1
|
Abstract
A neglected question regarding cognitive control is how control processes might detect situations calling for their involvement. The authors propose here that the demand for control may be evaluated in part by monitoring for conflicts in information processing. This hypothesis is supported by data concerning the anterior cingulate cortex, a brain area involved in cognitive control, which also appears to respond to the occurrence of conflict. The present article reports two computational modeling studies, serving to articulate the conflict monitoring hypothesis and examine its implications. The first study tests the sufficiency of the hypothesis to account for brain activation data, applying a measure of conflict to existing models of tasks shown to engage the anterior cingulate. The second study implements a feedback loop connecting conflict monitoring to cognitive control, using this to simulate a number of important behavioral phenomena.
Collapse
|
|
24 |
4584 |
2
|
MacDonald AW, Cohen JD, Stenger VA, Carter CS. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 2000; 288:1835-8. [PMID: 10846167 DOI: 10.1126/science.288.5472.1835] [Citation(s) in RCA: 2615] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Theories of the regulation of cognition suggest a system with two necessary components: one to implement control and another to monitor performance and signal when adjustments in control are needed. Event-related functional magnetic resonance imaging and a task-switching version of the Stroop task were used to examine whether these components of cognitive control have distinct neural bases in the human brain. A double dissociation was found. During task preparation, the left dorsolateral prefrontal cortex (Brodmann's area 9) was more active for color naming than for word reading, consistent with a role in the implementation of control. In contrast, the anterior cingulate cortex (Brodmann's areas 24 and 32) was more active when responding to incongruent stimuli, consistent with a role in performance monitoring.
Collapse
|
|
25 |
2615 |
3
|
Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 1998; 280:747-9. [PMID: 9563953 DOI: 10.1126/science.280.5364.747] [Citation(s) in RCA: 2280] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An unresolved question in neuroscience and psychology is how the brain monitors performance to regulate behavior. It has been proposed that the anterior cingulate cortex (ACC), on the medial surface of the frontal lobe, contributes to performance monitoring by detecting errors. In this study, event-related functional magnetic resonance imaging was used to examine ACC function. Results confirm that this region shows activity during erroneous responses. However, activity was also observed in the same region during correct responses under conditions of increased response competition. This suggests that the ACC detects conditions under which errors are likely to occur rather than errors themselves.
Collapse
|
|
27 |
2280 |
4
|
Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 1999; 402:179-81. [PMID: 10647008 DOI: 10.1038/46035] [Citation(s) in RCA: 1451] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The anterior cingulate cortex (ACC), on the medial surface of the frontal lobes of the brain, is widely believed to be involved in the regulation of attention. Beyond this, however, its specific contribution to cognition remains uncertain. One influential theory has interpreted activation within the ACC as reflecting 'selection-for-action', a set of processes that guide the selection of environmental objects as triggers of or targets for action. We have proposed an alternative hypothesis, in which the ACC serves not to exert top-down attentional control but instead to detect and signal the occurrence of conflicts in information processing. Here, to test this theory against the selection-for-action theory, we used functional magnetic resonance imaging to measure brain activation during performance of a task where, for a particular subset of trials, the strength of selection-for-action is inversely related to the degree of response conflict. Activity within the ACC was greater during trials featuring high levels of conflict (and weak selection-for-action) than during trials with low levels of conflict (and strong selection-for-action), providing evidence in favour of the conflict-monitoring account of ACC function.
Collapse
|
|
26 |
1451 |
5
|
Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P, Greenblatt JJ, Rosenberg SA, Klein H, Berger M, Mullen CA, Ramsey WJ, Muul L, Morgan RA, Anderson WF. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 1995; 270:475-80. [PMID: 7570001 DOI: 10.1126/science.270.5235.475] [Citation(s) in RCA: 924] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In 1990, a clinical trial was started using retroviral-mediated transfer of the adenosine deaminase (ADA) gene into the T cells of two children with severe combined immunodeficiency (ADA- SCID). The number of blood T cells normalized as did many cellular and humoral immune responses. Gene treatment ended after 2 years, but integrated vector and ADA gene expression in T cells persisted. Although many components remain to be perfected, it is concluded here that gene therapy can be a safe and effective addition to treatment for some patients with this severe immunodeficiency disease.
Collapse
|
Clinical Trial |
30 |
924 |
6
|
Abstract
The purpose of this paper is to review existing behavioral and neuroendocrine perspectives on social attachment and love. Both love and social attachments function to facilitate reproduction, provide a sense of safety, and reduce anxiety or stress. Because social attachment is an essential component of love, understanding attachment formation is an important step toward identifying the neurobiological substrates of love. Studies of pair bonding in monogamous rodents, such as prairie voles, and maternal attachment in precocial ungulates offer the most accessible animal models for the study of mechanisms underlying selective social attachments and the propensity to develop social bonds. Parental behavior and sexual behavior, even in the absence of selective social behaviors, are associated with the concept of love; the analysis of reproductive behaviors, which is far more extensive than our understanding of social attachment, also suggests neuroendocrine substrates for love. A review of these literatures reveals a recurrent association between high levels of activity in the hypothalamic pituitary adrenal (HPA) axis and the subsequent expression of social behaviors and attachments. Positive social behaviors, including social bonds, may reduce HPA axis activity, while in some cases negative social interactions can have the opposite effect. Central neuropeptides, and especially oxytocin and vasopressin have been implicated both in social bonding and in the central control of the HPA axis. In prairie voles, which show clear evidence of pair bonds, oxytocin is capable of increasing positive social behaviors and both oxytocin and social interactions reduce activity in the HPA axis. Social interactions and attachment involve endocrine systems capable of decreasing HPA reactivity and modulating the autonomic nervous system, perhaps accounting for health benefits that are attributed to loving relationships.
Collapse
|
Review |
27 |
789 |
7
|
Carter CS, Macdonald AM, Botvinick M, Ross LL, Stenger VA, Noll D, Cohen JD. Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proc Natl Acad Sci U S A 2000; 97:1944-8. [PMID: 10677559 PMCID: PMC26541 DOI: 10.1073/pnas.97.4.1944] [Citation(s) in RCA: 718] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/1999] [Accepted: 12/20/1999] [Indexed: 12/29/2022] Open
Abstract
Event-related functional MRI and a version of the Stroop color naming task were used to test two conflicting theories of anterior cingulate cortex (ACC) function during executive processes of cognition. A response-related increase in ACC activity was present when strategic processes were less engaged, and conflict high, but not when strategic processes were engaged and conflict reduced. This is inconsistent with the widely held view that the ACC implements strategic processes to reduce cognitive conflicts, such as response competition. Instead, it suggests that the ACC serves an evaluative function, detecting cognitive states such as response competition, which may lead to poor performance, and representing the knowledge that strategic processes need to be engaged.
Collapse
|
research-article |
25 |
718 |
8
|
Winslow JT, Hastings N, Carter CS, Harbaugh CR, Insel TR. A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 1993; 365:545-8. [PMID: 8413608 DOI: 10.1038/365545a0] [Citation(s) in RCA: 634] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Monogamous social organization is characterized by selective affiliation with a partner, high levels of paternal behaviour and, in many species, intense aggression towards strangers for defence of territory, nest and mate. Although much has been written about the evolutionary causes of monogamy, little is known about the proximate mechanisms for pair bonding in monogamous mammals. The prairie vole, Microtus ochrogaster, is a monogamous, biparental rodent which exhibits long-term pair bonds characterized by selective affiliation (partner preference) and aggression. Here we describe the rapid development of both selective aggression and partner preferences following mating in the male of this species. We hypothesized that either arginine-vasopressin (AVP) or oxytocin (OT), two nine-amino-acid neuropeptides with diverse forebrain projections, could mediate the development of selective aggression and affiliation. This hypothesis was based on the following observations: (1) monogamous and polygamous voles differ specifically in the distribution of forebrain AVP and OT receptors; (2) AVP innervation in the prairie vole brain is sexually dimorphic and important for paternal behaviour; (3) central AVP pathways have been previously implicated in territorial displays and social memory; and (4) central OT pathways have been previously implicated in affiliative behaviours. We now demonstrate that central AVP is both necessary and sufficient for selective aggression and partner preference formation, two critical features of pair bonding in the monogamous prairie vole.
Collapse
|
|
32 |
634 |
9
|
van Veen V, Cohen JD, Botvinick MM, Stenger VA, Carter CS. Anterior cingulate cortex, conflict monitoring, and levels of processing. Neuroimage 2001; 14:1302-8. [PMID: 11707086 DOI: 10.1006/nimg.2001.0923] [Citation(s) in RCA: 481] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been hypothesized that the anterior cingulate cortex (ACC) contributes to cognition by detecting conflicts that might occur during information processing, to signal the need to engage top-down attentional processes. The present study was designed to investigate which levels of processing are being monitored by the ACC for the presence of conflict. Event-related fMRI was used to measure the response of the ACC during an interference task in which distracting information could be congruent, conflicting at the level of stimulus identification, or conflicting at the response level. Although both types of conflict caused reaction time interference, the fMRI data showed that the ACC is responsive only to response conflict, even when controlling for reaction times. These results suggest a highly specific contribution of the ACC to executive functions, through the detection of conflicts occurring at later or response-related levels of processing.
Collapse
|
|
24 |
481 |
10
|
Perlstein WM, Carter CS, Noll DC, Cohen JD. Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry 2001; 158:1105-13. [PMID: 11431233 DOI: 10.1176/appi.ajp.158.7.1105] [Citation(s) in RCA: 450] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The dorsolateral prefrontal cortex has been implicated in both working memory and the pathophysiology of schizophrenia. A relationship among dorsolateral prefrontal cortex activity, working memory dysfunction, and symptoms in schizophrenia has not been firmly established, partly because of generalized cognitive impairments in patients and task complexity. Using tasks that parametrically manipulated working memory load, the authors tested three hypotheses: 1) patients with schizophrenia differ in prefrontal activity only when behavioral performance differentiates them from healthy comparison subjects, 2) dorsolateral prefrontal cortex dysfunction is associated with poorer task performance, and 3) dorsolateral prefrontal cortex dysfunction is associated with cognitive disorganization but not negative or positive symptoms. METHOD Seventeen conventionally medicated patients with schizophrenia and 16 healthy comparison subjects underwent functional magnetic resonance imaging while performing multiple levels of the "n-back" sequential-letter working memory task. RESULTS Patients with schizophrenia showed a deficit in physiological activation of the right dorsolateral prefrontal cortex (Brodmann's area 46/9) in the context of normal task-dependent activity in other regions, but only under the condition that distinguished them from comparison subjects on task performance. Patients with greater dorsolateral prefrontal cortex dysfunction performed more poorly. Dorsolateral prefrontal cortex dysfunction was selectively associated with disorganization symptoms. CONCLUSIONS These results are consistent with the hypotheses that working memory dysfunction in patients with schizophrenia is caused by a disturbance of the dorsolateral prefrontal cortex and that this disturbance is selectively associated with cognitive disorganization. Further, the pattern of behavioral performance suggests that dorsolateral prefrontal cortex dysfunction does not reflect a deficit in the maintenance of stimulus representations per se but points to deficits in more associative components of working memory.
Collapse
|
Comparative Study |
24 |
450 |
11
|
Barch DM, Carter CS, Braver TS, Sabb FW, MacDonald A, Noll DC, Cohen JD. Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. ARCHIVES OF GENERAL PSYCHIATRY 2001; 58:280-8. [PMID: 11231835 DOI: 10.1001/archpsyc.58.3.280] [Citation(s) in RCA: 447] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Previously we proposed that dorsolateral prefrontal cortex (PFC) supports a specific working memory (WM) subcomponent: the ability to represent and maintain context information necessary to guide appropriate task behavior. By context, we mean prior task-relevant information represented in such a form that it supports selection of the appropriate behavioral response. Furthermore, we hypothesized that WM deficits in schizophrenia reflect impaired context processing due to a disturbance in dorsolateral PFC. We use functional magnetic resonance imaging to examine PFC activation in medication-naive, first-episode patients with schizophrenia during a WM, task-isolating context processing. METHODS Fourteen first-episode, medication-naive patients with schizophrenia and 12 controls similar in age, sex, and parental education underwent functional magnetic resonance imaging during performance of an A-X version of the Continuous Performance Test. RESULTS Patients with schizophrenia demonstrated deficits in dorsolateral PFC activation in task conditions requiring context processing but showed intact activation of posterior and inferior PFC. In addition, patients demonstrated intact activation of the primary motor and somatosensory cortex in response to stimulus processing demands. CONCLUSIONS These results demonstrate selectivity in dorsolateral PFC dysfunction among medication-naive first-episode patients with schizophrenia, suggesting that a specific deficit in PFC function is present at illness onset, prior to the administration of medication or the most confounding effects of illness duration. Furthermore, these results are consistent with the hypothesis that WM deficits in patients with schizophrenia reflect an impairment in context processing due to a disturbance in dorsolateral PFC function.
Collapse
|
|
24 |
447 |
12
|
Cho RY, Konecky RO, Carter CS. Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci U S A 2006; 103:19878-83. [PMID: 17170134 PMCID: PMC1750867 DOI: 10.1073/pnas.0609440103] [Citation(s) in RCA: 438] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A critical component of cognitive impairments in schizophrenia can be characterized as a disturbance in cognitive control, or the ability to guide and adjust cognitive processes and behavior flexibly in accordance with one's intentions and goals. Cognitive control impairments in schizophrenia are consistently linked to specific disturbances in prefrontal cortical functioning, but the underlying neurophysiologic mechanisms are not yet well characterized. Synchronous gamma-band oscillations have been associated with a wide range of perceptual and cognitive processes, raising the possibility that they may also help entrain prefrontal cortical circuits in the service of cognitive control processes. In the present study, we measured induced gamma-band activity during a task that reliably engages cognitive control processes in association with prefrontal cortical activations in imaging studies. We found that higher cognitive control demands were associated with increases in induced gamma-band activity in the prefrontal areas of healthy subjects but that control-related modulation of prefrontal gamma-band activity was absent in schizophrenia subjects. Disturbances in gamma-band activity in patients correlated with illness symptoms, and gamma-band activity correlated positively with performance in control subjects but not in schizophrenia patients. Our findings may provide a link between previously reported postmortem abnormalities in thalamofrontocortical circuitry and alterations in prefrontal activity observed in functional neuroimaging studies. They also suggest that deficits in frontal cortical gamma-band synchrony may contribute to the cognitive control impairments in schizophrenia.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
438 |
13
|
Carter CS, DeVries AC, Getz LL. Physiological substrates of mammalian monogamy: the prairie vole model. Neurosci Biobehav Rev 1995; 19:303-14. [PMID: 7630584 DOI: 10.1016/0149-7634(94)00070-h] [Citation(s) in RCA: 426] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prairie voles (Microtus ochrogaster) are described here as a model system in which it is possible to examine, within the context of natural history, the proximate processes regulating the social and reproductive behaviors that characterize a monogamous social system. Neuropeptides, including oxytocin and vasopressin, and the adrenal glucocorticoid, corticosterone, have been implicated in the neural regulation of partner preferences, and in the male, vasopressin has been implicated in the induction of selective aggression toward strangers. We hypothesize here that interactions among oxytocin, vasopressin and glucocorticoids could provide substrates for dynamic changes in social and agonistic behaviors, including those required in the development and expression of monogamy. Results from research with voles suggest that the behaviors characteristics of monogamy, including social attachments and biparental care, may be modified by hormones during development and may be regulated by different mechanisms in males and females.
Collapse
|
Review |
30 |
426 |
14
|
Carter CS, Botvinick MM, Cohen JD. The contribution of the anterior cingulate cortex to executive processes in cognition. Rev Neurosci 1999; 10:49-57. [PMID: 10356991 DOI: 10.1515/revneuro.1999.10.1.49] [Citation(s) in RCA: 405] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The anterior cingulate cortex (ACC), on the medial surface of the frontal lobes, has frequently been hypothesized to make critical contributions to the function of neural systems involved in the executive control of cognition. Three principal theories have been developed to account for this role. The first, 'motivated attention', emphasizes the limbic identity of the ACC and the effects of lesions to this area of the brain. The second, 'attention allocation', emphasizes the fact that during functional neuroimaging studies activation of the ACC is seen during tasks that elicit incompatible response tendencies that must be resolved for correct performance. The third theory, 'error detection', reflects the observation of a negative scalp potential occurring during incorrect responses which appears to have a medial frontal generator. The first and last theories suggest evaluative functions by the ACC in the service of control, while attention allocation suggests a strategic function. We have proposed that the data supporting all three theories can be reconciled if the ACC were detecting conflicting processes during task performance that might be associated with errors. In support of this hypothesis we describe results using event-related fMRI which confirm that the ACC does show error related activity but that the same region of the brain also shows increased response related activity during correct responses associated with response competition. This suggests a re-conceptualization of the contribution of the ACC to executive processes that support an evaluative role, specifically the on-line detection of processing conflicts that may be associated with deteriorating performance. Unresolved questions related to the contribution of this region to executive processes and potential future directions for research on the function of this region of the brain are discussed.
Collapse
|
Review |
26 |
405 |
15
|
Sohn MH, Ursu S, Anderson JR, Stenger VA, Carter CS. The role of prefrontal cortex and posterior parietal cortex in task switching. Proc Natl Acad Sci U S A 2000; 97:13448-53. [PMID: 11069306 PMCID: PMC27244 DOI: 10.1073/pnas.240460497] [Citation(s) in RCA: 404] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2000] [Indexed: 11/18/2022] Open
Abstract
Human ability to switch from one cognitive task to another involves both endogenous preparation without an external stimulus and exogenous adjustment in response to the external stimulus. In an event-related functional MRI study, participants performed pairs of two tasks that are either the same (task repetition) or different (task switch) from each other. On half of the trials, foreknowledge about task repetition or task switch was available. On the other half, it was not. Endogenous preparation seems to involve lateral prefrontal cortex (BA 46/45) and posterior parietal cortex (BA 40). During preparation, higher activation increases in inferior lateral prefrontal cortex and superior posterior parietal cortex were associated with foreknowledge than with no foreknowledge. Exogenous adjustment seems to involve superior prefrontal cortex (BA 8) and posterior parietal cortex (BA 39/40) in general. During a task switch with no foreknowledge, activations in these areas were relatively higher than during a task repetition with no foreknowledge. These results suggest that endogenous preparation and exogenous adjustment for a task switch may be independent processes involving different brain areas.
Collapse
|
research-article |
25 |
404 |
16
|
Cho MM, DeVries AC, Williams JR, Carter CS. The effects of oxytocin and vasopressin on partner preferences in male and female prairie voles (Microtus ochrogaster). Behav Neurosci 1999; 113:1071-9. [PMID: 10571489 DOI: 10.1037/0735-7044.113.5.1071] [Citation(s) in RCA: 335] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study compared the effects of centrally administered oxytocin (OT) and arginine vasopressin (AVP) on partner preference formation and social contact in male and female prairie voles (Microtus ochrogaster). After 1 hr of cohabitation and pretreatment with either AVP or OT, both males and females exhibited increased social contact and significant preference for the familiar partner. After pretreatment with either an OT receptor antagonist (OTA) or an AVP (V1a) receptor antagonist (AVPA), neither OT nor AVP induced a partner preference. In addition, treatment with OT+OTA or AVP+AVPA was associated with low levels of social contact in both sexes. Either AVP or OT is sufficient to facilitate social contact if either the OT or AVP receptor is available. However, the formation of partner preferences may require access to both AVP and OT receptors.
Collapse
|
|
26 |
335 |
17
|
Carter CS, Mintun M, Cohen JD. Interference and facilitation effects during selective attention: an H215O PET study of Stroop task performance. Neuroimage 1995; 2:264-72. [PMID: 9343611 DOI: 10.1006/nimg.1995.1034] [Citation(s) in RCA: 333] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate the functional anatomy of interference and facilitation during selective attention, we studied 15 normal subjects using the H215O positron emission tomography technique and a computer presented single-trial Stroop task for cognitive activation. Increases in regional cerebral blood flow (rCBF) were observed in a network of structures that have been previously associated with selective attention, including the anterior cingulate gyrus, the frontal polar cortex, the inferior parietal lobule, and the thalamus, as well as the lingual gyrus. Furthermore rCBF decreases (compared to control states) were observed in lateral extra-striate cortex. rCBF changes in prefrontal and extra-striate regions varied with differences in the need to modulate the influence of word and color information while subjects responded to either incongruent or congruent Stroop stimuli. These results indicate the utility of Stroop procedures for investigating the functional anatomy of selective attention. Given recent interest regarding the role of the anterior cingulate gyrus in the pathophysiology of neuropsychiatric disorders, our results also suggest that the Stroop task can serve as a reliable neurobehavioral probe for this region. The significance of these results for understanding processing mechanisms underlying selective attention is discussed within the framework of a parallel distributed processing model of Stroop task performance.
Collapse
|
|
30 |
333 |
18
|
Williams JR, Catania KC, Carter CS. Development of partner preferences in female prairie voles (Microtus ochrogaster): the role of social and sexual experience. Horm Behav 1992; 26:339-49. [PMID: 1398553 DOI: 10.1016/0018-506x(92)90004-f] [Citation(s) in RCA: 325] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prairie voles (Microtus ochrogaster) exhibit a monogamous mating system characterized by long-term pair bonds between mates. The purpose of this study was to examine the effect of cohabitation time and sexual experience on the development of pair bond formation in female prairie voles. Females that were allowed to cohabit for 24 hr or more, with or without mating, exhibited a strong social preference for a familiar partner versus a strange male. Females that cohabited and mated for 6 hr showed strong preferences for a familiar partner, while cohabitation for less than 24 hr, without mating, did not result in preferences for the familiar male. These results indicate that mating was not essential for partner preference formation; however, preferences developed more rapidly when mating occurred.
Collapse
|
|
33 |
325 |
19
|
Cohen JD, Botvinick M, Carter CS. Anterior cingulate and prefrontal cortex: who's in control? Nat Neurosci 2000; 3:421-3. [PMID: 10769376 DOI: 10.1038/74783] [Citation(s) in RCA: 322] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
Comment |
25 |
322 |
20
|
Williams JR, Insel TR, Harbaugh CR, Carter CS. Oxytocin administered centrally facilitates formation of a partner preference in female prairie voles (Microtus ochrogaster). J Neuroendocrinol 1994; 6:247-50. [PMID: 7920590 DOI: 10.1111/j.1365-2826.1994.tb00579.x] [Citation(s) in RCA: 321] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prairie voles (Microtus ochrogaster) are monogamous mammals that form male-female pair bonds. Partner preference formation, one component of the pair bond in prairie voles, occurs following male-female cohabitation and is facilitated by mating. The peptide hormone oxytocin is released during physical contact and particularly following vaginal stimulation. Oxytocin has been implicated in mother-infant bond formation. The present study tested the hypothesis that oxytocin participates in the partner preference component of pair bond formation in adult prairie voles. Ovariectomized female prairie voles were implanted with osmotic mini-pumps releasing oxytocin (1-100 ng/h) or artificial cerebrospinal fluid (CSF). Pumps were implanted intracerebroventricularly or subcutaneously and females then were housed for 6 h with a male partner, followed by a preference test in which females could elect to spend time with either the partner or an unfamiliar male. Females in groups that received centrally-administered oxytocin (10 or 100 ng/h), but not CSF, exhibited a significant preference for the partner present during infusion. The induction of a partner preference after oxytocin administration appeared specific for central oxytocin pathways as peripheral oxytocin administration was ineffective. Moreover, central administration of a selective oxytocin receptor antagonist inhibited the behavioral effect of exogenous oxytocin. These results suggest that oxytocin may be one factor contributing to the development of partner preferences in this monogamous rodent.
Collapse
|
|
31 |
321 |
21
|
Jacob S, Brune CW, Carter CS, Leventhal BL, Lord C, Cook EH. Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci Lett 2007; 417:6-9. [PMID: 17383819 PMCID: PMC2705963 DOI: 10.1016/j.neulet.2007.02.001] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/26/2006] [Accepted: 02/01/2007] [Indexed: 10/24/2022]
Abstract
The oxytocin receptor gene (OXTR) has been studied in autism because of the role of oxytocin (OT) in social cognition. Linkage has also been demonstrated to the region of OXTR in a large sample. Two single nucleotide polymorphisms (SNPs) and a haplotype constructed from them in OXTR have been associated with autism in the Chinese Han population. We tested whether these associations replicated in a Caucasian sample with strictly defined autistic disorder. We genotyped the two previously associated SNPs (rs2254298, rs53576) in 57 Caucasian autism trios. Probands met clinical, ADI-R, and ADOS criteria for autistic disorder. Significant association was detected at rs2254298 (p=0.03) but not rs53576. For rs2254298, overtransmission of the G allele to probands with autistic disorder was found which contrasts with the overtransmission of A previously reported in the Chinese Han sample. In both samples, G was more frequent than A. However, in our Caucasian autism trios and the CEU Caucasian HapMap samples the frequency of A was less than that reported in the Chinese Han and Chinese in Bejing HapMap samples. The haplotype test of association did not reveal excess transmission from parents to affected offspring. These findings provide support for association of OXTR with autism in a Caucasian population. Overtransmission of different alleles in different populations may be due to a different pattern of linkage disequilibrium between the marker rs2254298 and an as yet undetermined susceptibility variant in OXTR.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
299 |
22
|
Carter CS, MacDonald AW, Ross LL, Stenger VA. Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. Am J Psychiatry 2001; 158:1423-8. [PMID: 11532726 DOI: 10.1176/appi.ajp.158.9.1423] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors examined brain activity associated with the internal monitoring of performance to test the hypothesis that error-related activity in the anterior cingulate cortex is impaired in patients with schizophrenia. METHOD Seventeen patients with schizophrenia and 16 healthy comparison subjects underwent event-related functional magnetic resonance imaging during a continuous performance task; stimulus degradation was used to increase error rates. RESULTS Comparison subjects, but not schizophrenic patients, showed error-related activity in the anterior cingulate cortex, and this difference in brain activity was significantly different across the two groups. Patients also showed less slowing of reaction time after error commission. CONCLUSIONS Lower error-related activity in the anterior cingulate cortex and less performance adjustment after error commission are consistent with the hypothesis that disturbances in anterior cingulate cortex function are related to a specific alteration in an evaluative component of executive functioning-the internal monitoring of performance.
Collapse
|
Comparative Study |
24 |
284 |
23
|
Sauder DN, Carter CS, Katz SI, Oppenheim JJ. Epidermal cell production of thymocyte activating factor (ETAF). J Invest Dermatol 1982; 79:34-9. [PMID: 6979588 DOI: 10.1111/1523-1747.ep12510569] [Citation(s) in RCA: 278] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
|
43 |
278 |
24
|
Carter CS, Mintun M, Nichols T, Cohen JD. Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O]H2O PET study during single-trial Stroop task performance. Am J Psychiatry 1997; 154:1670-5. [PMID: 9396944 DOI: 10.1176/ajp.154.12.1670] [Citation(s) in RCA: 269] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Attentional deficits are a prominent aspect of cognitive dysfunction in schizophrenia. The anterior cingulate gyrus is proposed to be an important component of frontal attentional control systems. Structural and functional abnormalities have been reported in this region in schizophrenia, but their relationship to attentional deficits is unknown. The authors investigated the function of the anterior cingulate gyrus and the related neural systems that are associated with selective attention in patients with schizophrenia. METHOD While subjects performed multiple blocks of a single-trial Stroop task, [15O]H2O positron emission tomography scans were obtained. Fourteen patients with schizophrenia were compared with 15 normal subjects matched for age, gender, and parental education. RESULTS The patients with schizophrenia responded at the same rate but made more errors in color naming during the color-incongruent condition. Consistent with the authors' hypothesis, patients with schizophrenia showed significantly less anterior cingulate gyrus activation while naming the color of color-incongruent stimuli. CONCLUSIONS Patients with schizophrenia fail to activate the anterior cingulate gyrus during selective attention performance. This finding adds to the understanding of the functional significance of the structural and metabolic abnormalities in schizophrenia that have been previously reported in this region of the brain.
Collapse
|
|
28 |
269 |
25
|
Carter CS, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen JD. Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry 1998; 155:1285-7. [PMID: 9734557 DOI: 10.1176/ajp.155.9.1285] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Hypofrontality is a common but not invariable finding in schizophrenia. Inconsistencies in the literature may reflect, in part, the fact that abnormal physiological responses in the prefrontal cortex are best identified under conditions that place well-specified functional demands on this region. METHOD The authors studied eight patients with schizophrenia and eight matched comparison subjects using [(15)O]H2O positron emission tomography and the "N-back" task, which activates the prefrontal cortex as a function of working memory load in normal subjects. RESULTS Under low-working-memory-load conditions, the accuracy of both groups in the N-back task was equal, but when the memory load increased, the patients' performance deteriorated more than did that of the comparison subjects. The regional cerebral blood flow response to increased working memory load was significantly reduced in the patients' right dorsolateral prefrontal cortex. CONCLUSIONS These results confirm the importance of using tasks that tap specific cognitive functions, linked to specific neural systems, in studies of brain-behavior relationships in schizophrenia. Hypofrontality is reliably demonstrated in schizophrenia during tasks that engage working memory functions of the prefrontal cortex.
Collapse
|
|
27 |
258 |