308. [PMID: 35861030 PMCID: PMC9474941 DOI: 10.1093/pcp/pcac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy is a very complex trait controlled by interactions between genetic and environmental factors. Nitrate is inversely correlated with seed dormancy in Arabidopsis. This is explained by the fact that seed dry storage (after-ripening) reduces the need for nitrogen for germination. When nitrate is absorbed by plants, it is first reduced to nitrite and then to ammonium for incorporation into amino acids, nucleic acids and chlorophyll. Previously, we showed that ALLANTOATE AMIDOHYDROLASE (AtAAH) transcripts are up-regulated in imbibed dormant seeds compared with after-ripened seeds. AAH is an enzyme in the uric acid catabolic pathway which catalyzes the hydrolysis of allantoate to yield CO2, NH3 and S-ureidoglycine. This pathway is the final stage of purine catabolism, and functions in plants and some bacteria to provide nitrogen, particularly when other nitrogen sources are depleted. Ataah mutant seeds are more dormant and accumulate high levels of allantoate, allantoin and urea, whereas energy-related metabolites and several amino acids are lower upon seed imbibition in comparison with Columbia-0. AtAAH expression could be detected during the early stages of seed development, with a transient increase around 8 d after pollination. AtAAH expression is the highest in mature pollen. The application of exogenous potassium nitrate can partly complement the higher dormancy phenotype of the Ataah mutant seeds, whereas other nitrogen sources cannot. Our results indicate that potassium nitrate does not specifically overcome the alleviated dormancy levels in Ataah mutant seeds, but promotes germination in general. Possible pathways by which AtAAH affects seed germination are discussed.
Collapse
|
62
|
Chaudhry B, Akhtar MS, Ahmad M, Munir M, Zafar M, Alhajeri NS, Al-Muhtaseb AH, Ahmad Z, Hasan M, Bokhari A. Membrane based reactors for sustainable treatment of Coronopus didymus L. by developing Iodine doped potassium oxide Catalyst under Dynamic conditions. CHEMOSPHERE 2022; 303:135138. [PMID: 35636597 DOI: 10.1016/j.chemosphere.2022.135138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Green nano-technology together with the availability of eco-friendly and alternative sources are the promising candidates to combat environment deteriorations and energy clutches globally. The current work focuses on the synthesis and application of newly synthesized nano catalyst of Iodine doped Potassium oxide I (K2O) for producing sustainable biodiesel from novel non-edible seed oils of Coronopus didymus L. using membrane based contactor to avoid emulsification and phase separation issues. Highest biodiesel yield (97.03%) was obtained under optimum conditions of 12:1 methanol to oil ratio, reaction temperature of 65 °C for 150 min with the 1.0 wt% catalyst concentration. The lately synthesized, environment friendly and recyclable Iodine doped Potassium oxide K (IO)2 catalyst was synthesized via chemical method followed by characterization via advanced techniques including EDX, XRD, FTIR and SEM analysis. The catalyst was proved to be stable and efficient with the reusability of five times in transesterification reaction. These analysis have reported the sustainability, stability and good quality of biodiesel from seed oil of Coronopus didymus L. using efficient Iodine doped potassium oxide catalyst. Thus, non-edible, environment friendly and novel Coronopus didymus L. seeds and their extracted oil along with Iodine doped potassium oxide catalyst seems to be highly affective, sustainable and better alternative source to the future biodiesel industry. Also, by altering the reaction equilibrium and lowering the purification phases of the process, these studies show the potential of coupling transesterification and a membrane contactor.
Collapse
|
63
|
Samiyammal P, Kokila A, Pragasan LA, Rajagopal R, Sathya R, Ragupathy S, Krishnakumar M, Minnam Reddy VR. Adsorption of brilliant green dye onto activated carbon prepared from cashew nut shell by KOH activation: Studies on equilibrium isotherm. ENVIRONMENTAL RESEARCH 2022; 212:113497. [PMID: 35618006 DOI: 10.1016/j.envres.2022.113497] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Activated carbon from cashew nut shell via a potassium hydroxide (KOH) at 600 °C in an N2 atmosphere and their characteristics using FT-IR, XRD, SEM with EDS, and BET analysis was investigated. The cashew nut shell activated carbon obtained by KOH activation with a CNS/KOH ratio of 1:1 at 600 °C (N2 atmosphere) for 2 h had the highest surface area (407.80 m2/g) as compared to other ratio samples. Amongst, CNS/KOH ratios of 1:1 sample are used for the adsorbent, they are effects of contact time, pH, adsorbent dose, and initial dye concentration on brilliant green (BG) removal efficiency were studied. Moreover, the Langmuir and Freundlich adsorption models consisted utilized to affirm the adsorption isotherms. They are, best fitting for BG experimental equilibrium data was achieved with the Langmuir isotherm, giving a maximum BG adsorption capacity of 243.90 mg/g.
Collapse
|
64
|
Qu J, Wu Z, Liu Y, Li R, Wang D, Wang S, Wei S, Zhang J, Tao Y, Jiang Z, Zhang Y. Ball milling potassium ferrate activated biochar for efficient chromium and tetracycline decontamination: Insights into activation and adsorption mechanisms. BIORESOURCE TECHNOLOGY 2022; 360:127407. [PMID: 35667535 DOI: 10.1016/j.biortech.2022.127407] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Herein, novel Fe-biochar composites (MBCBM500 and MBCBM700) were synthesized through K2FeO4 co-pyrolysis and ball milling, and were used to eliminate Cr(VI)/TC from water. Characterization results revealed that higher temperature promoted formation of zero-valent iron and Fe3C on MBCBM700 through carbothermal reduction between K2FeO4 and biochar. The higher specific surface area and smaller particle size of MBCBM500/700 stemmed from the corrosive functions of K and the ball milling process. And the maximal uptake amount of MBCBM700 for Cr(VI)/TC was 117.49/90.31 mg/g, relatively higher than that of MBCBM500 (93.86/84.15 mg/g). Furthermore, ion exchange, pore filling, precipitation, complexation, reduction and electrostatic attraction were proved to facilitate the adsorption of Cr(VI), while hydrogen bonding force, pore filling, complexation and π-π stacking were the primary pathways to eliminate TC. This study provide a reasonable design of Fe-carbon materials for Cr(VI)/TC contained water remediation, which required neither extra modifiers nor complex preparation process.
Collapse
|
65
|
Chanpee S, Kaewtrakulchai N, Khemasiri N, Eiad-ua A, Assawasaengrat P. Nanoporous Carbon from Oil Palm Leaves via Hydrothermal Carbonization-Combined KOH Activation for Paraquat Removal. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165309. [PMID: 36014545 PMCID: PMC9416012 DOI: 10.3390/molecules27165309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
In this study, nano-porous carbon was completely obtained from oil palm leaves (OPL) by hydrothermal pretreatment with chemical activation, using potassium hydroxide (KOH) as an activating agent. Potassium hydroxide was varied, with different ratios of 1:0.25, 1:1, and 1:4 (C: KOH; w/w) during activation. The physical morphology of nano-porous carbon has a spongy, sponge-like structure indicating an increase in specific surface area and porosity with the increasing amount of KOH activating agent. The highest specific surface area of OPL nano-porous carbon is approximately 1685 m2·g-1, with a total pore volume of 0.907 cm3·g-1. Moreover, the OPL nano-porous carbon significantly showed a mesoporous structure designed specifically to remove water pollutants. The adsorptive behavior of OPL nano-porous carbon was quantified by using paraquat as the target pollutant. The equilibrium analyzes were explained by the Langmuir model isotherm and pseudo-second-order kinetics. The maximum efficiency of paraquat removal in wastewater was 79%, at a paraquat concentration of 400 mg·L-1, for 10 min in the adsorption experiment. The results of this work demonstrated the practical application of nano-porous carbon derived from oil palm leaves as an alternative adsorbent for removing paraquat and other organic matter in wastewater.
Collapse
|
66
|
Yang WJ, He ZW, Ren YX, Jin HY, Tang CC, Zhou AJ, Liu W, Wang A. Potassium ferrate followed by alkali-stripping treatment to achieve short-chain fatty acids and nitrogen recovery from waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 358:127430. [PMID: 35667531 DOI: 10.1016/j.biortech.2022.127430] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Waste activated sludge (WAS) is a potential resource to achieve carbon-neutral goal of wastewater treatment plant. However, the solubilization is always the rate-limiting step for resource recovery from anaerobic digestion of WAS. This study reported a novel strategy, i.e., potassium ferrate (PF) followed by alkali-stripping treatment, to achieve short-chain fatty acids (SCFAs) and nitrogen recovery from WAS. Results showed that whether the stripping process was conducted under alkaline condition or not, the SCFAs production potential was increased rather than reduced. The promoted SCFAs production was due to the accelerated solubilization and hydrolysis stages but the inhibited methanogenesis stage. The SCFAs yield reached 258 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS), and the carbon source, including SCFAs, soluble polysaccharides and proteins, reached 384 mg COD/g VSS. The potentially recovered nitrogen was about 8.71 mg NH4+-N/g VSS. This work may provide some new solutions for enhancing resource recovery from WAS.
Collapse
|
67
|
Kraemer Y, Bergman EN, Togni A, Pitts CR. Oxidative Fluorination of Heteroatoms Enabled by Trichloroisocyanuric Acid and Potassium Fluoride. Angew Chem Int Ed Engl 2022; 61:e202205088. [PMID: 35580251 PMCID: PMC9400999 DOI: 10.1002/anie.202205088] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 12/27/2022]
Abstract
In synthetic method development, the most rewarding path is seldom a straight line. While our initial entry into pentafluorosulfanyl (SF5 ) chemistry did not go according to plan (due to inaccessibility of reagents such as SF5 Cl at the time), a "detour" led us to establish mild and inexpensive oxidative fluorination conditions that made aryl-SF5 compound synthesis more accessible. The method involved the use of potassium fluoride and trichloroisocyanuric acid (TCICA)-a common swimming pool disinfectant-as opposed to previously employed reagents such as F2 , XeF2 , HF, and Cl2 . Thereafter, curiosity led us to explore applications of TCICA/KF as a more general approach to the synthesis of fluorinated Group 15, 16, and 17 heteroatoms in organic scaffolds; this, in turn, prompted SC-XRD, VT-NMR, computational, and physical organic studies. Ultimately, it was discovered that TCICA/KF can be used to synthesize SF5 Cl, enabling SF5 chemistry in an unexpected way.
Collapse
|
68
|
Yang B, Wen Q, Chen Z, Tang Y. Potassium ferrate combined with ultrafiltration for treating secondary effluent: Efficient removal of antibiotic resistance genes and membrane fouling alleviation. WATER RESEARCH 2022; 217:118374. [PMID: 35398806 DOI: 10.1016/j.watres.2022.118374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 05/09/2023]
Abstract
Antibiotic resistance genes (ARGs) are considered as emerging environmental contaminants, which should be controlled by wastewater treatment plants to prevent their discharge into the environment. However, conventional treatment techniques generally fail to successfully reduce ARGs, and the release of cell-free ARGs was underestimated. In this study, potassium ferrate (Fe(VI)) pretreatment combined with ultrafiltration (UF) process was developed to remove both cell-associated and cell-free ARGs in real secondary effluent, compared to ferric chloride (Fe(III)) and poly-aluminum chloride (PACl) pretreatment processes. It was found that total ARGs especially cell-free ARGs were effectively removed by Fe(VI) oxidation. However, due to the poor settleability of the negatively charged particles formed by Fe(VI) in the secondary effluent, the removal of cell-associated ARGs was less compared to Fe(III) and PACl pretreatments. The combination of Fe(VI) and UF removed the most ARGs (3.26 - 5.01 logs) due to the efficient removal of cell-free ARGs by Fe(VI) (> 2.15 logs) and co-interception of both cell-associated ARGs and Fe(VI) formed particles of the UF. High-throughput sequencing revealed that Fe(VI) decreased the viability and relative abundances of the potential ARGs hosts. Fe(VI)-UF exhibited the best performance on humic-like fluorescent organic matters removal, as well as the least phytotoxicity in the effluent. Moreover, membrane fouling was remarkably alleviated by Fe(VI) pretreatment because (1) Fe(VI) removed macromolecules such as protein-like and polysaccharide-like substances which would block the membrane pores, (2) Fe(VI) improved the hydrophilicity of foulants and reduced the hydrophobic adsorption between foulants and membrane. In short, Fe(VI)-UF is a promising technology to efficiently remove ARGs (especially cell-free ARGs) and alleviate UF membrane fouling in wastewater reclamation.
Collapse
|
69
|
Chen Y, Jin Q, Tang Z. Degradation of ofloxacin by potassium ferrate: kinetics and degradation pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44504-44512. [PMID: 35133598 DOI: 10.1007/s11356-022-18949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Drug residues, including various antibiotics, are being increasingly detected in aqueous environments. Ofloxacin (OFX) is one such antibiotic that is widely used in the treatment of several bacterial infections; however, chronic exposure to this antibiotic can have adverse impacts on human health. Hence, the identification of an effective OFX degradation method is essential. Thus, in this study, the degradation performance of OFX using potassium ferrate (Fe(VI)) under the influence of different initial concentrations, pH, temperature, and common ions in water was investigated. OFX degradation by Fe(VI) was directly proportional to the concentration of Fe(VI) and temperature and inversely proportional to the pH. Among the common ions in water, Fe3+ and NH4+ could significantly promote the degradation of OFX by Fe(IV), while humic acid (HA) significantly inhibited it. Under the conditions of [Fe(VI)]:[OFX] = 15:1, T = 25℃, and pH = 7.0, the removal efficiency of 8 μM OFX reached more than 90% in 4 min. Seven intermediates were identified by quadrupole time-of-flight tandem ultra-performance liquid chromatography mass spectrometry (Q-TOF LC/MS), and two possible pathways for the degradation of OFX by Fe(VI) were proposed. Overall, the results suggest that advanced oxidation technology using Fe(VI) is effective for treating wastewater containing OFX.
Collapse
|
70
|
Wen Q, Liu B, Chen Z. Simultaneous recovery of vivianite and produce short-chain fatty acids from waste activated sludge using potassium ferrate as pre-oxidation treatment. ENVIRONMENTAL RESEARCH 2022; 208:112661. [PMID: 35032543 DOI: 10.1016/j.envres.2021.112661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/12/2021] [Accepted: 12/30/2021] [Indexed: 05/16/2023]
Abstract
Recovery resources from waste active sludge (WAS) is an effective way to alleviate the predicament of WAS disposal, and it is also conducive to the carbon neutralization of wastewater treatment systems. This study discussed the strategy of WAS anaerobic fermentation after pre-oxidation with potassium ferrate (K2FeO4, PF), which can simultaneously recover vivianite and enhance SCFAs production. The results showed that PF pre-oxidation considerably shortened the fermentation time of SCFAs to 2 days, and the main Fe-P mineral was vivianite. The optimal PF dosage of 0.06 g Fe (VI)/g TSS for pre-oxidation WAS resulted in the maximum SCFAs production and vivianite recovery rate of 3698.2 ± 118.98 mg COD/g VSS and 32.39%, respectively. The mechanism analysis showed that the oxidizing properties of PF significantly accelerated the disintegration of tight EPS, release of protein and sludge acidification efficiency. Moreover, the PF strengthened the transfer of P to the solid phase, forming the Fe-P mineral and unsaturated coordination state of phosphate group. Then the key microorganism Geobacter reduced the Fe3+ in Fe-P state to Fe2+ and combined unsaturated phosphate to form vivianite. This study provides an alternative method for resource recovery and environmentally friendly disposal of WAS and contributes to the carbon neutrality of urban water systems.
Collapse
|
71
|
Choudhary A, Khandelwal N, Singh N, Tiwari E, Ganie ZA, Darbha GK. Nanoplastics interaction with feldspar and weathering originated secondary minerals (kaolinite and gibbsite) in the riverine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151831. [PMID: 34813809 DOI: 10.1016/j.scitotenv.2021.151831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Despite the massive accumulation of nanoplastics (NPs) in the freshwater system, research so far has highly focused on the marine environment. NPs interaction with mineral surfaces can influence their fate in freshwater, which will further impact their bioavailability and transport to the oceans. Current work focuses on understanding NPs interaction with weathering sequence of minerals in freshwater under varying geochemical conditions. Primary mineral feldspar and weathering originated secondary minerals, i.e., kaolinite and gibbsite, were investigated for interaction with NPs under batch mode under relevant environmental conditions. Minerals-NPs interaction was also investigated in natural water samples. Results showed that the amorphous nature, small particle size, and positive surface charge of gibbsite resulted in multi-fold sorption of NPs (108.1 mg/g) compared to feldspar (7.7 mg/g) and kaolinite (11.9 mg/g). FTIR spectroscopy revealed hydrogen bonding and complexation as major players in gibbsite-NPs interaction suggesting the possibility of their co-precipitation. The continuous adsorption-desorption and limited sorption capacity of feldspar and kaolinite can be attributed to their negative surface charge, larger size, crystalline nature, and physical sorption. Therefore, both minerals may co-transport and enhance the mobility of NPs.
Collapse
|
72
|
Wen Q, Chen Y, Rao X, Yang R, Zhao Y, Li J, Xu S, Liang Z. Preparation of magnesium Ferrite-Doped magnetic biochar using potassium ferrate and seawater mineral at low temperature for removal of cationic pollutants. BIORESOURCE TECHNOLOGY 2022; 350:126860. [PMID: 35219789 DOI: 10.1016/j.biortech.2022.126860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biochar has captured a great interest for remediation of environment as an easily separable carbonous adsorbent. Herein, a highly adsorptive magnetic biochar was manufactured through seawater mineral and K2FeO4 co-promoted pyrolysis of jackfruit peel at 300 °C for removal of different cationic pollutants, and characterized by element analysis, FTIR, SEM-EDS, XRD, XPS and so on. MgFe2O4 was generated without external base and a 19.42 emu/g saturation magnetization was achieved. Simultaneously, iron oxides and oxygen containing groups were introduced. The magnetic biochar exhibited 61.30 mg/g, 129.61 mg/g, and 1238.30 mg/g adsorption capacities for Cu2+, methylene blue (MB), and malachite green (MG) at 25 °C, respectively, and remarkably surpassed the corresponding pristine biochar. The adsorption of MB and MG was mainly realized by electrostatic interaction, hydrogen bonding, complexation, and π-π electron-donor-acceptor interaction, and that of Cu2+ was attributed to electrostatic interaction, hydrogen bonding, and complexation.
Collapse
|
73
|
Lv J, Tu M, Chen X, Li S, Li Y, Jiang J. Effect of potassium persulphate addition on sludge disintegration of a mesophilic anaerobic fermentation system. ENVIRONMENTAL TECHNOLOGY 2022; 43:1709-1722. [PMID: 33170751 DOI: 10.1080/09593330.2020.1849407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Persulphates, an advanced oxidation process, has been recently used as an alternative pretreatment method to enhance short-chain fatty acids (SCFAs) yield from waste-activated sludge (WAS) anaerobic fermentation (AF). But so far, the effects of peroxydisulphate (PDS) dosages on mesophilic anaerobic fermentation are still not studied fully. Herein, we explored the influences of potassium PDS addition on mesophilic AF of WAS. Notably, the addition of PDS could drastically accelerate WAS solubilization and hydrolysis, which was proportional to the amount of PDS. The maximal total SCFAs yield of 249.14 mg chemical oxygen demand/L was obtained with 120 mg PDS/g suspended solids addition at 6 days of AF, which was 2.2-fold that of the control one. Tightly bound extracellular polymeric substances (EPSs) were transformed into loosely bound EPS and dissolved organic matters, and aromatic proteins and humic-like substances of EPSs were disintegrated, which were caused by the devastating effects of PDS treatments on EPSs disruption. The intracellular constituents of microbial cells in the sludge were released accordingly. As a result, there was release of soluble substrates derived from the disintegration of both EPSs and cells, the amounts of which were proportional to the dose of PDS. Moreover, microbial diversity and richness were both decreased in the presence of PDS, and the relative abundance of phyla Actinobacteria increased with the increase of the PDS dosage. In addition, the stability of sludge flocs was destroyed in the presence of PDS, the distribution of particle size tended to be small and dispersive, and dewaterability of the sludge was deteriorated.
Collapse
|
74
|
Ma Y, Chen S, Qi Y, Yang L, Wu L, He L, Li P, Qi X, Gao F, Ding Y, Zhang Z. An efficient, green and sustainable potassium hydroxide activated magnetic corn cob biochar for imidacloprid removal. CHEMOSPHERE 2022; 291:132707. [PMID: 34710451 DOI: 10.1016/j.chemosphere.2021.132707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/01/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The extensive use of imidacloprid (IMI) has led to its being frequently detected in natural water, also caused the potential damage to the ecosystem. Development of efficient, green and sustainable technique is demanded to eliminate this problem. A novel biochar (KMCBC) derived from agriculture waste of corn cob was first time co-modified by potassium hydroxide (KOH), ferric chloride (FeCl3) and zinc chloride (ZnCl2), which showed the greater adsorption amount (410 mg g-1 at 298 K) for imidacloprid (IMI). Pseudo-second-order kinetic and Langmuir isotherm models fitted well with the experimental data, together with the physicochemical characterization analysis, demonstrating that the adsorption process of IMI by KMCBC might be mainly controlled by micropore filling, π-π electron donor-acceptor and functional groups interactions (H-bonding and complexation). Additionally, the thermodynamics parameters suggested that IMI adsorption in this study was a spontaneous, endothermic and randomly increasing process. Besides, KMCBC owned the easy separation performance and promising environmental safety, also exhibited a high selective adsorption capacity regardless of solution pH (its optimum adsorption performance for IMI was obtained at pH = 5), inorganic ions strength and humic acid (HA) concentrations. The regenerated KMCBC (synergistic ultrasound/ethanol) could sustainably and efficiently adsorb IMI in the reuse cycles. Therefore, this study provided an efficient, green and sustainable adsorbent of KMCBC for IMI removal.
Collapse
|
75
|
Hossain N, Nizamuddin S, Selvakannan P, Griffin G, Madapusi S, Shah K. The effect of KOH activation and Ag nanoparticle incorporation on rice husk-based porous materials for wastewater treatment. CHEMOSPHERE 2022; 291:132760. [PMID: 34740697 DOI: 10.1016/j.chemosphere.2021.132760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/01/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Major agricultural solid waste, rice husk (RH)-based mesoporous materials were prepared by potassium hydroxide (KOH) treatment of RH and RH hydrochar (RHH) produced at 180 °C with 20 min reaction time. In this study, RH was treated with three different methods: RH activation by KOH (KOH-RH), RH activation by KOH-aqueous silver (Ag)-shell nanoparticle (AgNP) incorporation followed calcination at 550 °C for 2 h (AgNP-KOH-RH) and hydrothermally carbonized RH activation by KOH (KOH-RHH). The main objective of this study was to determine the effect of KOH activation with different synthesis approaches and compare the characterization results of RH based porous material to identify the potential adsorbent application for wastewater treatment. Therefore, after activation in different methods, all interactive properties such as elemental, chemical, structural, morphological, and thermal analyses were investigated comprehensively for all samples. The crystallinity peak intensity around 22°λ at the angle of diffraction of 2θ confirmed the presence of silica, higher stability of the material, and removal of organic components during the KOH activation. AgNP-KOH-RH and KOH-RHH presented high porosity on the outer surface. The presence of negligible volatile matter in KOH-RHH by TGA demonstrated the decomposition of organic compound. Very high ratio of aromatic carbon and lignin content by FTIR and XPS analysis in both AgNP-KOH-RH and KOH-RHH showed these two samples have improved stability. Very high negative surface charge (zeta potential) in AgNP-KOH-RH (-43.9 mV) and KOH-RHH (-43.1 mV) indicated the enhanced water holding capacity. Surface area for all experimented porous materials has been enhanced after KOH activation, where KOH-RHH demonstrated the maximum surface area value, 27.87 m2/g. However, AgNP-KOH-RH presented maximum pore diameter, 18.16 nm, and pore volume, 0.12 cm3/g. Hence, it can be concluded that both KOH-RHH and AgNP-KOH-RH have the potential to be implemented as wastewater adsorbents.
Collapse
|