1
|
Bolaños JP, Almeida A, Stewart V, Peuchen S, Land JM, Clark JB, Heales SJ. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 1997; 68:2227-40. [PMID: 9166714 DOI: 10.1046/j.1471-4159.1997.68062227.x] [Citation(s) in RCA: 370] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Within the CNS and under normal conditions, nitric oxide (.NO) appears to be an important physiological signalling molecule. Its ability to increase cyclic GMP concentration suggests that .NO is implicated in the regulation of important metabolic pathways in the brain. Under certain circumstances .NO synthesis may be excessive and .NO may become neurotoxic. Excessive glutamate-receptor stimulation may lead to neuronal death through a mechanism implicating synthesis of both .NO and superoxide (O2.-) and hence peroxynitrite (ONOO-) formation. In response to lipopolysaccharide and cytokines, glial cells may also be induced to synthesize large amounts of .NO, which may be deleterious to the neighbouring neurones and oligodendrocytes. The precise mechanism of .NO neurotoxicity is not fully understood. One possibility is that it may involve neuronal energy deficiency. This may occur by ONOO- interfering with key enzymes of the tricarboxylic acid cycle, the mitochondrial respiratory chain, mitochondrial calcium metabolism, or DNA damage with subsequent activation of the energy-consuming pathway involving poly(ADP-ribose) synthetase. Possible mechanisms whereby ONOO- impairs the mitochondrial respiratory chain and the relevance for neurotoxicity are discussed. The intracellular content of reduced glutathione also appears important in determining the sensitivity of cells to ONOO- production. It is concluded that neurotoxicity elicited by excessive .NO production may be mediated by mitochondrial dysfunction leading to an energy deficiency state.
Collapse
|
Review |
28 |
370 |
2
|
Almeida A, Almeida J, Bolaños JP, Moncada S. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci U S A 2001; 98:15294-9. [PMID: 11742096 PMCID: PMC65023 DOI: 10.1073/pnas.261560998] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It was recently proposed that in Jurkat cells, after inhibition of respiration by NO, glycolytically generated ATP plays a critical role in preventing the collapse of mitochondrial membrane potential (Deltapsi(m)) and thus apoptotic cell death. We have investigated this observation further in primary cultures of rat cortical neurons and astrocytes-cell types that differ greatly in their glycolytic capacity. Continuous and significant ( approximately 85%) inhibition of respiration by NO (1.4 microM at 175 microM O(2)) generated by [(z)-1-[2-aminoethyl]-N-[2-ammonioethyl]amino]diazen-1-ium-1,2 diolate (DETA-NO) initially (10 min) depleted ATP concentrations by approximately 25% in both cell types and increased the rate of glycolysis in astrocytes but not in neurons. Activation of glycolysis in astrocytes, as judged by lactate production, prevented further ATP depletion, whereas in neurons, which do not invoke this mechanism, there was a progressive decrease in ATP concentrations over the next 60 min. During this time, there was a persistent mitochondrial hyperpolarization and absence of apoptotic cell death in astrocytes, whereas in the neurons there was a progressive fall in Deltapsi(m) and increased apoptosis. After glucose deprivation or treatment with inhibitors of the F(1)F(0)-ATPase and adenine nucleotide translocase, astrocytes responded to NO with a fall in Deltapsi(m) and apoptotic cell death similar to the response in neurons. Finally, although treatment of astrocytes with NO partially prevented staurosporin-induced collapse in Deltapsi(m) and cell death, NO and staurosporin synergized in decreasing Deltapsi(m) and inducing apoptosis in neurons. These results demonstrate that although inhibition of cellular respiration by NO leads to neurotoxicity, it may also result in initial neuroprotection, depending on the glycolytic capacity of the particular cell.
Collapse
|
research-article |
24 |
317 |
3
|
Bolaños JP, Almeida A. Roles of nitric oxide in brain hypoxia-ischemia. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:415-36. [PMID: 10320673 DOI: 10.1016/s0005-2728(99)00030-4] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A large body of evidence has appeared over the last 6 years suggesting that nitric oxide biosynthesis is a key factor in the pathophysiological response of the brain to hypoxia-ischemia. Whilst studies on the influence of nitric oxide in this phenomenon initially offered conflicting conclusions, the use of better biochemical tools, such as selective inhibition of nitric oxide synthase (NOS) isoforms or transgenic animals, is progressively clarifying the precise role of nitric oxide in brain ischemia. Brain ischemia triggers a cascade of events, possibly mediated by excitatory amino acids, yielding the activation of the Ca2+-dependent NOS isoforms, i.e. neuronal NOS (nNOS) and endothelial NOS (eNOS). However, whereas the selective inhibition of nNOS is neuroprotective, selective inhibition of eNOS is neurotoxic. Furthermore, mainly in glial cells, delayed ischemia or reperfusion after an ischemic episode induces the expression of Ca2+-independent inducible NOS (iNOS), and its selective inhibition is neuroprotective. In conclusion, it appears that activation of nNOS or induction of iNOS mediates ischemic brain damage, possibly by mitochondrial dysfunction and energy depletion. However, there is a simultaneous compensatory response through eNOS activation within the endothelium of blood vessels, which mediates vasodilation and hence increases blood flow to the damaged brain area.
Collapse
|
Review |
26 |
230 |
4
|
Jimenez-Blasco D, Santofimia-Castaño P, Gonzalez A, Almeida A, Bolaños JP. Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ 2015; 22:1877-89. [PMID: 25909891 DOI: 10.1038/cdd.2015.49] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 03/07/2015] [Accepted: 03/23/2015] [Indexed: 12/16/2022] Open
Abstract
Neurotransmission unavoidably increases mitochondrial reactive oxygen species. However, the intrinsic antioxidant defense of neurons is weak and hence the mechanism whereby these cells are physiologically protected against oxidative damage is unknown. Here we found that the antioxidant defense of neurons is repressed owing to the continuous protein destabilization of the master antioxidant transcriptional activator, nuclear factor-erythroid 2-related factor-2 (Nrf2). By contrast, Nrf2 is highly stable in neighbor astrocytes explaining their robust antioxidant defense and resistance against oxidative stress. We also show that subtle and persistent stimulation of N-methyl-d-aspartate receptors (NMDAR) in astrocytes, through a mechanism not requiring extracellular Ca²⁺ influx, upregulates a signal transduction pathway involving phospholipase C-mediated endoplasmic reticulum release of Ca²⁺ and protein kinase Cδ activation. Active protein kinase Cδ promotes, by phosphorylation, the stabilization of p35, a cyclin-dependent kinase-5 (Cdk5) cofactor. Active p35/Cdk5 complex in the cytosol phosphorylates Nrf2 at Thr(395), Ser(433) and Thr(439) that is sufficient to promote Nrf2 translocation to the nucleus and induce the expression of antioxidant genes. Furthermore, this Cdk5-Nrf2 transduction pathway boosts glutathione metabolism in astrocytes efficiently protecting closely spaced neurons against oxidative damage. Thus, intercellular communication through NMDAR couples neurotransmission with neuronal survival.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
138 |
5
|
Peuchen S, Bolaños JP, Heales SJ, Almeida A, Duchen MR, Clark JB. Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Prog Neurobiol 1997; 52:261-81. [PMID: 9247965 DOI: 10.1016/s0301-0082(97)00010-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Astrocytes have, until recently, been thought of as the passive supporting elements of the central nervous system. However, recent developments suggest that these cells actually play a crucial and vital role in the overall physiology of the brain. Astrocytes selectively express a host of cell membrane and nuclear receptors that are responsive to various neuroactive compounds. In addition, the cell membrane has a number of important transporters for these compounds. Direct evidence for the selective co-expression of neurotransmitters, transporters on both neurons and astrocytes, provides additional evidence for metabolic compartmentation within the central nervous system. Oxidative stress as defined by the excessive production of free radicals can alter dramatically the function of the cell. The free radical nitric oxide has attracted a considerable amount of attention recently, due to its role as a physiological second messenger but also because of its neurotoxic potential when produced in excess. We provide, therefore, an in-depth discussion on how this free radical and its metabolites affect the intra and intercellular physiology of the astrocyte(s) and surrounding neurons. Finally, we look at the ways in which astrocytes can counteract the production of free radicals in general by using their antioxidant pathways. The glutathione antioxidant system will be the focus of attention, since astrocytes have an enormous capacity for, and efficiency built into this particular system.
Collapse
|
Review |
28 |
133 |
6
|
Almeida A, Heales SJ, Bolaños JP, Medina JM. Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion. Brain Res 1998; 790:209-16. [PMID: 9593899 DOI: 10.1016/s0006-8993(98)00064-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of mitochondrial energy metabolism in glutamate mediated neurotoxicity was studied in rat neurones in primary culture. A brief (15 min) exposure of the neurones to glutamate caused a dose-dependent (0.01-1 mM) increase in cyclic GMP levels together with delayed (24 h) neurotoxicity and ATP depletion. These effects were prevented by either the nitric oxide (.NO) synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (NAME; 1 mM) or by the N-methyl-D-aspartate (NMDA) glutamate-subtype receptor antagonist D-(-)-2-amino-5-phosphonopentanoate (APV; 0.1 mM). Glutamate exposure (0.1 mM and 1 mM) followed by 24 h of incubation caused the inhibition of succinate-cytochrome c reductase (20-25%) and cytochrome c oxidase (31%) activities in the surviving neurones, without affecting NADH-coenzyme-Q1 reductase activity. The rate of oxygen consumption was impaired in neurones exposed to 1 mM glutamate, either with glucose (by 26%) or succinate (by 39%) as substrates. These effects on the mitochondrial respiratory chain and neuronal respiration, together with the observed glutathione depletion (20%) by glutamate exposure were completely prevented by NAME or APV. Our results suggest that mitochondrial dysfunction and impairment of antioxidant status may account for glutamate-mediated neurotoxicity via a mechanism involving .NO biosynthesis.
Collapse
|
|
27 |
119 |
7
|
Almeida A, Bolaños JP. A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. J Neurochem 2001; 77:676-90. [PMID: 11299330 DOI: 10.1046/j.1471-4159.2001.00276.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to investigate the relationship between nitric oxide-mediated regulation of mitochondrial function and excitotoxicity, the role of mitochondrial ATP synthesis and intracellular redox status on the mode of neuronal cell death was studied. Brief (5 min) glutamate (100 microM) receptor stimulation in primary cortical neurons collapsed the mitochondrial membrane potential (psi(m)) and transiently (30 min) inhibited mitochondrial ATP synthesis, causing early (1 h) necrosis or delayed (24 h) apoptosis. The transient inhibition of ATP synthesis was paralleled to a loss of NADH, which was fully recovered shortly after the insult. In contrast, NADPH and the GSH/GSSG ratio were maintained, but progressively decreased thereafter. Twenty-four hours after glutamate treatment, ATP was depleted, a phenomenon associated with a persistent inhibition of mitochondrial succinate-cytochrome c reductase activity and delayed necrosis. Blockade of either nitric oxide synthase (NOS) activity or the mitochondrial permeability transition (MPT) pore prevented psi(m) collapse, the transient inhibition of mitochondrial ATP synthesis, early necrosis and delayed apoptosis. However, blockade of NOS activity, but not the MPT pore, prevented the inhibition of succinate-cytochrome c reductase activity and delayed ATP depletion and necrosis. From these results, we suggest that glutamate receptor-mediated NOS activation would trigger MPT pore opening and transient inhibition of ATP synthesis leading to apoptosis in a neuronal subpopulation, whereas other groups of neurons would undergo oxidative stress and persistent inhibition of ATP synthesis leading to necrosis.
Collapse
|
|
24 |
117 |
8
|
Almeida A, Allen KL, Bates TE, Clark JB. Effect of reperfusion following cerebral ischaemia on the activity of the mitochondrial respiratory chain in the gerbil brain. J Neurochem 1995; 65:1698-703. [PMID: 7561867 DOI: 10.1046/j.1471-4159.1995.65041698.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of reperfusion following 30 min of cerebral ischaemia on brain mitochondrial respiratory chain activity has been studied in the gerbil. The state 3 respiration rates with both FAD- and NAD-linked substrates were reduced after ischaemia. After 5 min of reperfusion, state 3 respiration with FAD-linked substrates was restored, but levels of NAD-linked substrates did not return to control values until 30 min of reperfusion. By 120 min of reperfusion state 3 respiration decreased relative to control values with all substrates studied. Measurement of the individual respiratory chain complexes showed that complex I, complex II-III, and complex V activities were reduced after ischaemia. By 5 min of reperfusion complex II-III activity was restored, but the activities of complexes I and V did not return to control values until 30 min of reperfusion. In contrast, complex IV activity was unaffected by ischaemia or 5 and 30 min of reperfusion but was significantly reduced after 120 min of reperfusion, possibly owing to free radical production and lipid peroxidation.
Collapse
|
|
30 |
109 |
9
|
Muleris M, Almeida A, Gerbault-Seureau M, Malfoy B, Dutrillaux B. Detection of DNA amplification in 17 primary breast carcinomas with homogeneously staining regions by a modified comparative genomic hybridization technique. Genes Chromosomes Cancer 1994; 10:160-70. [PMID: 7522038 DOI: 10.1002/gcc.2870100303] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A modified comparative genomic hybridization (mCGH) technique was applied to a series of 17 primary breast carcinomas in which cytogenetic study (CG) demonstrated the presence of homogeneously staining region(s), suggesting the occurrence of DNA amplification. mCGH demonstrated recurrent amplifications of the whole chromosome arms 8q (9 times) and 1q (7 times) and of DNA loci in the following bands: 11q13 (6 times), 9p13 and 17q21.1 (4 times), 1q21.1 and 16p11.2 (3 times), and 8q22, 8q24.1, 10q22, 15q26, 17q23, and 20q13.3 (twice). Amplification of whole chromosome arms is likely to have resulted from unbalanced translocations or isochromosomes, whereas amplifications of smaller chromosomal segments probably arose through real DNA amplification processes. In all tumors but one, more than one amplified locus was detected. The fact that many chromosomal sites were involved suggests that the process of amplification is complex and that many genes are potential targets.
Collapse
|
|
31 |
97 |
10
|
Almeida A, Possemiers S, Boone M, De Beer T, Quinten T, Van Hoorebeke L, Remon J, Vervaet C. Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion. Eur J Pharm Biopharm 2011; 77:297-305. [DOI: 10.1016/j.ejpb.2010.12.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 11/29/2010] [Accepted: 12/06/2010] [Indexed: 11/30/2022]
|
|
14 |
92 |
11
|
Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolaños JP. Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ 2012; 19:1582-9. [PMID: 22421967 PMCID: PMC3438489 DOI: 10.1038/cdd.2012.33] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a master regulator of glycolysis by its ability to synthesize fructose-2,6-bisphosphate, a potent allosteric activator of 6-phosphofructo-1-kinase. Being a substrate of the E3 ubiquitin ligase anaphase-promoting complex-Cdh1 (APCCdh1), PFKFB3 is targeted to proteasomal degradation in neurons. Here, we show that activation of N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) stabilized PFKFB3 protein in cortical neurons. Expressed PFKFB3 was found to be mainly localized in the nucleus, where it is subjected to degradation; however, expression of PFKFB3 lacking the APCCdh1-targeting KEN motif, or following NMDAR stimulation, promoted accumulation of PFKFB3 and its release from the nucleus to the cytosol through an excess Cdh1-inhibitable process. NMDAR-mediated increase in PFKFB3 yielded neurons having a higher glycolysis and lower pentose-phosphate pathway (PPP); this led to oxidative stress and apoptotic neuronal death that was counteracted by overexpressing glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of the PPP. Furthermore, expression of the mutant form of PFKFB3 lacking the KEN motif was sufficient to trigger oxidative stress and apoptotic death of neurons. These results reveal that, by inhibition of APCCdh1, glutamate receptors activation stabilizes PFKFB3 thus switching neuronal metabolism leading to oxidative damage and neurodegeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
86 |
12
|
Allen KL, Almeida A, Bates TE, Clark JB. Changes of respiratory chain activity in mitochondrial and synaptosomal fractions isolated from the gerbil brain after graded ischaemia. J Neurochem 1995; 64:2222-9. [PMID: 7722507 DOI: 10.1046/j.1471-4159.1995.64052222.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study we have examined (1) the integrated function of the mitochondrial respiratory chain by polarographic measurements and (2) the activities of the respiratory chain complexes I, II-III, and IV as well as the ATP synthase (complex V) in free mitochondria and synaptosomes isolated from gerbil brain, after a 30-min period of graded cerebral ischaemia. These data have been correlated with cerebral blood flow (CBF) values as measured by the hydrogen clearance technique. Integrated functioning of the mitochondrial respiratory chain, using both NAD-linked and FAD-linked substrates, was initially affected at CBF values of approximately 35 ml 100 g-1 min-1, and declined further as the CBF was reduced. The individual mitochondrial respiratory chain complexes, however, showed differences in sensitivity to graded cerebral ischaemia. Complex I activities decreased sharply at blood flows below approximately 30 ml 100 g-1 min-1 (mitochondria and synaptosomes) and complex II-III activities decreased at blood flows below 20 ml 100 g-1 min-1 (mitochondria) and 35-30 ml 100 g-1 min-1 (synaptosomes). Activities declined further as CBF was reduced below these levels. Complex V activity was significantly affected only when the blood flow was reduced below 15-10 ml 100 g-1 min-1 (mitochondria and synaptosomes). In contrast, complex IV activity was unaffected by graded cerebral ischaemia, even at very low CBF levels.
Collapse
|
|
30 |
86 |
13
|
Pereira MA, Faustino MAF, Tomé JPC, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha Â, Almeida A. Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochem Photobiol Sci 2014; 13:680-90. [PMID: 24549049 DOI: 10.1039/c3pp50408e] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The main targets of photodynamic inactivation (PDI) are the external bacterial structures, cytoplasmic membrane and cell wall. In this work it was evaluated how the external bacterial structures influence the PDI efficiency. To reach this objective 8 bacteria with distinct external structures were selected; 4 Gram-negative bacteria (Escherichia coli, with typical Gram-negative external structures; Aeromonas salmonicida, Aeromonas hydrophila both with an S-layer and Rhodopirellula sp., with a peptidoglycan-less proteinaceous cell wall and with cytoplasm compartmentalization) and 4 Gram-positive bacteria (Staphylococcus aureus, with typical Gram-positive external structures; Truepera radiovictrix, Deinococcus geothermalis and Deinococcus radiodurans, all with thick cell walls that give them Gram-positive stains, but including a second complex multi-layered membrane and structurally analogous to that of Gram-negative bacteria). The studies were performed in the presence of 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetraiodide (Tetra-Py(+)-Me) at 5.0 μM with white light (40 W m(-2)). The susceptibility of each bacteria to PDI by Tetra-Py(+)-Me was dependent on bacteria external structures. Although all Gram-positive bacteria were inactivated to the detection limit (reduction of ∼8 log) after 60-180 min of irradiation, the inactivation followed distinct patterns. Among the Gram-negative bacteria, E. coli was the only species to be inactivated to the detection limit (∼8 log after 180 min). The efficiency of inactivation of the two species of Aeromonas was similar (reduction of ∼5-6 log after 270 min). Rhodopirellula was less susceptible (reduction of ∼4 log after 270 min). As previously observed, the Gram-positive bacteria are more easily inactivated than Gram-negative strains, and this is even true for T. radiovictrix, D. geothermalis and D. radiodurans, which have a complex multi-layered cell wall. The results support the theory that the outer cell structures are major bacterial targets for PDI. Moreover, the chemical composition of the external structures has a stronger effect on PDI efficiency than complexity and the number of layers of the external coating, and lipids seem to be an important target of PDI.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
83 |
14
|
Bartolomeu M, Neves MGPMS, Faustino MAF, Almeida A. Wastewater chemical contaminants: remediation by advanced oxidation processes. Photochem Photobiol Sci 2018; 17:1573-1598. [PMID: 30328883 DOI: 10.1039/c8pp00249e] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Approximately 70% of the terrestrial area is covered with water, but only a small water fraction is compatible with terrestrial life forms. Due to the increment in human consumption, the need for water resources is increasing, and it is estimated that more than 40% of the population worldwide will face water stress/scarcity within the next few decades. Water recycling and reuse may offer the opportunity to expand water resources. For that, the wastewater treatment paradigm should be changed and adequately treated wastewater should be seen as a valuable resource instead of a waste product. It is easily understandable that the exact composition and constituent concentration of wastewater vary according to its different sources (industrial, agricultural, urban usage of water). Consequently, a variety of known and emerging pollutants like heavy metals, antibiotics, pesticides, phthalates, polyaromatic hydrocarbons, halogenated compounds and endocrine disruptors have been found in natural water reservoirs, due to the limited effectiveness of conventional wastewater treatment. The conventional approach consists of a combination of physical, chemical and biological processes, aiming at the removal of large sediments such as heavier solids, scum and grease and of organic content in order to avoid the growth of microorganisms and eutrophication of the receiving water bodies. However, this approach is not sufficient to reduce the chemical pollutants and much less the emerging chemical pollutants. In this review, after some considerations concerning chemical pollutants and the problematic efficiency of their removal by conventional methods, an update is presented on the successes and challenges of novel approaches for wastewater remediation based on advanced oxidation processes. An insight into wastewater remediation involving the photodynamic approach mediated by tetrapyrrolic derivatives will be underlined.
Collapse
|
Journal Article |
7 |
74 |
15
|
García-Nogales P, Almeida A, Fernández E, Medina JM, Bolaños JP. Induction of glucose-6-phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated glutathione depletion in cultured rat astrocytes. J Neurochem 1999; 72:1750-8. [PMID: 10098886 DOI: 10.1046/j.1471-4159.1999.721750.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Treatment of cultured rat astrocytes with lipopolysaccharide (LPS; 1 microg/ml) increased mRNA expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting step in the pentose phosphate pathway (PPP), in a time-dependent fashion (0-24 h). This effect was accompanied by an increase in G6PD activity (1.74-fold) and in the rate of glucose oxidation through the PPP (6.32-fold). Inhibition of inducible nitric oxide synthase (iNOS) activity by 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT; 50 microM) did not alter the LPS-mediated enhancement of G6PD mRNA expression or PPP activity. Blockade of nuclear factor-kappaB (NF-kappaB) activation by N-benzyloxycarbonyl-Ile-Glu-(O-tert-butyl)-Ala-leucinal (1 microM) prevented the expression of both iNOS mRNA and G6PD mRNA, suggesting that iNOS and G6PD are co-induced by LPS through a common transcriptional pathway involving NF-kappaB activation. Incubation of cells with LPS for 24 h increased intracellular NADPH concentrations (1.63-fold) as compared with untreated cells, but GSH concentrations were not modified by LPS treatment up to 60 h of incubation. However, inhibition of G6PD activity by dehydroepiandrosterone (DHEA; 100 microM), which prevented LPS-mediated enhancements in PPP activity and NADPH concentrations, caused a 50% decrease in the GSH/GSSG ratio after 24-36 h and in GSH concentrations after 60 h of incubation. Furthermore, the changes in glutathione concentrations caused by DHEA were abolished by AMT, suggesting that nitric oxide and/or its reactive derivatives would be involved in this process. From these results, we conclude that LPS-mediated G6PD expression prevents GSH depletion due to nitric oxide and suggest that this phenomenon may be a contributing factor in the defense mechanisms that protect astrocytes against nitric oxide-mediated cell injury.
Collapse
|
|
26 |
71 |
16
|
Almeida A, Kokalj-Vokac N, Lefrancois D, Viegas-Pequignot E, Jeanpierre M, Dutrillaux B, Malfoy B. Hypomethylation of classical satellite DNA and chromosome instability in lymphoblastoid cell lines. Hum Genet 1993; 91:538-46. [PMID: 8340107 DOI: 10.1007/bf00205077] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To determine possible relationships between DNA hypomethylation and chromosome instability, human lymphoblastoid cell lines from different genetic constitutions were studied with regard to 1) uncoiling and rearrangements, which preferentially affect the heterochromatic segments of chromosomes 1 and 16; 2) the methylation status of the tandemly repetitive sequences (classical satellite and alphoid DNAs) from chromosomes 1 and 16, and of the L1Hs interspersed repetitive sequences. The methylation status largely varied from cell line to cell line, but for a given cell line, the degree of methylation was similar for all the repetitive DNAs studied. Two cell lines, one obtained from a Fanconi anemia patient and the other from an ataxia telangiectasia patient were found to be heavily hypomethylated. The heterochromatic segments of their chromosomes 1 and 16 were more frequently elongated and rearranged than those from other cell lines, which were found to be less hypomethylated. Thus, in these lymphoblastoid cell lines, alterations characterized by uncoiling and rearrangements of heterochromatic segments from chromosomes 1 and 16 seem to correlate with the hypomethylation of their repetitive DNAs. Two-color in situ hybridizations demonstrated that these elongations and rearrangements involved only classical satellite-DNA-containing heterochromatin. This specificity may be related to the excess of breakages affecting the chromosomes carrying these structures in a variety of pathological conditions.
Collapse
|
|
32 |
69 |
17
|
Hutchison KE, Swift R, Rohsenow DJ, Monti PM, Davidson D, Almeida A. Olanzapine reduces urge to drink after drinking cues and a priming dose of alcohol. Psychopharmacology (Berl) 2001; 155:27-34. [PMID: 11374333 DOI: 10.1007/s002130000629] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RATIONALE Haloperidol, a D2 antagonist, has been shown to moderate the effects of alcohol consumption on craving. OBJECTIVE The present study was designed to determine whether a single 5-mg dose of olanzapine (a D2/5-HT2 antagonist) would influence responses to alcohol cues or an alcohol challenge. It was hypothesized that olanzapine would attenuate cue-elicited urge to drink, attenuate the effects of alcohol consumption on urge to drink, and reduce the rewarding effects of alcohol. METHODS To test these hypotheses, 26 heavy social drinkers were randomized to receive either 5 mg olanzapine or placebo approximately 8 h before each of two experimental sessions. Participants consumed a moderate dose of alcohol in one experimental session and a non-alcohol control beverage in another session. RESULTS Results indicated that mere exposure to alcohol cues and consumption of alcohol increased urge to drink and that olanzapine attenuated these effects. Results also indicated that alcohol increased subjective stimulation and high while olanzapine did not moderate these effects. CONCLUSIONS These results suggest that olanzapine did not influence the rewarding effects of alcohol but did attenuate the effects of alcohol cues and an alcohol challenge on urge to drink.
Collapse
|
Clinical Trial |
24 |
68 |
18
|
Kokalj-Vokac N, Almeida A, Viegas-Péquignot E, Jeanpierre M, Malfoy B, Dutrillaux B. Specific induction of uncoiling and recombination by azacytidine in classical satellite-containing constitutive heterochromatin. CYTOGENETICS AND CELL GENETICS 1993; 63:11-5. [PMID: 7680606 DOI: 10.1159/000133492] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Azacytidine (ACR) is known to induce uncoiling and somatic association involving the constitutive heterochromatin of human chromosomes 1, 9, 15, and 16 and the Y. These regions are composed of alphoid and classical satellite DNA sequences. Using specific probes for chromosomes 1 and 16, we have performed two-color fluorescence in situ hybridization on human lymphocytes cultured in the presence of ACR. We demonstrate that for these two chromosomes (1) uncoiling and association specifically occur in classical satellite-containing regions at the first cell generation, (2) breakages also affect these regions, and (3) somatic recombinations occur between these regions and lead to translocations at the next cell generation. These results suggest that changes in methylation of repetitive DNA sequences are related to chromosomal instability occurring during cell transformation and tumorigenesis.
Collapse
|
|
32 |
67 |
19
|
Henriques A, Inês L, Couto M, Pedreiro S, Santos C, Magalhães M, Santos P, Velada I, Almeida A, Carvalheiro T, Laranjeira P, Morgado JM, Pais ML, Silva JAPD, Paiva A. Frequency and functional activity of Th17, Tc17 and other T-cell subsets in Systemic Lupus Erythematosus. Cell Immunol 2010; 264:97-103. [DOI: 10.1016/j.cellimm.2010.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/04/2010] [Accepted: 05/07/2010] [Indexed: 11/30/2022]
|
|
15 |
66 |
20
|
Oliveira A, Almeida A, Carvalho CMB, Tomé JPC, Faustino MAF, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha A. Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores. J Appl Microbiol 2009; 106:1986-95. [PMID: 19228253 DOI: 10.1111/j.1365-2672.2009.04168.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIMS In this study, we propose (i) to study the photodynamic inactivation (PDI) efficiency of neutral and cationic porphyrin derivatives, (ii) to characterize the kinetics of the inactivation process using Bacillus cereus as a model endospore-producing bacterium and (iii) to conclude on the applicability of porphyrin derivatives in the inactivation of bacterial endospores. METHODS AND RESULTS The study of PDI of Bacillus cereus endospores, taken as model-endospores, using porphyrin derivatives differing in the number of positive charges and in the meso-substituent groups, showed that neutral, monocationic and dicationic porphyrins are quite ineffective, in contrast with the tri- and tetra-cationic molecules. The most effective porphyrin is a tricationic porphyrin with a meso-pentafluorophenyl group. With this photosensitizer (PS), at 0.5 micromol l(-1), a reduction of 3.5 log units occurs after only 4 min of irradiation. None of the porphyrin derivatives showed toxicity in the absence of light. CONCLUSIONS Some porphyrin derivatives are efficient PSs for the inactivation of bacterial endospores and should be considered in further studies. Small modifications in the substituent groups, in addition to charge, significantly improve the effectiveness of the molecule as a PS for endospore inactivation. SIGNIFICANCE AND IMPACT OF THE STUDY Tetrapyrrolic macrocycles should be regarded as worthy to explore for the PDI of spore-producing gram-positive bacteria. The development of molecules, more selective and effective, emerges as a new objective.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
66 |
21
|
Bensaid A, Almeida A, Drlica K, Rouviere-Yaniv J. Cross-talk between topoisomerase I and HU in Escherichia coli. J Mol Biol 1996; 256:292-300. [PMID: 8594197 DOI: 10.1006/jmbi.1996.0086] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In Escherichia coli about one half of the negative supercoiling of DNA is constrained by proteins, in contrast to the situation in eukaryotic cells where most of the DNA is constrained by histones. The level of supercoiling in the unrestrained portion is controlled by a balance between the supercoiling activity of gyrase and the relaxing activity of DNA topoisomerase I. In the present work we show, by disrupting one or both genes encoding the heterodimeric protein HU, that an interplay exists in bacteria between HU and topoisomerase I activity: a decrease in the intracellular concentration of HU was accompanied by an increase in relaxing activity as measured in cell extracts. Conversely, a topA10 mutant of topoisomerase I, which has low levels of relaxing activity, was unable to accept an HU deficiency introduced by transduction. Thus it appears that the ability to increase relaxing activity, or to decrease an excess of supercoiling, is important for cells to survive in the absence of HU. These data can be explained in terms of HU constraining supercoiling in vivo as it does in vitro: the absence of HU would generate more unconstrained supercoiling, which in turn would require an increase in relaxing activity to maintain physiological levels.
Collapse
|
|
29 |
66 |
22
|
Almeida A, Størkson R, Lima D, Hole K, Tjølsen A. The medullary dorsal reticular nucleus facilitates pain behaviour induced by formalin in the rat. Eur J Neurosci 1999; 11:110-22. [PMID: 9987016 DOI: 10.1046/j.1460-9568.1999.00411.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of the dorsal reticular nucleus (DRt) on pain behaviour during the formalin test was studied in the rat by lesioning the nucleus through local application of electrical current or quinolinic acid. Animals in which the DRt was lesioned ipsilaterally to the paw injected with formalin spent less time in focused (licking, biting or scratching the injected paw) and total (focused pain behaviour plus protection of the injected paw during movements) pain behaviour, and showed paw-jerks less frequently than non-lesioned animals in both phases 1 and 2 of the test. Animals in which the DRt was lesioned contralaterally to the injected paw presented a decrease in total pain behaviour and number of paw-jerks only during phase 2. The number of superficial (laminae I-II) and deep (laminae III-VI) spinal dorsal horn cells expressing the c-fos proto-oncogene 2 h after subcutaneous injection of formalin was reduced by 34% and 50%, respectively, in animals with an ipsilateral DRt lesion as compared to non-lesioned rats. No differences in c-fos expression were observed after lesioning the DRt contralateral to the formalin injection. The results indicate that the DRt is involved in the facilitation of nociception during the formalin test by enhancing the response capacity of dorsal horn neurons to noxious stimulation. It is suggested that the pronociceptive action of the DRt is mediated by the reciprocal connections it establishes with the spinal dorsal horn.
Collapse
|
|
26 |
66 |
23
|
Louvado A, Gomes NCM, Simões MMQ, Almeida A, Cleary DFR, Cunha A. Polycyclic aromatic hydrocarbons in deep sea sediments: Microbe-pollutant interactions in a remote environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 526:312-328. [PMID: 25965373 DOI: 10.1016/j.scitotenv.2015.04.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Recalcitrant polycyclic aromatic hydrocarbons (PAHs) released into seawater end up in the deep sea sediments (DSSs). However, their fate here is often oversimplified by theoretical models. Biodegradation of PAHs in DSSs, is assumed to be similar to biodegradation in surface habitats, despite high hydrostatic pressures and low temperatures that should significantly limit PAH biodegradation. Bacteria residing in the DSSs (related mainly to α- and γ-Proteobacteria) have been shown to or predicted to possess distinct genes, enzymes and metabolic pathways, indicating an adaptation of these bacterial communities to the psychro-peizophilic conditions of the DSSs. This work summarizes some of the most recent research on DSS hydrocarbonoclastic populations and mechanisms of PAH degradation and discusses the challenges posed by future high CO2 and UV climate scenarios on biodegradation of PAHs in DSSs.
Collapse
|
Review |
10 |
66 |
24
|
Almeida A, Medina JM. A rapid method for the isolation of metabolically active mitochondria from rat neurons and astrocytes in primary culture. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1998; 2:209-14. [PMID: 9507134 DOI: 10.1016/s1385-299x(97)00044-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A rapid method (about 1.5 h) for the isolation of intact functional mitochondria from neurons and astrocytes in primary culture is described. Mitochondria isolated by this method are metabolically active and tightly coupled as shown by respiratory control ratio values, which were about 4 with glutamate-malate as substrate. The activities of marker enzymes revealed the occurrence of a low degree of cytosolic (5%) or synaptosomal (5.5%) contamination in the mitochondrial fractions. In addition, the activity of citrate synthase was increased by 4 fold in both neuronal and astrocytic mitochondria with respect to values found in cell homogenates. These results confirm that the method affords mitochondrial preparations from cultured brain cells at suitable levels of purity and enrichment for the study of their mitochondrial function. Since mitochondrial damage has been associated with the pathogenesis of certain neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases (P. Chagnon, C. Betard, Y. Robitaille, A. Cholette, D. Gauvreau, Distribution of brain cytochrome oxidase activity in various neurodegenerative disease, Neuroreport 6 (1995) 711-715 [6]; S.J. Kish, C. Bergeron, A. Rajput, S. Dozic, F. Mastrogiacomo, L. Chang, J.M. Wilson, L.M. DiStefano, J.N. Nobrega, Brain cytochrome oxidase in Alzheimer's disease, J. Neurochem. 59 (1992) 776-779 [10]; A.H.V. Schapira, J.M. Cooper, D. Dexter, J.B. Clark, P. Jenner, C.D. Marsden, Mitochondrial complex I deficiency in Parkinson's disease, J. Neurochem. 54 (1990) 823-827 [15]), the method described here shed light on the possible susceptibility of neuronal or astrocytic mitochondria to deleterious effects of these diseases.
Collapse
|
|
27 |
63 |
25
|
Delgado-Esteban M, Almeida A, Bolaños JP. D-Glucose prevents glutathione oxidation and mitochondrial damage after glutamate receptor stimulation in rat cortical primary neurons. J Neurochem 2000; 75:1618-24. [PMID: 10987843 DOI: 10.1046/j.1471-4159.2000.0751618.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The possible neuroprotective effect of D-glucose against glutamate-mediated neurotoxicity was studied in rat cortical neurons in primary culture. Brief (5-min) exposure of neurons to glutamate (100 microM) increased delayed (24-h) necrosis and apoptosis by 3- and 1.8-fold, respectively. Glutamate-mediated neurotoxicity was accompanied by a D-(-)-2-amino-5-phosphonopentanoate (100 microM) and N(omega)-nitro-L-arginine methyl ester (1 mM)-inhibitable, time-dependent ATP depletion (55% at 24 h), confirming the involvement of NMDA receptor stimulation followed by nitric oxide synthesis in this process. Furthermore, the presence of D-glucose (20 mM), but not its inactive enantiomer, L-glucose, fully prevented glutamate-mediated delayed ATP depletion, necrosis, and apoptosis. Succinate- cytochrome c reductase activity, but not the activities of NADH-coenzyme Q(1) reductase or cytochrome c oxidase, was inhibited by 32% by glutamate treatment, an effect that was abolished by incubation with D-glucose. Lactate accumulation in the culture medium was unmodified by any of these treatments, ruling out the possible involvement of the glycolysis pathway in either glutamate neurotoxicity or D-glucose neuroprotection. In contrast, D-glucose, but not L-glucose, abolished glutamate-mediated glutathione oxidation and NADPH depletion. Our results suggest that NADPH production from D-glucose accounts for glutathione regeneration and protection from mitochondrial dysfunction. This supports the notion that the activity of the pentose phosphate pathway may be an important factor in protecting neurons against glutamate neurotoxicity.
Collapse
|
|
25 |
60 |