76
|
Hohman TJ, Bush WS, Jiang L, Brown-Gentry KD, Torstenson ES, Dudek SM, Mukherjee S, Naj A, Kunkle BW, Ritchie MD, Martin ER, Schellenberg GD, Mayeux R, Farrer LA, Pericak-Vance MA, Haines JL, Thornton-Wells TA. Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium. Neurobiol Aging 2016; 38:141-150. [PMID: 26827652 PMCID: PMC4735733 DOI: 10.1016/j.neurobiolaging.2015.10.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022]
Abstract
Late-onset Alzheimer disease (AD) has a complex genetic etiology, involving locus heterogeneity, polygenic inheritance, and gene-gene interactions; however, the investigation of interactions in recent genome-wide association studies has been limited. We used a biological knowledge-driven approach to evaluate gene-gene interactions for consistency across 13 data sets from the Alzheimer Disease Genetics Consortium. Fifteen single nucleotide polymorphism (SNP)-SNP pairs within 3 gene-gene combinations were identified: SIRT1 × ABCB1, PSAP × PEBP4, and GRIN2B × ADRA1A. In addition, we extend a previously identified interaction from an endophenotype analysis between RYR3 × CACNA1C. Finally, post hoc gene expression analyses of the implicated SNPs further implicate SIRT1 and ABCB1, and implicate CDH23 which was most recently identified as an AD risk locus in an epigenetic analysis of AD. The observed interactions in this article highlight ways in which genotypic variation related to disease may depend on the genetic context in which it occurs. Further, our results highlight the utility of evaluating genetic interactions to explain additional variance in AD risk and identify novel molecular mechanisms of AD pathogenesis.
Collapse
|
77
|
Kohli MA, Cukier HN, Hamilton-Nelson KL, Rolati S, Kunkle BW, Whitehead PL, Züchner SL, Farrer LA, Martin ER, Beecham GW, Haines JL, Vance JM, Cuccaro ML, Gilbert JR, Schellenberg GD, Carney RM, Pericak-Vance MA. Segregation of a rare TTC3 variant in an extended family with late-onset Alzheimer disease. NEUROLOGY-GENETICS 2016; 2:e41. [PMID: 27066578 PMCID: PMC4817909 DOI: 10.1212/nxg.0000000000000041] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The genetic risk architecture of Alzheimer disease (AD) is complex with single pathogenic mutations leading to early-onset AD, while both rare and common genetic susceptibility variants contribute to the more widespread late-onset AD (LOAD); we sought to discover novel genes contributing to LOAD risk. METHODS Whole-exome sequencing and genome-wide genotyping were performed on 11 affected individuals in an extended family with an apparent autosomal dominant pattern of LOAD. Variants of interest were then evaluated in a large cohort of LOAD cases and aged controls. RESULTS We detected a single rare, nonsynonymous variant shared in all 11 LOAD individuals, a missense change in the tetratricopeptide repeat domain 3 (TTC3) gene. The missense variant, rs377155188 (p.S1038C), is predicted to be damaging. Affecteds-only multipoint linkage analysis demonstrated that this region of TTC3 has a LOD score of 2.66 in this family. CONCLUSION The TTC3 p.S1038C substitution may represent a segregating, rare LOAD risk variant. Previous studies have shown that TTC3 expression is consistently reduced in LOAD patients and negatively correlated with AD neuropathology and that TTC3 is a regulator of Akt signaling, a key pathway disrupted in LOAD. This study demonstrates how utilizing whole-exome sequencing in a large, multigenerational family with a high incidence of LOAD could reveal a novel candidate gene.
Collapse
|
78
|
Kunkle BW, Jaworski J, Barral S, Vardarajan B, Beecham GW, Martin ER, Cantwell LS, Partch A, Bird TD, Raskind WH, DeStefano AL, Carney RM, Cuccaro M, Vance JM, Farrer LA, Goate AM, Foroud T, Mayeux RP, Schellenberg GD, Haines JL, Pericak-Vance MA. Genome-wide linkage analyses of non-Hispanic white families identify novel loci for familial late-onset Alzheimer's disease. Alzheimers Dement 2016; 12:2-10. [PMID: 26365416 PMCID: PMC4717829 DOI: 10.1016/j.jalz.2015.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/14/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Few high penetrance variants that explain risk in late-onset Alzheimer's disease (LOAD) families have been found. METHODS We performed genome-wide linkage and identity-by-descent (IBD) analyses on 41 non-Hispanic white families exhibiting likely dominant inheritance of LOAD, and having no mutations at known familial Alzheimer's disease (AD) loci, and a low burden of APOE ε4 alleles. RESULTS Two-point parametric linkage analysis identified 14 significantly linked regions, including three novel linkage regions for LOAD (5q32, 11q12.2-11q14.1, and 14q13.3), one of which replicates a genome-wide association LOAD locus, the MS4A6A-MS4A4E gene cluster at 11q12.2. Five of the 14 regions (3q25.31, 4q34.1, 8q22.3, 11q12.2-14.1, and 19q13.41) are supported by strong multipoint results (logarithm of odds [LOD*] ≥1.5). Nonparametric multipoint analyses produced an additional significant locus at 14q32.2 (LOD* = 4.18). The 1-LOD confidence interval for this region contains one gene, C14orf177, and the microRNA Mir_320, whereas IBD analyses implicates an additional gene BCL11B, a regulator of brain-derived neurotrophic signaling, a pathway associated with pathogenesis of several neurodegenerative diseases. DISCUSSION Examination of these regions after whole-genome sequencing may identify highly penetrant variants for familial LOAD.
Collapse
|
79
|
Cukier HN, Kunkle BW, Rolati S, Hamilton-Nelson KL, Kohli MA, Dombroski BA, Vardarajan BN, Whitehead PL, Booven DJ, Martin ER, Beecham GW, Farrer LA, Cuccaro ML, Vance JM, Mayeux R, Gilbert JR, Carney RM, Byrd GS, Haines JL, Schellenberg GD, Pericak-Vance MA, Lang R. P2‐013:
ABCA7
deletion associated with Alzheimer's disease in african americans. Alzheimers Dement 2015. [DOI: 10.1016/j.jalz.2015.06.549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
80
|
Beecham GW, Kunkle BW, Vardarajan B, Whitehead PL, Rolati S, Martin ER, Gilbert JR, Mayeux R, Haines JL, Pericak-Vance MA. O3‐13‐02: Whole‐exome sequencing in early‐onset Alzheimer disease cases identifies novel candidate genes. Alzheimers Dement 2015. [DOI: 10.1016/j.jalz.2015.07.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
81
|
Wang LS, Naj AC, Graham RR, Crane PK, Kunkle BW, Cruchaga C, Murcia JDG, Cannon-Albright L, Baldwin CT, Zetterberg H, Blennow K, Kukull WA, Faber KM, Schupf N, Norton MC, Tschanz JT, Munger RG, Corcoran CD, Rogaeva E, Lin CF, Dombroski BA, Cantwell LB, Partch A, Valladares O, Hakonarson H, St George-Hyslop P, Green RC, Goate AM, Foroud TM, Carney RM, Larson EB, Behrens TW, Kauwe JSK, Haines JL, Farrer LA, Pericak-Vance MA, Mayeux R, Schellenberg GD, Albert MS, Albin RL, Apostolova LG, Arnold SE, Barber R, Barmada M, Barnes LL, Beach TG, Becker JT, Beecham GW, Beekly D, Bennett DA, Bigio EH, Bird TD, Blacker D, Boeve BF, Bowen JD, Boxer A, Burke JR, Buxbaum JD, Cairns NJ, Cao C, Carlson CS, Carroll SL, Chui HC, Clark DG, Cribbs DH, Crocco EA, DeCarli C, DeKosky ST, Demirci FY, Dick M, Dickson DW, Duara R, Ertekin-Taner N, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Glass JD, Graff-Radford NR, Growdon JH, Hamilton RL, Hamilton-Nelson KL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jarvik GP, Jicha GA, Jin LW, Jun G, Jun G, Kamboh MI, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Kramer JH, LaFerla FM, Lah JJ, Leverenz JB, Levey AI, Li G, Lieberman AP, Lopez OL, Lunetta KL, Lyketsos CG, Mack WJ, Marson DC, Martin ER, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam WM, Miller BL, Miller CA, Miller JW, Montine TJ, Morris JC, Murrell JR, Olichney JM, Parisi JE, Perry W, Peskind E, Petersen RC, Pierce A, Poon WW, Potter H, Quinn JF, Raj A, Raskind M, Reiman EM, Reisberg B, Reitz C, Ringman JM, Roberson ED, Rosen HJ, Rosenberg RN, Sano M, Saykin AJ, Schneider JA, Schneider LS, Seeley WW, Smith AG, Sonnen JA, Spina S, Stern RA, Tanzi RE, Thornton-Wells TA, Trojanowski JQ, Troncoso JC, Tsuang DW, Van Deerlin VM, Van Eldik LJ, Vardarajan BN, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Wishnek S, Woltjer RL, Wright CB, Younkin SG, Yu CE, Yu L. Rarity of the Alzheimer disease-protective APP A673T variant in the United States. JAMA Neurol 2015; 72:209-16. [PMID: 25531812 DOI: 10.1001/jamaneurol.2014.2157] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States. OBJECTIVE To determine the frequency of the APP A673T variant in a large group of elderly cognitively normal controls and AD cases from the United States and in 2 case-control cohorts from Sweden. DESIGN, SETTING, AND PARTICIPANTS Case-control association analysis of variant APP A673T in US and Swedish white individuals comparing AD cases with cognitively intact elderly controls. Participants were ascertained at multiple university-associated medical centers and clinics across the United States and Sweden by study-specific sampling methods. They were from case-control studies, community-based prospective cohort studies, and studies that ascertained multiplex families from multiple sources. MAIN OUTCOMES AND MEASURES Genotypes for the APP A673T variant were determined using the Infinium HumanExome V1 Beadchip (Illumina, Inc) and by TaqMan genotyping (Life Technologies). RESULTS The A673T variant genotypes were evaluated in 8943 US AD cases, 10 480 US cognitively normal controls, 862 Swedish AD cases, and 707 Swedish cognitively normal controls. We identified 3 US individuals heterozygous for A673T, including 1 AD case (age at onset, 89 years) and 2 controls (age at last examination, 82 and 77 years). The remaining US samples were homozygous for the alanine (A673) allele. In the Swedish samples, 3 controls were heterozygous for A673T and all AD cases were homozygous for the A673 allele. We also genotyped a US family previously reported to harbor the A673T variant and found a mother-daughter pair, both cognitively normal at ages 72 and 84 years, respectively, who were both heterozygous for A673T; however, all individuals with AD in the family were homozygous for A673. CONCLUSIONS AND RELEVANCE The A673T variant is extremely rare in US cohorts and does not play a substantial role in risk for AD in this population. This variant may be primarily restricted to Icelandic and Scandinavian populations.
Collapse
|
82
|
Naj AC, Jun G, Reitz C, Kunkle BW, Perry W, Park YS, Beecham GW, Rajbhandary RA, Hamilton-Nelson KL, Wang LS, Kauwe JSK, Huentelman MJ, Myers AJ, Bird TD, Boeve BF, Baldwin CT, Jarvik GP, Crane PK, Rogaeva E, Barmada MM, Demirci FY, Cruchaga C, Kramer PL, Ertekin-Taner N, Hardy J, Graff-Radford NR, Green RC, Larson EB, St George-Hyslop PH, Buxbaum JD, Evans DA, Schneider JA, Lunetta KL, Kamboh MI, Saykin AJ, Reiman EM, De Jager PL, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Martin ER, Haines JL, Mayeux RP, Farrer LA, Schellenberg GD, Pericak-Vance MA, Albert MS, Albin RL, Apostolova LG, Arnold SE, Barber R, Barnes LL, Beach TG, Becker JT, Beekly D, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Cantwell LB, Cao C, Carlson CS, Carney RM, Carrasquillo MM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cribbs DH, Crocco EA, DeCarli C, DeKosky ST, Dick M, Dickson DW, Duara R, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Kramer JH, LaFerla FM, Lah JJ, Leverenz JB, Levey AI, Li G, Lieberman AP, Lin CF, Lopez OL, Lyketsos CG, Mack WJ, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Murrell JR, Olichney JM, Pankratz VS, Parisi JE, Paulson HL, Peskind E, Petersen RC, Pierce A, Poon WW, Potter H, Quinn JF, Raj A, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosen HJ, Rosenberg RN, Sano M, Schneider LS, Seeley WW, Smith AG, Sonnen JA, Spina S, Stern RA, Tanzi RE, Thornton-Wells TA, Trojanowski JQ, Troncoso JC, Valladares O, Van Deerlin VM, Van Eldik LJ, Vardarajan BN, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Wishnek S, Woltjer RL, Wright CB, Younkin SG, Yu CE, Yu L. Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: a genome-wide association study. JAMA Neurol 2014; 71:1394-404. [PMID: 25199842 PMCID: PMC4314944 DOI: 10.1001/jamaneurol.2014.1491] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IMPORTANCE Because APOE locus variants contribute to risk of late-onset Alzheimer disease (LOAD) and to differences in age at onset (AAO), it is important to know whether other established LOAD risk loci also affect AAO in affected participants. OBJECTIVES To investigate the effects of known Alzheimer disease risk loci in modifying AAO and to estimate their cumulative effect on AAO variation using data from genome-wide association studies in the Alzheimer Disease Genetics Consortium. DESIGN, SETTING, AND PARTICIPANTS The Alzheimer Disease Genetics Consortium comprises 14 case-control, prospective, and family-based data sets with data on 9162 participants of white race/ethnicity with Alzheimer disease occurring after age 60 years who also had complete AAO information, gathered between 1989 and 2011 at multiple sites by participating studies. Data on genotyped or imputed single-nucleotide polymorphisms most significantly associated with risk at 10 confirmed LOAD loci were examined in linear modeling of AAO, and individual data set results were combined using a random-effects, inverse variance-weighted meta-analysis approach to determine whether they contribute to variation in AAO. Aggregate effects of all risk loci on AAO were examined in a burden analysis using genotype scores weighted by risk effect sizes. MAIN OUTCOMES AND MEASURES Age at disease onset abstracted from medical records among participants with LOAD diagnosed per standard criteria. RESULTS Analysis confirmed the association of APOE with earlier AAO (P = 3.3 × 10(-96)), with associations in CR1 (rs6701713, P = 7.2 × 10(-4)), BIN1 (rs7561528, P = 4.8 × 10(-4)), and PICALM (rs561655, P = 2.2 × 10(-3)) reaching statistical significance (P < .005). Risk alleles individually reduced AAO by 3 to 6 months. Burden analyses demonstrated that APOE contributes to 3.7% of the variation in AAO (R(2) = 0.256) over baseline (R(2) = 0.221), whereas the other 9 loci together contribute to 2.2% of the variation (R(2) = 0.242). CONCLUSIONS AND RELEVANCE We confirmed an association of APOE (OMIM 107741) variants with AAO among affected participants with LOAD and observed novel associations of CR1 (OMIM 120620), BIN1 (OMIM 601248), and PICALM (OMIM 603025) with AAO. In contrast to earlier hypothetical modeling, we show that the combined effects of Alzheimer disease risk variants on AAO are on the scale of, but do not exceed, the APOE effect. While the aggregate effects of risk loci on AAO may be significant, additional genetic contributions to AAO are individually likely to be small.
Collapse
|
83
|
Reitz C, Beecham G, Kunkle BW, Vardarajan BN, Perry W, Martin E, Farrer LA, Haines J, Schellenberg GD, Mayeux R, Pericak‐Vance MA. P2‐125: GENOME‐WIDE LINKAGE ANALYSES IDENTIFY NOVEL LOCI FOR FAMILIAL LATE‐ONSET ALZHEIMER'S DISEASE. Alzheimers Dement 2014. [DOI: 10.1016/j.jalz.2014.05.800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
84
|
Kunkle BW, Naj AC, Hamilton‐Nelson K, Perry WR, Partch A, Valladares O, Chung J, Jun G, Schmidt M, Beecham G, Wang L, Martin E, Mayeux R, Haines J, Farrer LA, Schellenberg GD, Pericak‐Vance M, The Alzheimer's Disease Genetics Consortium. O1‐04‐03: LOW‐FREQUENCY VARIANT IMPUTATION IDENTIFIES NOVEL DISEASE‐ASSOCIATED LOCI IN A GENOME‐WIDE ASSOCIATION STUDY OF LATE‐ONSET ALZHEIMER'S DISEASE. Alzheimers Dement 2014. [DOI: 10.1016/j.jalz.2014.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
85
|
Carney R, Kohli MA, Kunkle BW, Martin ER, Beecham GW, Gilbert JR, Pericak‐Vance MA. P1‐036: CLINICAL CHARACTERISTICS OF LATE ONSET ALZHEIMER DISEASE IN AN EXTENDED FAMILY WITH A MISSENSE VARIANT IN TTC3. Alzheimers Dement 2014. [DOI: 10.1016/j.jalz.2014.05.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
86
|
Pericak‐Vance M, Reitz C, Kunkle BW, Vardarajan BN, Kohli MA, Naj AC, Whitehead PL, Perry W, Martin E, Beecham G, Gilbert J, Farrer LA, Haines J, Schellenberg GD, Mayeux R. P2‐131: WHOLE‐EXOME SEQUENCING OF HISPANIC EARLY‐ONSET ALZHEIMER DISEASE FAMILIES IDENTIFIES RARE VARIANTS IN MULTIPLE ALZHEIMER'S‐RELATED GENES. Alzheimers Dement 2014. [DOI: 10.1016/j.jalz.2014.05.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
87
|
Carney RM, Kohli MA, Kunkle BW, Naj AC, Gilbert JR, Züchner S, Pericak-Vance MA. Parkinsonism and distinct dementia patterns in a family with the MAPT R406W mutation. Alzheimers Dement 2014; 10:360-5. [PMID: 23727082 PMCID: PMC3762928 DOI: 10.1016/j.jalz.2013.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/21/2013] [Accepted: 02/28/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The Arg406Trp (R406W) missense mutation in the microtubule-associated protein-tau gene (MAPT) is a known cause of early-onset dementia. Various dementia phenotypes have been described, including frontotemporal dementia (FTD), FTD with parkinsonism, and early-onset Alzheimer disease (EOAD)-like presentations. METHODS Using whole-exome capture with subsequent sequencing, we identified the R406W mutation in a family with multiple individuals with clinically diagnosed EOAD, in a pattern suggesting autosomal dominant inheritance. We reevaluated all available family members clinically. RESULTS Each of the affected individuals had a course meeting clinical criteria for EOAD. Two distinct disease trajectories were apparent: one rapidly progressive, and the other long and gradual. Four of five affected individuals also manifested parkinsonian symptoms. FTD features were not prominent and, when present, appeared only late in the course of dementia. CONCLUSIONS The MAPT R406W mutation is associated with EOAD-like symptoms and parkinsonism without FTD, as well as distinct cognitive courses.
Collapse
|
88
|
Kunkle BW, Yoo C, Roy D. Reverse engineering of modified genes by Bayesian network analysis defines molecular determinants critical to the development of glioblastoma. PLoS One 2013; 8:e64140. [PMID: 23737970 PMCID: PMC3667850 DOI: 10.1371/journal.pone.0064140] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/28/2013] [Indexed: 12/22/2022] Open
Abstract
In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I-IV), and 'key genes' within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96-100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential 'hubs of activity'. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several 'key genes' may be required for the development of glioblastoma. Further studies are needed to validate these 'key genes' as useful tools for early detection and novel therapeutic options for these tumors.
Collapse
|