51
|
Nakayama Y, Inoue H, Hamada Y, Takeshita M, Iwasaki H, Maeshiro K, Iwanaga SI, Tani H, Ryu S, Yasunami Y, Ikeda S. Intraductal Tubular Adenoma of the Pancreas, Pyloric Gland Type. Am J Surg Pathol 2005; 29:607-16. [PMID: 15832084 DOI: 10.1097/01.pas.0000157939.03409.ec] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The intraductal tubular adenoma (ITA), pyloric gland type, of the pancreas is an uncommon benign tumor, akin to the pyloric gland type adenoma of the gallbladder. We report 6 cases of ITA of the pancreas: 3 male and 3 female aged 50 to 79 years (mean, 63.5 years; median, 65 years); all were examined clinicopathologically. Four patients showed no symptoms, but appetite loss and/or general fatigue presented in two. Grossly, all tumors formed a localized polypoid mass protruding into the lumen of the dilated pancreatic duct. Five of the six tumors were found within the main duct, and the other arose within the branch duct of the pancreas. Microscopically, the tumors were composed of closely packed tubular glands resembling pyloric type glands. They were lined by columnar or cuboidal epithelial cells with foci of mild to moderate dysplastic change. In 2 cases, the adjacent pancreas showed foci of intraductal papillary-mucinous adenoma. Histochemically, the tumors largely showed neutral mucin with a lesser amount of acidic mucin made up mainly of sialomucin. Endocrine cells were found in five tumors. Immunohistochemically, all tumors were labeled with M-GGMC-1 and MUC6, whereas MUC1 and MUC2 stains were negative. Pepsinogen II was positive in 5 tumors; thus, the results displayed a pattern of differentiation similar to those of ordinary gastric pyloric or metaplastic pyloric glands. DPC4 expression was maintained in all tumors and p53-positive nuclei were hardly encountered. All patients are alive with no evidence of disease 3 to 10.5 years after surgical resection.
Collapse
|
52
|
Fukushima N, Mukai K. [Pathologic characteristics and evaluation of the pancreatic cancer]. Gan To Kagaku Ryoho 2005; 32:599-604. [PMID: 15918557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ductal adenocarcinoma is the most common tumor type of cancer of the pancreas. It is generally a poorly demarcated, white to grey-solid tumor located in the pancreatic head. Histologically, it is often well-to moderately-differentiated tubular adenocarcinoma along with marked desmoplastic change. There are three well-defined precursors to invasive cancer; mucinous cystic neoplasms (MCNs), intraductal papillary mucinous neoplasms (IPMNs), and pancreatic intraepithelial neoplasia PanINs. PanIN is now considered to be a precursor of pancreatic ductal adenocarcinoma based on molecular studies. However, it is difficult to distinguish between small IPMNs and PanINs pathologically because both of them often show similar epithelium with cytoplasmic mucin. IPMNs and MCNs can form similar invasive carcinomas such as tubular adenocarcinoma and/or mucinous carcinoma. Another focus of this review is the issue of pathologic evaluation of the surgically resected specimens. Histologic grading and pathologic staging of each case are important especially in terms of the clinical aspects. Careful attention should be paid to the processes and/or criteria of pathologic diagnosis.
Collapse
|
53
|
Abstract
The intestinal tract has a rapid epithelial cell turnover, which continues throughout life. The process is regulated and maintained by a population of stem cells, which give rise to all the intestinal epithelial cell lineages. Studies in both the mouse and the human show that these cells are capable of forming clonal crypt populations. Stem cells remain hard to identify, however it is thought that they reside in a 'niche' towards the base of the crypt and their activity is regulated by the paracrine secretion of growth factors and cytokines from surrounding mesenchymal cells. Stem cell division is usually asymmetric with the formation of an identical daughter stem cell and committed progenitor cells. Progenitor cells retain the ability to divide until they terminally differentiate. Occasional symmetric division produces either 2 daughter cells with stem cell loss, or 2 stem cells and eventual clone dominance. This stochastic extinction of stem cell lines with eventual dominance of one cell line is called 'niche succession'. The discovery of plasticity, the ability of stem cells to engraft into, and in some cases replace the function of damaged host tissues has generated a large amount of scientific and clinical interest: however the concept remains controversial and is still a subject of hot debate. Studies are beginning to identify the complex molecular, genetic and cellular pathways underlying stem cell function such as Wnt signalling, bone morphogenetic protein (BMP) and Notch/Delta pathways. The derangement of these pathways within stem cells plays an integral part in the development of malignancy within the intestinal tract.
Collapse
|
54
|
Plisov S, Tsang M, Shi G, Boyle S, Yoshino K, Dunwoodie SL, Dawid IB, Shioda T, Perantoni AO, de Caestecker MP. Cited1 Is a Bifunctional Transcriptional Cofactor That Regulates Early Nephronic Patterning. J Am Soc Nephrol 2005; 16:1632-44. [PMID: 15843474 DOI: 10.1681/asn.2004060476] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In a screen to identify factors that regulate the conversion of mesenchyme to epithelium during the early stages of nephrogenesis, it was found that the Smad4-interacting transcriptional cofactor, Cited1, is expressed in the condensed cap mesenchyme surrounding the tip of the ureteric bud (UB), is downregulated after differentiation into epithelia, and has the capacity to block UB branching and epithelial morphogenesis in cultured metanephroi. Cited1 represses Wnt/beta-catenin but activates Smad4-dependent transcription involved in TGF-beta and Bmp signaling. By modifying these pathways, Cited1 may coordinate cellular differentiation and survival signals that regulate nephronic patterning in the metanephros.
Collapse
|
55
|
Park SR, Seo GY, Choi AJ, Stavnezer J, Kim PH. Analysis of transforming growth factor-beta1-induced Ig germ-line gamma2b transcription and its implication for IgA isotype switching. Eur J Immunol 2005; 35:946-56. [PMID: 15688346 DOI: 10.1002/eji.200425848] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transforming growth factor (TGF)-beta1 directs class switch recombination (CSR) to IgG2b as well as to IgA. Smad3/4, Runx3 and p300 mediate TGF-beta1-induced germ-line (GL) alpha transcription leading to IgA expression. However, the molecular mechanisms by which TGF-beta1 induces IgG2b CSR are unknown. We used luciferase reporter plasmids to investigate how TGF-beta1 regulates the activity of the promoter for GL transcripts of IgG2b constant gene (GLgamma2b promoter). Similarly to the GLalpha promoter, overexpression of Smad3/4 and Runx3 enhances TGF-beta1-induced GLgamma2b promoter activity. Mutation analysis of the promoter identified likely Smad- and Runx3-binding sites. Also similar to the GLalpha promoter, overexpression of p300 enhances Smad3/4-mediated promoter activity, whereas E1A represses promoter activity. Since these regulation mechanisms underlying both GLalpha and GLgamma2b transcription are similar, we explored the possibility that TGF-beta1 induces IgA CSR via transitional IgG2b CSR. TGF-beta1 enhances the expression of both Ialpha-Cmu and Ialpha-Cgamma2b circle transcripts, indicative of direct (Smu-->Salpha) and sequential CSR (Smu-->Sgamma2b-->Salpha).
Collapse
|
56
|
Jakob J, Nagase S, Gazdar A, Chien M, Morozova I, Russo JJ, Nandula SV, Murty VVVS, Li CM, Tycko B, Parsons R. Two somatic biallelic lesions within and near SMAD4 in a human breast cancer cell line. Genes Chromosomes Cancer 2005; 42:372-83. [PMID: 15645498 DOI: 10.1002/gcc.20142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Loss of chromosome arm 18q is a common event in human pancreatic, colon, and breast cancers and is often interpreted as representing loss of one or more tumor-suppressor genes. In this article, we describe two novel biallelic deletions at chromosome band 18q21.1 in a recently characterized human breast cancer cell line, HCC-1428. One lesion deletes a fragment of approximately 300 kb between SMAD4 and DCC that encodes no known genes. The second lesion is an in-frame SMAD4 deletion (amino acids 49-51) that affects the level of SMAD4 protein but not the SMAD4 message. This change accelerates 26S proteasome-mediated degradation of both endogenous and exogenous mutant SMAD4. Examination of normal DNA from the same patient demonstrated that both lesions are somatic and associated with loss of both normal alleles. These data support the concept that two independent tumor-suppressor loci exist at chromosome segment 18q21.1, one at SMAD4 and the other potentially at an enhancer of DCC or an unrelated novel gene.
Collapse
|
57
|
Abstract
Transforming growth factor beta (TGF-beta) is a ubiquitous and essential regulator of cellular and physiologic processes including proliferation, differentiation, migration, cell survival, angiogenesis, and immunosurveillance. Alterations in the TGF-beta signaling pathway, including mutation or deletion of members of the signaling pathway and resistance to TGF-beta-mediated inhibition of proliferation are frequently observed in human cancers. Although these alterations define a tumor suppressor role for the TGF-beta pathway in human cancer, TGF-beta also mediates tumor-promoting effects, either through differential effects on tumor and stromal cells or through a fundamental alteration in the TGF-beta responsiveness of the tumor cells themselves. TGF-beta and members of the TGF-beta signaling pathway are being evaluated as prognostic or predictive markers for cancer patients. Ongoing advances in understanding the TGF-beta signaling pathway will enable targeting of this pathway for the chemoprevention and treatment of human cancers.
Collapse
|
58
|
Chen HB, Rud JG, Lin K, Xu L. Nuclear targeting of transforming growth factor-beta-activated Smad complexes. J Biol Chem 2005; 280:21329-36. [PMID: 15799969 DOI: 10.1074/jbc.m500362200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon stimulation by the transforming growth factor beta (TGF-beta), Smad2 and Smad3 are phosphorylated at their C termini and assemble into stable heteromeric complexes with Smad4. These complexes are the functional entities that translocate into the nucleus and regulate the expression of TGF-beta target genes. Here we report that the TGF-beta-activated phospho-Smad3/Smad4 complex utilizes an importin-independent mechanism for nuclear import and engages different nucleoporins for nuclear import compared with the monomeric Smad4. Within the heteromeric complex, phospho-Smad3 appears to dominate over Smad4 in the nuclear import process and guides the complex to its nuclear destination. We also demonstrate that the binding of phospho-Smad3 to Smad4 prevents Smad4 from interacting with the nuclear export receptor chromosome region maintenance 1. In this way, TGF-beta signaling suppresses nuclear export of Smad4 by chromosome region maintenance 1 and thereby targets Smad4 into the nucleus. Indeed tumorigenic mutations in Smad4 that affect its interaction with Smad2 or Smad3 impair nuclear accumulation of Smad4 in response to TGF-beta.
Collapse
|
59
|
Okano H, Shinohara H, Miyamoto A, Takaori K, Tanigawa N. Concomitant overexpression of cyclooxygenase-2 in HER-2-positive on Smad4-reduced human gastric carcinomas is associated with a poor patient outcome. Clin Cancer Res 2005; 10:6938-45. [PMID: 15501972 DOI: 10.1158/1078-0432.ccr-0731-03] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The expression of cyclooxygenase-2 (COX-2) is known to be involved in gastric carcinogenesis and tumor progression, but little is known about the mechanisms responsible for the up-regulation of COX-2. We examined the involvement of two growth factor-signaling systems, HER-2 and transforming growth factor (TGF)-beta, in the induction of COX-2 in human gastric cancer tissue. EXPERIMENTAL DESIGN COX-2 expression was detected by immunohistochemistry in surgical specimens obtained from 166 patients with advanced gastric cancer; possible correlations between the expression of COX-2 and the expression of HER-2, TGF-beta1, and Smad4, an intracellular mediator that transmits the TGF-beta signal, were then analyzed. RESULTS COX-2 protein was overexpressed in 91 (54.8%) tumors; COX-2 overexpression was correlated with a differentiated histologic type, deep invasion, and positive lymph node metastasis. COX-2 was frequently overexpressed in HER-2-positive tumors (19 of 22, 86.4%) and in Smad4-reduced tumors (67 of 104, 64.4%) but irrelevant to the TGF-beta1 expression status. The expression levels of COX-2 and HER-2 and the reduction in Smad4 were all associated with a poor patient outcome. A multivariate analysis demonstrated a significantly poor outcome for the concomitant overexpression of COX-2 in patients with Smad4-reduced tumors. CONCLUSIONS These results support the possibility that signal transduction via HER-2 and the TGF-beta/Smad system may be implicated in COX-2 expression and that the reduction of Smad4 may be, in part, of causal significance in the TGF-beta-initiated overexpression of COX-2, which is associated with a poor prognosis for patients with gastric cancer.
Collapse
|
60
|
Kopp J, Preis E, Said H, Hafemann B, Wickert L, Gressner AM, Pallua N, Dooley S. Abrogation of transforming growth factor-beta signaling by SMAD7 inhibits collagen gel contraction of human dermal fibroblasts. J Biol Chem 2005; 280:21570-6. [PMID: 15788410 DOI: 10.1074/jbc.m502071200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human fibroproliferative disorders like hypertrophic scarring of the skin are characterized by increased contractility and excess extracellular matrix synthesis. A beneficial role of transforming growth factor (TGF)-beta in wound healing was proposed; however, chronic stimulation by this cytokine leads to fibrosis. In the present report, the intracellular TGF-beta signaling in fibroblasts derived from hypertrophic scars and normal skin was examined. In an attempt to intervene in profibrogenic TGF-beta functions, ectopic expression of Smad7 or dominant negative Smads3/4 completely inhibited contractility of scar-derived and normal fibroblasts after suspension in collagen gels. Both cell types displayed constitutive Smad2/3 phosphorylation and (CAGA)9-MLP-Luc activity with expression and phosphorylation of Smad3 being predominant in hypertrophic scar-derived fibroblasts. Down-regulation of intrinsic signaling with various TGF-beta antagonists, e.g. soluble TGF-beta receptor, latency-associated peptide, and anti-TGF-beta1 antibodies, confirms autocrine TGF-beta stimulation of both cell populations. Further, Smad7 expression inhibited alpha1 (I) collagen and alpha-smooth muscle actin expression. In summary, our data indicate that autocrine TGF-beta/Smad signaling is involved in contractility and matrix gene expression of fibroblasts from normal and hypertrophic scars. Smad7 inhibits these processes and may exert beneficial effects on excessive scar formation.
Collapse
|
61
|
Docagne F, Gabriel C, Lebeurrier N, Lesné S, Hommet Y, Plawinski L, Mackenzie ET, Vivien D. Sp1 and Smad transcription factors co-operate to mediate TGF-beta-dependent activation of amyloid-beta precursor protein gene transcription. Biochem J 2005; 383:393-9. [PMID: 15242331 PMCID: PMC1134081 DOI: 10.1042/bj20040682] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abnormal deposition of Abeta (amyloid-beta peptide) is one of the hallmarks of AD (Alzheimer's disease). This peptide results from the processing and cleavage of its precursor protein, APP (amyloid-beta precursor protein). We have demonstrated previously that TGF-beta (transforming growth factor-beta), which is overexpressed in AD patients, is capable of enhancing the synthesis of APP by astrocytes by a transcriptional mechanism leading to the accumulation of Abeta. In the present study, we aimed at further characterization of the molecular mechanisms sustaining this TGF-beta-dependent transcriptional activity. We report the following findings: first, TGF-beta is capable of inducing the transcriptional activity of a reporter gene construct corresponding to the +54/+74 region of the APP promoter, named APP(TRE) (APP TGF-beta-responsive element); secondly, although this effect is mediated by a transduction pathway involving Smad3 (signalling mother against decapentaplegic peptide 3) and Smad4, Smad2 or other Smads failed to induce the activity of APP(TRE). We also observed that the APP(TRE) sequence not only responds to the Smad3 transcription factor, but also the Sp1 (signal protein 1) transcription factor co-operates with Smads to potentiate the TGF-beta-dependent activation of APP. TGF-beta signalling induces the formation of nuclear complexes composed of Sp1, Smad3 and Smad4. Overall, the present study gives new insights for a better understanding of the fine molecular mechanisms occurring at the transcriptional level and regulating TGF-beta-dependent transcription. In the context of AD, our results provide additional evidence for a key role for TGF-beta in the regulation of Abeta production.
Collapse
|
62
|
Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 2005; 307:1621-5. [PMID: 15761153 DOI: 10.1126/science.1105776] [Citation(s) in RCA: 533] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signaling pathways transmit information through protein interaction networks that are dynamically regulated by complex extracellular cues. We developed LUMIER (for luminescence-based mammalian interactome mapping), an automated high-throughput technology, to map protein-protein interaction networks systematically in mammalian cells and applied it to the transforming growth factor-beta (TGFbeta) pathway. Analysis using self-organizing maps and k-means clustering identified links of the TGFbeta pathway to the p21-activated kinase (PAK) network, to the polarity complex, and to Occludin, a structural component of tight junctions. We show that Occludin regulates TGFbeta type I receptor localization for efficient TGFbeta-dependent dissolution of tight junctions during epithelial-to-mesenchymal transitions.
Collapse
|
63
|
Baldus SE, Schwarz E, Lohrey C, Zapatka M, Landsberg S, Hahn SA, Schmidt D, Dienes HP, Schmiegel WH, Schwarte-Waldhoff I. Smad4 deficiency in cervical carcinoma cells. Oncogene 2005; 24:810-9. [PMID: 15531914 DOI: 10.1038/sj.onc.1208235] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Squamous cell carcinoma of the uterine cervix is one of the most frequent cancers affecting women worldwide. Carcinomas arise from cervical intraepithelial lesions, in which infection with high-risk human papillomavirus types has led to deregulated growth control through the actions of the viral E6 and E7 oncoproteins. The molecular mechanisms underlying progression to invasive tumor growth are poorly understood. One important feature, however, is the escape from growth inhibition by transforming growth factor beta (TGF-beta). Loss of chromosomal arm 18q is among the most frequent cytogenetic alterations in cervical cancers and has been associated with poor prognosis. Since the TGF-beta response is mediated by Smad proteins and the tumor suppressor gene Smad4 resides at 18q21, we have analysed the Smad4 gene for cervical cancer-associated alterations in cell lines and primary carcinomas. Here, we report Smad4 deficiency in four out of 13 cervical cancer cell lines which is due to an intronic rearrangement or deletions of 3' exons. All cell lines, however, showed either absent or moderate responsiveness to TGF-beta irrespective of their Smad4 status. In 41 primary squamous cervical carcinomas analysed, 10 samples showed loss of Smad4 protein expression and 26 samples a reduced expression. Altogether, our results strongly suggest that Smad4 gene alterations are involved in cervical carcinogenesis.
Collapse
|
64
|
Seo T, Park J, Choe J. Kaposi's Sarcoma–Associated Herpesvirus Viral IFN Regulatory Factor 1 Inhibits Transforming Growth Factor-β Signaling. Cancer Res 2005; 65:1738-47. [PMID: 15753369 DOI: 10.1158/0008-5472.can-04-2374] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus, also called human herpesvirus 8, has been implicated in the pathogenesis of Kaposi's sarcoma, body cavity-based primary effusion lymphoma, and some forms of multicentric Castleman's disease. The Kaposi's sarcoma-associated herpesvirus open reading frame K9 encodes viral IFN regulatory factor 1 (vIRF1), which functions as a repressor of IFN-mediated signal transduction. vIRF1 expression in NIH 3T3 cells leads to transformation and consequently induces malignant fibrosarcoma in nude mice, suggesting that vIRF1 is a strong oncoprotein. Here, we show that vIRF1 inhibited transforming growth factor-beta (TGF-beta) signaling via its targeting of Smad proteins. vIRF1 suppressed TGF-beta-mediated transcription and growth arrest. vIRF1 directly interacted with both Smad3 and Smad4, resulting in inhibition of their transactivation activity. Studies using vIRF1 deletion mutants showed that the central region of vIRF1 was required for vIRF1 association with Smad3 and Smad4 and that this region was also important for inhibition of TGF-beta signaling. In addition, we found that vIRF1 interfered with Smad3-Smad4 complex formation and inhibited Smad3/Smad4 complexes from binding to DNA. These results indicate that vIRF1 inhibits TGF-beta signaling via interaction with Smads. In addition, the data indicate the TGF-beta pathway is an important target for viral oncoproteins.
Collapse
|
65
|
Runyan CE, Schnaper HW, Poncelet AC. The Role of Internalization in Transforming Growth Factor β1-induced Smad2 Association with Smad Anchor for Receptor Activation (SARA) and Smad2-dependent Signaling in Human Mesangial Cells. J Biol Chem 2005; 280:8300-8. [PMID: 15613484 DOI: 10.1074/jbc.m407939200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent data investigating the role of the Smad anchor for receptor activation (SARA) in TGF-beta signaling have suggested that it has a crucial function in both aiding the recruitment of Smad to the TGF-beta receptor, and ensuring appropriate subcellular localization of the activated receptor-bound complex. The FYVE domain in SARA directs its localization to early endosomal compartments where it can interact with both the TGF-beta receptors and Smads. However, the necessity of endocytosis in the TGF-beta response remains controversial. We sought to examine the role of internalization in TGF-beta/Smad signaling in human kidney mesangial cells. Using co-immunoprecipitation studies, we show that endogenous Smad2 interacts with SARA after TGF-beta1 stimulation. Inhibition of clathrin-mediated internalization only slightly affects TGF-beta1-stimulated association between SARA and Smad2, Smad2 phosphorylation, or Smad2 interaction with Smad4. However, endocytosis inhibition decreases TGF-beta1-induced Smad2 nuclear translocation and thus abrogates Smad2-dependent transcriptional responses. The TGF-beta1-stimulated association between SARA and Smad2 peaks at 30 min followed by separation of the complex components. However, under conditions of inhibited endocytosis, Smad2 remains bound to SARA for at least 6 h without a significant decline in associated levels. This lack of complex dissociation correlates with a lack of Smad2 nuclear accumulation and reduction of Smad2-dependent ARE-Luc reporter activity. Our data therefore suggest that endocytosis plays a critical role in TGF-beta signaling in mesangial cells, and that internalization enhances the dissociation of Smad2 from the TGF-beta receptor-SARA complex, allowing Smad2 to accumulate in the nucleus and modulate target gene transcription.
Collapse
|
66
|
Lau MT, Ge W. Cloning of Smad2, Smad3, Smad4, and Smad7 from the goldfish pituitary and evidence for their involvement in activin regulation of goldfish FSHbeta promoter activity. Gen Comp Endocrinol 2005; 141:22-38. [PMID: 15707600 DOI: 10.1016/j.ygcen.2004.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 10/19/2004] [Accepted: 10/29/2004] [Indexed: 11/16/2022]
Abstract
Follicle-stimulating hormone (FSH), a glycoprotein consisting of an alpha subunit and a unique beta subunit, is essential for gonadal development and function in vertebrates including teleosts. FSH is regulated by a variety of neuroendocrine and endocrine factors, and its biosynthesis is primarily determined by the expression of the beta subunit. Although the regulation of FSH biosynthesis has been well documented in mammals, the molecular mechanisms underlying the regulation are poorly understood. Our previous studies demonstrated that activin stimulated goldfish FSHbeta expression in the primary pituitary cell culture and enhanced its promoter activity in the mouse gonadotrope cell line LbetaT-2 cells. However, little is known about the signal transduction pathway involved in the transcriptional activation of this gene by activin. To assess the involvement of intracellular signaling protein Smads in regulating goldfish FSHbeta promoter, we first cloned full-length cDNAs for goldfish Smad2, Smad3, Smad4, and Smad7 from the pituitary. All Smads cloned show high sequence conservation with their mammalian counterparts. The spatial expression of these Smads overlapped with that of activin subunits and its receptors in various tissues examined. In addition, we demonstrated that activin induced Smad3 and Smad7 expression, but not Smad2 and Smad4. Co-transfection of Smad2 or Smad3 cDNA into the LbetaT-2 cells with the reporter construct of goldfish FSHbeta promoter significantly enhanced basal and activin-stimulated reporter (SEAP, secreted alkaline phosphatase) expression, while Smad7 completely blocked basal and Smad2/3-stimulated FSHbeta activity. Interestingly, the effect of Smad3 was much higher than that of Smad2, suggesting that Smad3 is likely the principal signal transducing molecule involved in activin stimulation of FSHbeta expression in the goldfish. This work lays a foundation for further analysis of goldfish FSHbeta promoter for the cis-regulatory elements involved in activin signaling.
Collapse
|
67
|
Ueda M, Miura Y, Kunihiro O, Ishikawa T, Ichikawa Y, Endo I, Sekido H, Togo S, Shimada H. MUC1 overexpression is the most reliable marker of invasive carcinoma in intraductal papillary-mucinous tumor (IPMT). HEPATO-GASTROENTEROLOGY 2005; 52:398-403. [PMID: 15816444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND/AIMS To clarify the development of pancreatic cancer we performed immunohistochemical analysis of the presence of the major apomucin and cell-cycle regulatory proteins using the tissues of IPMT and ductal adenocarcinoma (DC) of the pancreas. METHODOLOGY Formalin-fixed and paraffin-embedded tissues of 24 IPMT and 21 DC cases were subjected to immunohistochemical staining for MUC1, MUC2, p16, p53 and DPC4. According to the WHO classification, there were 10 intraductal papillary-mucinous adenomas (IPMA); 3 borderline intraductal papillary-mucinous neoplasms (IPMB); 4 intraductal papillary-mucinous carcinomas (IPMC), non-invasive type (nIPMC); 4 IPMCs with invasive muci nous carcinoma (IPMC/muc); and 3 IPMCs with invasive tubular adenocarcinoma (IPMC/tub). RESULTS MUC1 expression was seen in 6 of 7 invasive IPMCs (86%) and in all DCs (100%). MUC2 was only seen in non-invasive IPMT and in a part of IPMC/muc. p53 nuclear staining was positive only in 3 of 7 invasive IPMCs (43%) and 9 of 21 DCs (43%). DPC4 nuclear expression was positive in almost all cases of non-invasive IPMT, but negative or reduced in 4 of 7 invasive IPMCs (57%), and 14 of 21 DCs (67%). CONCLUSIONS MUC1 overexpression is considered to be the most sensitive and specific marker of invasive carcinoma, followed by DPC4 and p53 with less sensitivity.
Collapse
|
68
|
Abstract
Transforming growth factor-betas (TGF-betas), cytokines expressed in the colon, play important roles as tumor suppressors and tumor promoters during colorectal carcinogenesis. TGF-beta signaling pathway involves activation of Smad2 and Smad3 by the type I receptor and formation of Smad2/3/4 heteromeric complexes that enter the nucleus to regulate transcription. Most human colorectal cancers are resistant to the tumor suppressor effects of TGF-beta, and a subset of human colorectal cancers have mutations in Smad2 and Smad4. The purpose of this study was to determine whether Smads are required for TGF-beta signaling in colon cancer cells. First, we selected a colon cancer cell line (MC-26) that has a functional TGF-beta signaling pathway. We found that MC-26 cells expressed Smad2, Smad3, and Smad4 mRNAs by reverse transeription-polymerase chain reaction and confirmed that the TGF-beta signaling pathway is functional using a transient transfection assay with 3TP-Lux reporter plasmid. TGF-beta also inhibited cell growth and induced apoptosis in MC-26 cells. When MC-26 cells were transiently transfected with dominant-negative carboxyl-terminal truncation mutants of Smad2, Smad3, and Smad4, TGF-beta-induced 3TP-Lux reporter activity was significantly reduced, suggesting that Smad2, Smad3, and Smad4 are attractive novel therapeutic targets for regulating TGF-beta signaling in colorectal cancers. Because MC-26 cells express TGF-beta activated Smads, have a functional TGF-beta signaling pathway, and are sensitive to the growth inhibitory and apoptotic effects of TGF-beta, they can serve as an excellent model to examine TGF-beta signaling in colorectal cancers.
Collapse
|
69
|
Jazag A, Ijichi H, Kanai F, Imamura T, Guleng B, Ohta M, Imamura J, Tanaka Y, Tateishi K, Ikenoue T, Kawakami T, Arakawa Y, Miyagishi M, Taira K, Kawabe T, Omata M. Smad4 silencing in pancreatic cancer cell lines using stable RNA interference and gene expression profiles induced by transforming growth factor-beta. Oncogene 2005; 24:662-71. [PMID: 15592526 DOI: 10.1038/sj.onc.1208102] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The transforming growth factor-beta (TGF-beta)-Smad signaling pathway inhibits the growth of human epithelial cells and plays a role in tumor suppression. The Smad4 gene is mutated or deleted in 50% of pancreatic cancers. In this study, we succeeded in establishing Smad4 knockdown (S4KD) pancreatic cancer cell lines using the stable RNA interference (RNAi) method. Smad4 protein expression was reduced dramatically and TGF-beta-Smad signaling was markedly inhibited in the S4KD cell lines. The S4KD and control cells were stimulated with TGF-beta and analysed using a cDNA microarray that contained 3756 genes, in order to screen for target molecules downstream of TGF-beta. The microarray analysis revealed that 187 S4KD genes and 155 genes in the control cells were regulated immediately upon TGF-beta stimulation. Quantitative RT-PCR analysis on several of these genes produced results that corroborated the outcome of the microarray analysis. Most of the genes in the S4KD and control cells identified by the array differed, which suggests signaling pathways that differ according to Smad4 status. Of the identified genes, 246 have not been reported previously as genes that lie downstream of TGF-beta. Genes that are involved in cell proliferation, adhesion, and motility were found to be regulated differentially with respect to S4KD and control cells. Cell migration induced by TGF-beta was inhibited in the S4KD cells, which might be associated with a different regulation of integrin beta7. The knock down of a specific gene using stable RNAi appears to be a promising tool for analysing endogenous gene function.
Collapse
|
70
|
Illi B, Scopece A, Nanni S, Farsetti A, Morgante L, Biglioli P, Capogrossi MC, Gaetano C. Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circ Res 2005; 96:501-8. [PMID: 15705964 DOI: 10.1161/01.res.0000159181.06379.63] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Experimental evidence indicates that shear stress (SS) exerts a morphogenetic function during cardiac development of mouse and zebrafish embryos. However, the molecular basis for this effect is still elusive. Our previous work described that in adult endothelial cells, SS regulates gene expression by inducing epigenetic modification of histones and activation of transcription complexes bearing acetyltransferase activity. In this study, we evaluated whether SS treatment could epigenetically modify histones and influence cell differentiation in mouse embryonic stem (ES) cells. Cells were exposed to a laminar SS of 10 dyne per cm2/s(-1), or kept in static conditions in the presence or absence of the histone deacetylase inhibitor trichostatin A (TSA). These experiments revealed that SS enhanced lysine acetylation of histone H3 at position 14 (K14), as well as serine phosphorylation at position 10 (S10) and lysine methylation at position 79 (K79), and cooperated with TSA, inducing acetylation of histone H4 and phosphoacetylation of S10 and K14 of histone H3. In addition, ES cells exposed to SS strongly activated transcription from the vascular endothelial growth factor (VEGF) receptor 2 promoter. This effect was paralleled by an early induction of cardiovascular markers, including smooth muscle actin, smooth muscle protein 22-alpha, platelet-endothelial cell adhesion molecule-1, VEGF receptor 2, myocyte enhancer factor-2C (MEF2C), and alpha-sarcomeric actin. In this condition, transcription factors MEF2C and Sma/MAD homolog protein 4 could be isolated from SS-treated ES cells complexed with the cAMP response element-binding protein acetyltransferase. These results provide molecular basis for the SS-dependent cardiovascular commitment of mouse ES cells and suggest that laminar flow may be successfully applied for the in vitro production of cardiovascular precursors.
Collapse
|
71
|
Thavaraj S, Paterson IC, Hague A, Prime SS. Over-expression of TGF-beta1 in Smad4-deficient human oral carcinoma cells causes tumour regression in vivo by mechanisms that sensitize cells to apoptosis. J Pathol 2005; 205:14-20. [PMID: 15546158 DOI: 10.1002/path.1683] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have shown previously that transforming growth factor-beta (TGF-beta) is a potent tumour suppressor in Smad4-deficient human malignant oral keratinocytes but the mechanism by which this occurs is unknown. In the present study, we show that over-expression of TGF-beta1 causes regression of tumours derived from Smad4-deficient oral keratinocytes transplanted orthotopically to athymic mice. Further, tumour regression is associated with the induction of apoptosis without changes in cell proliferation. In vitro, TGF-beta1 did not induce apoptosis directly in these cells but sensitized cells to cisplatin, but not Fas, -induced cell death. The data suggest that TGF-beta1 induces tumour regression in vivo by Smad4-independent pathways that sensitize keratinocytes to mitochondrial-mediated apoptosis.
Collapse
|
72
|
Xiao DS, Wen JF, Li JH, Hu ZL, Zheng H, Fu CY. Effect of deleted pancreatic cancer locus 4 gene transfection on biological behaviors of human colorectal carcinoma cells. World J Gastroenterol 2005; 11:348-52. [PMID: 15637742 PMCID: PMC4205335 DOI: 10.3748/wjg.v11.i3.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of deleted pancreatic cancer locus 4 (DPC4) gene transfection on biological behaviors of human colorectal carcinoma cells and the role of DPC4 gene in colorectal carcinogenesis.
METHODS: PcDNA3.1-DPC4 plasmid was re-constructed by gene-recombination technology. SW620 cells, a human colorectal carcinoma cell line, were transfected with PcDNA3.1-DPC4 plasmid using lipofectamine transfecting technique. Transfected cells were selected with G418. Expression of Smad4 protein was detected in cells transfected with DPC4 gene by immunohistochemistry and Western blot. Biological characteristics of transfected cells were evaluated by population-doubling time and cloning efficiency. Alterations of percentage of S phage cells (S%) and apoptosis rate were determined by flow- cytometry.
RESULTS: PcDNA3.1-DPC4 plasmid was constructed successfully. SW620 cells transfected with PcDNA3.1-DPC4 plasmid (DPC4+-SW620 cells) showed a strong intracellular expression of Smad4 protein, and the positive signal was localized in cytoplasm and nuclei, mainly in cytoplasm, where the expressions of Smad4 protein in SW620 cells transfected with PcDNA3.1 plasmid (PcDNA3.1-SW620 cells) and non-transfected SW620 cells (SW620 cells) were weaker than those in DPC4+-SW620 cells. The population- doubling time in DPC4+-SW620 cells (116 h) was significantly longer than that in SW620 cells (31 h) and PcDNA3.1-Sw620 cells (29 h) (P<0.01). The cloning efficiencies of DPC4+-SW620 cells (12%) were markedly lower than those of SW620 cells (69%) and PcDNA3.1-Sw620 cells (67%) (P<0.01). Compared with SW620 cells and PcDNA3.1-Sw620 cells, the G0-G1% of DPC4+-SW620 cells was obviously higher and the S% was markedly lower (P<0.05). Apoptosis rate of DPC4+-SW620 cells was significantly higher than that of SW620 cells and PcDNA3.1-SW620 cells.
CONCLUSION: PcDNA3.1-DPC4 plasmid can be successfully re-constructed and stably transfected into human SW620 cells, thereby the cells can steadily express Smad4. DPC4 protein may regulate proliferation of colorectal carcinoma cells by inhibiting cell growth and inducing cell apoptosis.
Collapse
|
73
|
Chang CC, Lin DY, Fang HI, Chen RH, Shih HM. Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. J Biol Chem 2005; 280:10164-73. [PMID: 15637079 DOI: 10.1074/jbc.m409161200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Daxx has been shown to function as an apoptosis regulator and transcriptional repressor via its interaction with various cytoplasmic and nuclear proteins. Here, we showed that Daxx interacts with Smad4 and represses its transcriptional activity via the C-terminal domain of Daxx. In vitro and in vivo interaction studies indicated that the binding of Smad4 to Daxx depends on Smad4 sumoylation. Substitution of Smad4 SUMO conjugation residue lysine 159, but not 113, to arginine not only disrupted Smad4-Daxx interaction but also relieved Daxx-elicited repression of Smad4 transcriptional activity. Furthermore, chromatin immunoprecipitation analyses revealed the recruitment of Daxx to an endogenous, Smad4-targeted promoter in a Lys(159) sumoylation-dependent manner. Finally, down-regulation of Daxx expression by RNA interference enhanced transforming growth factor beta-induced transcription of reporter and endogenous genes through a Smad4-dependent, but not K159R-Smad4-dependent, manner. Together, these results indicate that Daxx suppresses Smad4-mediated transcriptional activity by direct interaction with the sumoylated Smad4 and identify a novel role of Daxx in regulating transforming growth factor beta signaling.
Collapse
|
74
|
Wang ZY, Futami K, Nishihara A, Okamoto N. Four types of smad4 found in the common carp,Cyprinus carpio. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:250-8. [PMID: 15880772 DOI: 10.1002/jez.b.21041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Smad4 is defined as the common-mediator Smad (Co-Smad) required for transducing signals for all transforming growth factor-beta (TGF-beta) superfamily members. In this study, we have isolated eight distinct Smad4 full-length cDNAs from the common carp (Cyprinus carpio). These cDNAs were classified into four types and each type consisted of two subtypes. The eight cDNAs encoded four distinct proteins ranging from 505aa to 568aa in size, with close similarities in the Mad homology 1 and 2 (MH1 and MH2, respectively), but with differences in the linker regions and the C-terminus as well as in the 5'- and 3'-untranslated regions. Genomic Southern blotting demonstrated the existence of at least six Smad4 gene loci in the carp genome, meaning that the multiple forms of the carp Smad4 cDNAs were not due to allelic variations. Reverse transcriptase polymerase chain reaction (RT-PCR)/Southern hybridizations showed different expression patterns among the four types of Smad4s. These results suggest that some of carp Smad4s have deviated from the original function of Smad4 through vertebrate evolution, and regulated the TGF-beta signaling pathway by changing the expression level in tissues.
Collapse
|
75
|
Shikata K, Kukita Y, Matsumoto T, Esaki M, Yao T, Mochizuki Y, Hayashi K, Iida M. Gastric juvenile polyposis associated with germline SMAD4 mutation. Am J Med Genet A 2005; 134:326-9. [PMID: 15754356 DOI: 10.1002/ajmg.a.30482] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We treated a 39-year-old woman with hypoproteinemia and anemia who had profuse gastric polyposis. Radiographic and endoscopic examination showed numerous polyps restricted to the stomach. The patient had pulmonary arteriovenous malformations in the left lung. Histological examination of the resected stomach revealed the gastric polyposis to be composed of cystic dilatation of the glands with small areas of adenocarcinoma. These findings were compatible with gastric juvenile polyposis (GJP) accompanied by gastric cancer. Analysis of genomic DNA revealed that the patient had truncating mutation of SMAD4, a responsible gene for juvenile polyposis (JP). Our case suggests that SMAD4 is possibly a responsible gene for GJP.
Collapse
|