76
|
Halle MK, Ojesina AI, Engerud H, Woie K, Tangen IL, Holst F, Høivik E, Kusonmano K, Haldorsen IS, Vintermyr OK, Trovik J, Bertelsen BI, Salvesen HB, Krakstad C. Clinicopathologic and molecular markers in cervical carcinoma: a prospective cohort study. Am J Obstet Gynecol 2017; 217:432.e1-432.e17. [PMID: 28599900 DOI: 10.1016/j.ajog.2017.05.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/15/2017] [Accepted: 05/31/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cervical cancer is a major health problem worldwide. Identification of effective clinicopathologic and molecular markers is vital to improve treatment stratification. OBJECTIVES The purpose of this study was to validate a set of well-defined clinicopathologic features in a large population-based, prospectively collected cervical cancer cohort to support their use in the clinic. Further, we explored p53 and human epidermal growth factor receptor 2 as potential prognostic markers in cervical cancer. STUDY DESIGN Tissue was collected from 401 patients with cervical cancer. Clinical data that included follow-up evaluations were collected from patient journals. Histopathologic data were evaluated and revised by an expert pathologist. The prognostic impact of selected clinicopathologic variables was analyzed in the whole cohort. Tissue microarrays were prepared from 292 carcinomas, and p53 and human epidermal growth factor receptor 2 protein levels were evaluated by immunohistochemistry. Fresh frozen samples from overlapping cervical carcinomas previously were subjected to human papilloma virus typing (n=94), whole exome (n=100) and RNA (n=79) sequencing; the results were available for our analyses. RESULTS Among the clinicopathologic variables, vascular space invasion, histologic type, and tumor size were verified as strong independent prognostic markers. High p53 protein levels were associated significantly with markers for aggressive phenotype and survival, also in multivariate survival analysis, but did not reflect TP53 mutational status. High human epidermal growth factor receptor 2 protein levels were identified in 21% of all tumors. ERBB2 amplification was associated with poor outcome (P=.003); human epidermal growth factor receptor 2 protein level was not. CONCLUSIONS Our findings support that the Féderation Internationale de Gynécologie et d'Obstétrique s guidelines should include vascular space invasion and tumor size 2-4 cm and that careful selection of histologic type is essential for stratification of patient risk groups. High p53 levels independently predict poor survival yet do not reflect mutational status in cervical cancer. Amplified ERBB2 significantly links to poor survival, while HercepTest does not. With optimal stratification, human epidermal growth factor receptor 2-based therapy may improve cervical cancer treatment.
Collapse
|
77
|
Tangen IL, Veneris JT, Halle MK, Werner HM, Trovik J, Akslen LA, Salvesen HB, Conzen SD, Fleming GF, Krakstad C. Expression of glucocorticoid receptor is associated with aggressive primary endometrial cancer and increases from primary to metastatic lesions. Gynecol Oncol 2017; 147:672-677. [PMID: 28927900 DOI: 10.1016/j.ygyno.2017.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glucocorticoid receptor (GR) has emerged as an important steroid nuclear receptor in hormone dependent cancers, however few data are available regarding a potential role of GR in endometrial cancer. The aim of this study was to investigate expression of GR in primary and metastatic endometrial cancer lesions, and to assess the relationship between GR expression and clinical and histopathological variables and survival. METHODS Expression of GR was investigated by IHC in 724 primary tumors and 289 metastatic lesions (from 135 patients), and correlations with clinical and histopathological data and survival were explored. RESULTS Expression of GR was significantly increased in non-endometrioid tumors compared to endometrioid tumors, and was associated with markers of aggressive disease and poor survival both in univariate and multivariate analysis after correcting for age, FIGO stage and histologic grade. Within the subgroups of hormone receptor negative tumors (loss of androgen receptor, estrogen receptor or progesterone receptor) expression of GR was highly significantly associated with poor disease specific survival. There was an overall increase in GR expression from primary to metastatic lesions, and the majority of metastases expressed GR. CONCLUSION GR expression in primary endometrial cancer is associated with aggressive disease and poor survival. The majority of metastatic endometrial cancer lesions express GR; therefore GR may represent a therapeutic target in the adjuvant therapy of poor prognosis early-stage as well as metastatic endometrial cancer.
Collapse
|
78
|
Berg A, Gulati A, Ytre-Hauge S, Fasmer KE, Mauland KK, Hoivik EA, Husby JA, Tangen IL, Trovik J, Halle MK, Stefansson I, Akslen LA, Woie K, Bjørge L, Salvesen HB, Salvesen ØO, Werner HM, Haldorsen IS, Krakstad C. Preoperative imaging markers and PDZ-binding kinase tissue expression predict low-risk disease in endometrial hyperplasias and low grade cancers. Oncotarget 2017; 8:68530-68541. [PMID: 28978135 PMCID: PMC5620275 DOI: 10.18632/oncotarget.19708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Distinguishing complex atypical hyperplasia (CAH) from grade 1 endometrioid endometrial cancer (EECG1) preoperatively may be valuable in order to prevent surgical overtreatment, particularly in patients wishing preserved fertility or in patients carrying increased risk of perioperative complications. MATERIAL AND METHODS Preoperative histological diagnosis and radiological findings were compared to final histological diagnosis in patients diagnosed with CAH and EECG1. Imaging characteristics at preoperative magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography/computer tomography (FDG-PET/CT) were compared with tumor DNA oligonucleotide microarray data, immunohistochemistry findings and clinicopathological annotations. RESULTS MRI assessed tumor volume was higher in EECG1 than in CAH (p=0.004) whereas tumor apparent diffusion coefficient value was lower in EECG1 (p=0.005). EECG1 exhibited increased metabolism with higher maximum and mean standard uptake values (SUV) than CAH (p≤0.002). Unsupervised clustering of EECG1 and CAH revealed differentially expressed genes within the clusters, and identified PDZ-binding kinase (PBK) as a potential marker for selecting endometrial lesions with less aggressive biological behavior. CONCLUSION Both PBK expression and preoperative imaging yield promising biomarkers that may aid in the differentiation between EECG1 and CAH preoperatively, and these markers should be further explored in larger patient series.
Collapse
|
79
|
Tangen IL, Kopperud RK, Visser NC, Staff AC, Tingulstad S, Marcickiewicz J, Amant F, Bjørge L, Pijnenborg JM, Salvesen HB, Werner HM, Trovik J, Krakstad C. Expression of L1CAM in curettage or high L1CAM level in preoperative blood samples predicts lymph node metastases and poor outcome in endometrial cancer patients. Br J Cancer 2017; 117:840-847. [PMID: 28751757 PMCID: PMC5589986 DOI: 10.1038/bjc.2017.235] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Several studies have identified L1 cell adhesion molecule (L1CAM) as a strong prognostic marker in endometrial cancer. To further underline the clinical usefulness of this biomarker, we investigated L1CAM as a predictive marker for lymph node metastases and its prognostic impact in curettage specimens and preoperative plasma samples. In addition, we aimed to validate the prognostic value of L1CAM in hysterectomy specimen. METHODS Immunohistochemical staining of L1CAM was performed for 795 hysterectomy and 1134 curettage specimen from endometrial cancer patients. The L1CAM level in preoperative blood samples from 372 patients was determined using ELISA. RESULTS Expression of L1CAM in curettage specimen was significantly correlated to L1CAM level in corresponding hysterectomy specimen (P<0.001). Both in curettage and preoperative plasma samples L1CAM upregulation was significantly associated with features of aggressive disease and poor outcome (P<0.001). The L1CAM was an independent predictor of lymph node metastases, after correction for curettage histology, both in curettage specimen (P=0.002) and plasma samples (P=0.048). In the hysterectomy samples L1CAM was significantly associated with poor outcome (P<0.001). CONCLUSIONS We demonstrate that preoperative evaluation of L1CAM levels, both in curettage or plasma samples, predicts lymph node metastases and adds valuable information on patient prognosis.
Collapse
|
80
|
Cornel KMC, Krakstad C, Delvoux B, Xanthoulea S, Jori B, Bongers MY, Konings GFJ, Kooreman LFS, Kruitwagen RF, Salvesen HB, Romano A. High mRNA levels of 17β-hydroxysteroid dehydrogenase type 1 correlate with poor prognosis in endometrial cancer. Mol Cell Endocrinol 2017; 442:51-57. [PMID: 27923582 DOI: 10.1016/j.mce.2016.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/14/2016] [Accepted: 11/13/2016] [Indexed: 12/11/2022]
Abstract
Most endometrial cancers (ECs) are diagnosed at an early stage and have a good prognosis. However, 20-30% develop recurrence and have poor survival. Recurrence-risk prediction at diagnosis is hampered by the scarcity of prognostic markers. Most ECs are estrogen related, and recent studies show that estrogen exposure in EC is controlled intracrinally. We aim at assessing any association between patient prognosis and the pathways controlling the intracrine estrogen generation in EC: (a) the balance between 17β-hydroxysteroid-dehydrogenase-type 1 (HSD17B1), that generates active estrogens, and HSD17B2, converting active into poorly active compounds; (b) the balance between steroid sulphatase (STS, that activates estrogens) and estrogen-sulphotransferase (SULT1E1, that deactivates estrogens); (c) the levels of aromatase (ARO), that converts androgen into estrogens. mRNA levels of HSD17B1, HSD17B2, STS, SULT1E1 and ARO were determined among 175 ECs using cDNA microarray. Proteins were explored by immunohistochemistry. Patients with high mRNA of HSD17B1 had a poorer prognosis compared with those with low levels. Combining the expression of HSD17B1 and HSD17B2, patients with high tumour expression of HSD17B1 and low levels of HSD17B2 had the poorest prognosis. Contrarily, women that had high tumour levels of HSD17B2 and low of HSD17B1 had the best outcome. No differences were seen between mRNA level of other the genes analysed and prognosis. At the protein level, HSD17B2, STS and SULT1E1 were highly expressed, whereas HSD17B1 was low and ARO was almost absent. In conclusion, HSD17B1 is a promising marker to predict EC prognosis. Immunohistochemical detection of this protein in ECs has low sensitivity and should be improved for future clinical applications.
Collapse
|
81
|
Kopperud RK, Rygh CB, Karlsen TV, Krakstad C, Kleppe R, Hoivik EA, Bakke M, Tenstad O, Selheim F, Lidén Å, Madsen L, Pavlin T, Taxt T, Kristiansen K, Curry FRE, Reed RK, Døskeland SO. Increased microvascular permeability in mice lacking Epac1 (Rapgef3). Acta Physiol (Oxf) 2017; 219:441-452. [PMID: 27096875 PMCID: PMC5073050 DOI: 10.1111/apha.12697] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/15/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Aim Maintenance of the blood and extracellular volume requires tight control of endothelial macromolecule permeability, which is regulated by cAMP signalling. This study probes the role of the cAMP mediators rap guanine nucleotide exchange factor 3 and 4 (Epac1 and Epac2) for in vivo control of microvascular macromolecule permeability under basal conditions. Methods Epac1−/− and Epac2−/− C57BL/6J mice were produced and compared with wild‐type mice for transvascular flux of radio‐labelled albumin in skin, adipose tissue, intestine, heart and skeletal muscle. The transvascular leakage was also studied by dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) using the MRI contrast agent Gadomer‐17 as probe. Results Epac1−/− mice had constitutively increased transvascular macromolecule transport, indicating Epac1‐dependent restriction of baseline permeability. In addition, Epac1−/− mice showed little or no enhancement of vascular permeability in response to atrial natriuretic peptide (ANP), whether probed with labelled albumin or Gadomer‐17. Epac2−/− and wild‐type mice had similar basal and ANP‐stimulated clearances. Ultrastructure analysis revealed that Epac1−/− microvascular interendothelial junctions had constitutively less junctional complex. Conclusion Epac1 exerts a tonic inhibition of in vivo basal microvascular permeability. The loss of this tonic action increases baseline permeability, presumably by reducing the interendothelial permeability resistance. Part of the action of ANP to increase permeability in wild‐type microvessels may involve inhibition of the basal Epac1‐dependent activity.
Collapse
|
82
|
Hampras SS, Sucheston-Campbell LE, Cannioto R, Chang-Claude J, Modugno F, Dörk T, Hillemanns P, Preus L, Knutson KL, Wallace PK, Hong CC, Friel G, Davis W, Nesline M, Pearce CL, Kelemen LE, Goodman MT, Bandera EV, Terry KL, Schoof N, Eng KH, Clay A, Singh PK, Joseph JM, Aben KK, Anton-Culver H, Antonenkova N, Baker H, Bean Y, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bruinsma F, Butzow R, Campbell IG, Carty K, Cook LS, Cramer DW, Cybulski C, Dansonka-Mieszkowska A, Dennis J, Despierre E, Dicks E, Doherty JA, du Bois A, Dürst M, Easton D, Eccles D, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Gronwald J, Harrington P, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MA, Hogdall C, Hogdall E, Hosono S, Iversen ES, Jakubowska A, Jensen A, Ji BT, Karlan BY, Kellar M, Kelley JL, Kiemeney LA, Klapdor R, Kolomeyevskaya N, Krakstad C, Kjaer SK, Kruszka B, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lissowska J, Liu S, Lu K, Lubinski J, Lundvall L, Massuger LF, Matsuo K, McGuire V, McLaughlin JR, McNeish I, Menon U, Moes-Sosnowska J, Narod SA, Nedergaard L, Nevanlinna H, Nickels S, Olson SH, Orlow I, Weber RP, Paul J, Pejovic T, Pelttari LM, Perkins B, Permuth-Wey J, Pike MC, Plisiecka-Halasa J, Poole EM, Risch HA, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Schernhammer E, Schmitt K, Schwaab I, Shu XO, Shvetsov YB, Siddiqui N, Sieh W, Song H, Southey MC, Tangen IL, Teo SH, Thompson PJ, Timorek A, Tsai YY, Tworoger SS, Tyrer J, van Altena AM, Vergote I, Vierkant RA, Walsh C, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Wu AH, Wu X, Woo YL, Yang H, Zheng W, Ziogas A, Gayther SA, Ramus SJ, Sellers TA, Schildkraut JM, Phelan CM, Berchuck A, Chenevix-Trench G, Cunningham JM, Pharoah PP, Ness RB, Odunsi K, Goode EL, Moysich KB. Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer. Oncotarget 2016; 7:69097-69110. [PMID: 27533245 PMCID: PMC5340115 DOI: 10.18632/oncotarget.10215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 12/31/1969] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. RESULTS The most significant global associations for all genes in the pathway were seen in endometrioid ( p = 0.082) and clear cell ( p = 0.083), with the most significant gene level association seen with TGFBR2 ( p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 ( p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA ( p = 0.035, endometrioid and mucinous), LGALS1 ( p = 0.03, mucinous), STAT5B ( p = 0.022, clear cell), TGFBR1 ( p = 0.021 endometrioid) and TGFBR2 ( p = 0.017 and p = 0.025, endometrioid and mucinous, respectively). CONCLUSIONS Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/immunology
- Adult
- Aged
- Carcinoma, Ovarian Epithelial
- Female
- Gene Expression Regulation, Neoplastic
- Gene Frequency
- Genetic Predisposition to Disease/genetics
- Genotype
- Humans
- Middle Aged
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/immunology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/immunology
- Polymorphism, Single Nucleotide
- Protein Serine-Threonine Kinases/genetics
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Risk Factors
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
|
83
|
Berg A, Fasmer KE, Mauland KK, Ytre-Hauge S, Hoivik EA, Husby JA, Tangen IL, Trovik J, Halle MK, Woie K, Bjørge L, Bjørnerud A, Salvesen HB, Henrica M. J. W, Krakstad C, Haldorsen IS. Tissue and imaging biomarkers for hypoxia predict poor outcome in endometrial cancer. Oncotarget 2016; 7:69844-69856. [PMID: 27634881 PMCID: PMC5342519 DOI: 10.18632/oncotarget.12004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/04/2016] [Indexed: 01/03/2023] Open
Abstract
Hypoxia is frequent in solid tumors and linked to aggressive phenotypes and therapy resistance. We explored expression patterns of the proposed hypoxia marker HIF-1α in endometrial cancer (EC) and investigate whether preoperative functional imaging parameters are associated with tumor hypoxia. Expression of HIF-1α was explored both in the epithelial and the stromal tumor component. We found that low epithelial HIF-1α and high stromal HIF-1α expression were significantly associated with reduced disease specific survival in EC. Only stromal HIF-1α had independent prognostic value in Cox regression analysis. High stromal HIF-1α protein expression was rare in the premalignant lesions of complex atypical hyperplasia but increased significantly to invasive cancer. High stromal HIF-1α expression was correlated with overexpression of important genes downstream from HIF-1α, i.e. VEGFA and SLC2A1 (GLUT1). Detecting hypoxic tumors with preoperative functional imaging might have therapeutic benefits. We found that high stromal HIF-1α expression associated with high total lesion glycolysis (TLG) at PET/CT. High expression of a gene signature linked to hypoxia also correlated with low tumor blood flow at DCE-MRI and increased metabolism measured by FDG-PET. PI3K pathway inhibitors were identified as potential therapeutic compounds in patients with lesions overexpressing this gene signature. In conclusion, we show that high stromal HIF-1α expression predicts reduced survival in EC and is associated with increased tumor metabolism at FDG-PET/CT. Importantly; we demonstrate a correlation between tissue and imaging biomarkers reflecting hypoxia, and also possible treatment targets for selected patients.
Collapse
|
84
|
Gibson WJ, Hoivik EA, Halle MK, Taylor-Weiner A, Cherniack AD, Berg A, Holst F, Zack TI, Werner HMJ, Staby KM, Rosenberg M, Stefansson IM, Kusonmano K, Chevalier A, Mauland KK, Trovik J, Krakstad C, Giannakis M, Hodis E, Woie K, Bjorge L, Vintermyr OK, Wala JA, Lawrence MS, Getz G, Carter SL, Beroukhim R, Salvesen HB. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nat Genet 2016; 48:848-55. [PMID: 27348297 PMCID: PMC4963271 DOI: 10.1038/ng.3602] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
Recent studies have detailed the genomic landscape of primary endometrial cancers, but the evolution of these cancers into metastases has not been characterized. We performed whole-exome sequencing of 98 tumor biopsies including complex atypical hyperplasias, primary tumors and paired abdominopelvic metastases to survey the evolutionary landscape of endometrial cancer. We expanded and reanalyzed The Cancer Genome Atlas (TCGA) data, identifying new recurrent alterations in primary tumors, including mutations in the estrogen receptor cofactor gene NRIP1 in 12% of patients. We found that likely driver events were present in both primary and metastatic tissue samples, with notable exceptions such as ARID1A mutations. Phylogenetic analyses indicated that the sampled metastases typically arose from a common ancestral subclone that was not detected in the primary tumor biopsy. These data demonstrate extensive genetic heterogeneity in endometrial cancers and relative homogeneity across metastatic sites.
Collapse
|
85
|
Hollestelle A, van der Baan FH, Berchuck A, Johnatty SE, Aben KK, Agnarsson BA, Aittomäki K, Alducci E, Andrulis IL, Anton-Culver H, Antonenkova NN, Antoniou AC, Apicella C, Arndt V, Arnold N, Arun BK, Arver B, Ashworth A, Baglietto L, Balleine R, Bandera EV, Barrowdale D, Bean YT, Beckmann L, Beckmann MW, Benitez J, Berger A, Berger R, Beuselinck B, Bisogna M, Bjorge L, Blomqvist C, Bogdanova NV, Bojesen A, Bojesen SE, Bolla MK, Bonanni B, Brand JS, Brauch H, Brenner H, Brinton L, Brooks-Wilson A, Bruinsma F, Brunet J, Brüning T, Budzilowska A, Bunker CH, Burwinkel B, Butzow R, Buys SS, Caligo MA, Campbell I, Carter J, Chang-Claude J, Chanock SJ, Claes KBM, Collée JM, Cook LS, Couch FJ, Cox A, Cramer D, Cross SS, Cunningham JM, Cybulski C, Czene K, Damiola F, Dansonka-Mieszkowska A, Darabi H, de la Hoya M, deFazio A, Dennis J, Devilee P, Dicks EM, Diez O, Doherty JA, Domchek SM, Dorfling CM, Dörk T, Silva IDS, du Bois A, Dumont M, Dunning AM, Duran M, Easton DF, Eccles D, Edwards RP, Ehrencrona H, Ejlertsen B, Ekici AB, Ellis SD, Engel C, Eriksson M, Fasching PA, Feliubadalo L, Figueroa J, Flesch-Janys D, Fletcher O, Fontaine A, Fortuzzi S, Fostira F, Fridley BL, Friebel T, Friedman E, Friel G, Frost D, Garber J, García-Closas M, Gayther SA, Gentry-Maharaj A, Gerdes AM, Giles GG, Glasspool R, Glendon G, Godwin AK, Goodman MT, Gore M, Greene MH, Grip M, Gronwald J, Gschwantler Kaulich D, Guénel P, Guzman SR, Haeberle L, Haiman CA, Hall P, Halverson SL, Hamann U, Hansen TVO, Harter P, Hartikainen JM, Healey S, Hein A, Heitz F, Henderson BE, Herzog J, T Hildebrandt MA, Høgdall CK, Høgdall E, Hogervorst FBL, Hopper JL, Humphreys K, Huzarski T, Imyanitov EN, Isaacs C, Jakubowska A, Janavicius R, Jaworska K, Jensen A, Jensen UB, Johnson N, Jukkola-Vuorinen A, Kabisch M, Karlan BY, Kataja V, Kauff N, Kelemen LE, Kerin MJ, Kiemeney LA, Kjaer SK, Knight JA, Knol-Bout JP, Konstantopoulou I, Kosma VM, Krakstad C, Kristensen V, Kuchenbaecker KB, Kupryjanczyk J, Laitman Y, Lambrechts D, Lambrechts S, Larson MC, Lasa A, Laurent-Puig P, Lazaro C, Le ND, Le Marchand L, Leminen A, Lester J, Levine DA, Li J, Liang D, Lindblom A, Lindor N, Lissowska J, Long J, Lu KH, Lubinski J, Lundvall L, Lurie G, Mai PL, Mannermaa A, Margolin S, Mariette F, Marme F, Martens JWM, Massuger LFAG, Maugard C, Mazoyer S, McGuffog L, McGuire V, McLean C, McNeish I, Meindl A, Menegaux F, Menéndez P, Menkiszak J, Menon U, Mensenkamp AR, Miller N, Milne RL, Modugno F, Montagna M, Moysich KB, Müller H, Mulligan AM, Muranen TA, Narod SA, Nathanson KL, Ness RB, Neuhausen SL, Nevanlinna H, Neven P, Nielsen FC, Nielsen SF, Nordestgaard BG, Nussbaum RL, Odunsi K, Offit K, Olah E, Olopade OI, Olson JE, Olson SH, Oosterwijk JC, Orlow I, Orr N, Orsulic S, Osorio A, Ottini L, Paul J, Pearce CL, Pedersen IS, Peissel B, Pejovic T, Pelttari LM, Perkins J, Permuth-Wey J, Peterlongo P, Peto J, Phelan CM, Phillips KA, Piedmonte M, Pike MC, Platte R, Plisiecka-Halasa J, Poole EM, Poppe B, Pylkäs K, Radice P, Ramus SJ, Rebbeck TR, Reed MWR, Rennert G, Risch HA, Robson M, Rodriguez GC, Romero A, Rossing MA, Rothstein JH, Rudolph A, Runnebaum I, Salani R, Salvesen HB, Sawyer EJ, Schildkraut JM, Schmidt MK, Schmutzler RK, Schneeweiss A, Schoemaker MJ, Schrauder MG, Schumacher F, Schwaab I, Scuvera G, Sellers TA, Severi G, Seynaeve CM, Shah M, Shrubsole M, Siddiqui N, Sieh W, Simard J, Singer CF, Sinilnikova OM, Smeets D, Sohn C, Soller M, Song H, Soucy P, Southey MC, Stegmaier C, Stoppa-Lyonnet D, Sucheston L, Swerdlow A, Tangen IL, Tea MK, Teixeira MR, Terry KL, Terry MB, Thomassen M, Thompson PJ, Tihomirova L, Tischkowitz M, Toland AE, Tollenaar RAEM, Tomlinson I, Torres D, Truong T, Tsimiklis H, Tung N, Tworoger SS, Tyrer JP, Vachon CM, Van 't Veer LJ, van Altena AM, Van Asperen CJ, van den Berg D, van den Ouweland AMW, van Doorn HC, Van Nieuwenhuysen E, van Rensburg EJ, Vergote I, Verhoef S, Vierkant RA, Vijai J, Vitonis AF, von Wachenfeldt A, Walsh C, Wang Q, Wang-Gohrke S, Wappenschmidt B, Weischer M, Weitzel JN, Weltens C, Wentzensen N, Whittemore AS, Wilkens LR, Winqvist R, Wu AH, Wu X, Yang HP, Zaffaroni D, Pilar Zamora M, Zheng W, Ziogas A, Chenevix-Trench G, Pharoah PDP, Rookus MA, Hooning MJ, Goode EL. No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecol Oncol 2016; 141:386-401. [PMID: 25940428 PMCID: PMC4630206 DOI: 10.1016/j.ygyno.2015.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/19/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. METHODS Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). RESULTS We found no association with risk of ovarian cancer (OR=0.99, 95% CI 0.94-1.04, p=0.74) or breast cancer (OR=0.98, 95% CI 0.94-1.01, p=0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR=1.09, 95% CI 0.97-1.23, p=0.14, breast cancer HR=1.04, 95% CI 0.97-1.12, p=0.27; BRCA2, ovarian cancer HR=0.89, 95% CI 0.71-1.13, p=0.34, breast cancer HR=1.06, 95% CI 0.94-1.19, p=0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR=0.94, 95% CI 0.83-1.07, p=0.38), breast cancer (HR=0.96, 95% CI 0.87-1.06, p=0.38), and all other previously-reported associations. CONCLUSIONS rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
Collapse
|
86
|
Amankwah EK, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Chornokur G, Aben KKH, Anton-Culver H, Antonenkova N, Bruinsma F, Bandera EV, Bean YT, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bunker CH, Butzow R, Campbell IG, Carty K, Chen Z, Chen YA, Chang-Claude J, Cook LS, Cramer DW, Cunningham JM, Cybulski C, Dansonka-Mieszkowska A, du Bois A, Despierre E, Dicks E, Doherty JA, Dörk T, Dürst M, Easton DF, Eccles DM, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goodman MT, Gronwald J, Harrington P, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MA, Hillemanns P, Hogdall CK, Hogdall E, Hosono S, Iversen ES, Jakubowska A, Jensen A, Ji BT, Karlan BY, Jim H, Kellar M, Kiemeney LA, Krakstad C, Kjaer SK, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lim BK, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger LF, Matsuo K, McGuire V, McLaughlin JR, McNeish I, Menon U, Milne RL, Modugno F, Moysich KB, Ness RB, Nevanlinna H, Eilber U, Odunsi K, Olson SH, Orlow I, Orsulic S, Weber RP, Paul J, Pearce CL, Pejovic T, Pelttari LM, Permuth-Wey J, Pike MC, Poole EM, Risch HA, Rosen B, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Schernhammer E, Schwaab I, Shu XO, Shvetsov YB, Siddiqui N, Sieh W, Song H, Southey MC, Spiewankiewicz B, Sucheston-Campbell L, Teo SH, Terry KL, Thompson PJ, Thomsen L, Tangen IL, Tworoger SS, van Altena AM, Vierkant RA, Vergote I, Walsh CS, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Wu AH, Wu X, Woo YL, Yang H, Zheng W, Ziogas A, Kelemen LE, Berchuck A, Schildkraut JM, Ramus SJ, Goode EL, Monteiro AN, Gayther SA, Narod SA, Pharoah PDP, Sellers TA, Phelan CM. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk. Genet Epidemiol 2015; 39:689-97. [PMID: 26399219 PMCID: PMC4721602 DOI: 10.1002/gepi.21921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 01/24/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.
Collapse
|
87
|
Berg A, Hoivik EA, Mjøs S, Holst F, Werner HMJ, Tangen IL, Taylor-Weiner A, Gibson WJ, Kusonmano K, Wik E, Trovik J, Halle MK, Øyan AM, Kalland KH, Cherniack AD, Beroukhim R, Stefansson I, Mills GB, Krakstad C, Salvesen HB. Molecular profiling of endometrial carcinoma precursor, primary and metastatic lesions suggests different targets for treatment in obese compared to non-obese patients. Oncotarget 2015; 6:1327-39. [PMID: 25415225 PMCID: PMC4359236 DOI: 10.18632/oncotarget.2675] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/04/2014] [Indexed: 01/17/2023] Open
Abstract
Obesity is linked to increased incidence of endometrioid endometrial cancer (EEC) and complex atypical hyperplasia (CAH). We here explore pattern and sequence of molecular alterations characterizing endometrial carcinogenesis in general and related to body mass index (BMI), to improve diagnostic stratification and treatment strategies. We performed molecular characterization of 729 prospectively collected EEC and CAH. Candidate biomarkers were identified in frozen samples by whole-exome and Sanger sequencing, oligonucleotide gene expression and Reverse Phase Protein Arrays (investigation cohort) and further explored in formalin fixed tissues by immunohistochemistry and Fluorescent in Situ Hybridization (validation cohort). We here demonstrate that PIK3CA mutations, PTEN loss, PI3K and KRAS activation are early events in endometrial carcinogenesis. Molecular changes related to KRAS activation and inflammation are more common in obese CAH patients, suggesting different prevention and systemic treatment strategies in obese and non-obese patients. We also found that oncoprotein Stathmin might improve preoperative diagnostic distinction between premalignant and malignant endometrial lesions.
Collapse
|
88
|
Salvesen HB, Werner HM, Krakstad C. PI3K pathway in gynecologic malignancies. AMERICAN SOCIETY OF CLINICAL ONCOLOGY EDUCATIONAL BOOK. AMERICAN SOCIETY OF CLINICAL ONCOLOGY. ANNUAL MEETING 2015. [PMID: 23714506 DOI: 10.1200/edbook_am.2013.33.e218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alterations in PI3K signaling are common in gynecologic malignancies. Alterations detected vary with gynecologic cancer type, histologic subtypes within these, and clinical phenotypes. The distinction into type I and type II endometrial and ovarian carcinomas is reflected in distribution of changes detected in several of the PI3K members. PIK3CA mutations and amplifications are common in endometrial, ovarian, and cervical cancers. PTEN mutations and deletions are frequent in endometrial cancers. Several immunohistochemical studies of protein expression have explored these and other potential surrogate markers for PI3K pathway activation. Biomarkers to measure level of PI3K activity in clinical samples are not established. Whether amplifications, mutations, and deletions of the PI3K pathway members, and in particular change in their expression levels, result in clinically relevant pathway activation needs to be further explored. Also, to what extent these alterations drive the tumor behavior and are critical targets for therapeutics to improve patient survival needs to be further tested to establish predictive biomarkers for response to PI3K inhibition.
Collapse
|
89
|
Lawrenson K, Iversen ES, Tyrer J, Weber RP, Concannon P, Hazelett DJ, Li Q, Marks JR, Berchuck A, Lee JM, Aben KKH, Anton-Culver H, Antonenkova N, Bandera EV, Bean Y, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bruinsma F, Butzow R, Campbell IG, Carty K, Chang-Claude J, Chenevix-Trench G, Chen A, Chen Z, Cook LS, Cramer DW, Cunningham JM, Cybulski C, Plisiecka-Halasa J, Dennis J, Dicks E, Doherty JA, Dörk T, du Bois A, Eccles D, Easton DT, Edwards RP, Eilber U, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goode EL, Goodman MT, Gronwald J, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MAT, Hillemanns P, Hogdall E, Hogdall C, Hosono S, Jakubowska A, Paul J, Jensen A, Karlan BY, Kjaer SK, Kelemen LE, Kellar M, Kelley JL, Kiemeney LA, Krakstad C, Lambrechts D, Lambrechts S, Le ND, Lee AW, Cannioto R, Leminen A, Lester J, Levine DA, Liang D, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger LFAG, Matsuo K, McGuire V, McLaughlin JR, Nevanlinna H, McNeish I, Menon U, Modugno F, Moysich KB, Narod SA, Nedergaard L, Ness RB, Noor Azmi MA, Odunsi K, Olson SH, Orlow I, Orsulic S, Pearce CL, Pejovic T, Pelttari LM, Permuth-Wey J, Phelan CM, Pike MC, Poole EM, Ramus SJ, Risch HA, Rosen B, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Budzilowska A, Sellers TA, Shu XO, Shvetsov YB, Siddiqui N, Sieh W, Song H, Southey MC, Sucheston L, Tangen IL, Teo SH, Terry KL, Thompson PJ, Timorek A, Tworoger SS, Van Nieuwenhuysen E, Vergote I, Vierkant RA, Wang-Gohrke S, Walsh C, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Woo YL, Wu X, Wu AH, Yang H, Zheng W, Ziogas A, Coetzee GA, Freedman ML, Monteiro ANA, Moes-Sosnowska J, Kupryjanczyk J, Pharoah PD, Gayther SA, Schildkraut JM. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer. Carcinogenesis 2015; 36:1341-53. [PMID: 26424751 PMCID: PMC4635670 DOI: 10.1093/carcin/bgv138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene.
Collapse
|
90
|
Westin SN, Ju Z, Broaddus RR, Krakstad C, Li J, Pal N, Lu KH, Coleman RL, Hennessy BT, Klempner SJ, Werner HMJ, Salvesen HB, Cantley LC, Mills GB, Myers AP. PTEN loss is a context-dependent outcome determinant in obese and non-obese endometrioid endometrial cancer patients. Mol Oncol 2015; 9:1694-703. [PMID: 26045339 PMCID: PMC4584169 DOI: 10.1016/j.molonc.2015.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 11/30/2022] Open
Abstract
Endometrial cancer incidence is increasing, due in part to a strong association with obesity. Mutations in the phosphatidylinositol 3-kinase (PI3K) pathway, the central relay pathway of insulin signals, occur in the majority of endometrioid adenocarcinomas, the most common form of endometrial cancer. We sought to determine the impact of PI3K pathway alterations on progression free survival in a cohort of endometrioid endometrial cancers. Prognostic utility of PIK3CA, PIK3R1, and PTEN mutations, as well as PTEN protein loss by immunohistochemistry, was explored in the context of patient body mass index. Reverse-phase protein arrays were utilized to assess protein expression based on PTEN status. Among 187 endometrioid endometrial cancers, there were no statistically significant associations between PFS and PIK3CA, PIK3R1, PTEN mutation or loss. When stratified by body mass index, PTEN loss was associated with improved progression free survival (P < 0.006) in obese (body mass index ≥ 30) patients. PTEN loss resulted in distinct protein changes: Canonical PI3K pathway activation was observed only in the non-obese population while decreased expression of β-CATENIN and phosphorylated FOXO3A was observed in obese patients. These data suggest the impact of PTEN loss on tumor biology and clinical outcomes must be interpreted in the context of body mass index, and provide a potential explanation for discrepant reports on the effect of PTEN status and obesity on prognosis in endometrial cancer. This reveals a clinically important interaction between metabolic state and tumor genetics that may unveil the biologic underpinning of obesity-related cancers and impact ongoing clinical trials with PI3K pathway inhibitors.
Collapse
|
91
|
Kar SP, Tyrer JP, Li Q, Lawrenson K, Aben KKH, Anton-Culver H, Antonenkova N, Chenevix-Trench G, Baker H, Bandera EV, Bean YT, Beckmann MW, Berchuck A, Bisogna M, Bjørge L, Bogdanova N, Brinton L, Brooks-Wilson A, Butzow R, Campbell I, Carty K, Chang-Claude J, Chen YA, Chen Z, Cook LS, Cramer D, Cunningham JM, Cybulski C, Dansonka-Mieszkowska A, Dennis J, Dicks E, Doherty JA, Dörk T, du Bois A, Dürst M, Eccles D, Easton DF, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goode EL, Goodman MT, Grownwald J, Harrington P, Harter P, Hein A, Heitz F, Hildebrandt MAT, Hillemanns P, Hogdall E, Hogdall CK, Hosono S, Iversen ES, Jakubowska A, Paul J, Jensen A, Ji BT, Karlan BY, Kjaer SK, Kelemen LE, Kellar M, Kelley J, Kiemeney LA, Krakstad C, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger L, Matsuo K, McGuire V, McLaughlin JR, McNeish IA, Menon U, Modugno F, Moysich KB, Narod SA, Nedergaard L, Ness RB, Nevanlinna H, Odunsi K, Olson SH, Orlow I, Orsulic S, Weber RP, Pearce CL, Pejovic T, Pelttari LM, Permuth-Wey J, Phelan CM, Pike MC, Poole EM, Ramus SJ, Risch HA, Rosen B, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Schildkraut JM, Schwaab I, Shu XO, Shvetsov YB, Siddiqui N, Sieh W, Song H, Southey MC, Sucheston-Campbell LE, Tangen IL, Teo SH, Terry KL, Thompson PJ, Timorek A, Tsai YY, Tworoger SS, van Altena AM, Van Nieuwenhuysen E, Vergote I, Vierkant RA, Wang-Gohrke S, Walsh C, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Woo YL, Wu X, Wu A, Yang H, Zheng W, Ziogas A, Sellers TA, Monteiro ANA, Freedman ML, Gayther SA, Pharoah PDP. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk. Cancer Epidemiol Biomarkers Prev 2015; 24:1574-84. [PMID: 26209509 PMCID: PMC4592449 DOI: 10.1158/1055-9965.epi-14-1270] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/29/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. METHODS We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). RESULTS Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. CONCLUSION We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. IMPACT Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization.
Collapse
|
92
|
Krakstad C, Tangen IL, Hoivik EA, Halle MK, Berg A, Werner HM, Ræder MB, Kusonmano K, Zou JX, Øyan AM, Stefansson I, Trovik J, Kalland KH, Chen HW, Salvesen HB. ATAD2 overexpression links to enrichment of B-MYB-translational signatures and development of aggressive endometrial carcinoma. Oncotarget 2015; 6:28440-52. [PMID: 26308378 PMCID: PMC4695070 DOI: 10.18632/oncotarget.4955] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/02/2015] [Indexed: 01/20/2023] Open
Abstract
We have explored the potential for clinical implementation of ATAD2 as a biomarker for aggressive endometrial cancer by investigating to what extent immunohistochemical (IHC) staining for ATAD2 is feasible, reflects clinical phenotype and molecular subgroups of endometrial carcinomas. Increased expression of the ATAD2 gene has been implicated in cancer development and progression in a number of tissues, but few studies have investigated ATAD2 expression using IHC. Here we show that high ATAD2 protein expression is significantly associated with established clinical-pathological variables for aggressive endometrial cancer, also in the subset of estrogen receptor α (ERα) positive tumors. Protein and mRNA expression of ATAD2 were highly correlated (P < 0.001), suggesting that IHC staining may represent a more clinically applicable measure of ATAD2 level in routinely collected formalin fixed paraffin embedded specimens. Gene expression alterations in samples with high ATAD2 expression revealed upregulation of several cancer-related genes (B-MYB, CDCs, E2Fs) and gene sets that previously have been linked to aggressive disease and potential for new targeting therapies. Our results support that IHC staining for ATAD2 may be a clinically applicable biomarker reflecting clinical phenotype and targetable alterations in endometrial carcinomas to be further explored in controlled clinical trials.
Collapse
|
93
|
Lawrenson K, Li Q, Kar S, Seo JH, Tyrer J, Spindler TJ, Lee J, Chen Y, Karst A, Drapkin R, Aben KKH, Anton-Culver H, Antonenkova N, Baker H, Bandera EV, Bean Y, Beckmann MW, Berchuck A, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bruinsma F, Butzow R, Campbell IG, Carty K, Chang-Claude J, Chenevix-Trench G, Chen A, Chen Z, Cook LS, Cramer DW, Cunningham JM, Cybulski C, Dansonka-Mieszkowska A, Dennis J, Dicks E, Doherty JA, Dörk T, du Bois A, Dürst M, Eccles D, Easton DT, Edwards RP, Eilber U, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goode EL, Goodman MT, Grownwald J, Harrington P, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MAT, Hillemanns P, Hogdall E, Hogdall C, Hosono S, Iversen ES, Jakubowska A, James P, Jensen A, Ji BT, Karlan BY, Kruger Kjaer S, Kelemen LE, Kellar M, Kelley JL, Kiemeney LA, Krakstad C, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger LFAG, Matsuo K, McGuire V, McLaughlin JR, Nevanlinna H, McNeish I, Menon U, Modugno F, Moysich KB, Narod SA, Nedergaard L, Ness RB, Azmi MAN, Odunsi K, Olson SH, Orlow I, Orsulic S, Weber RP, Pearce CL, Pejovic T, Pelttari LM, Permuth-Wey J, Phelan CM, Pike MC, Poole EM, Ramus SJ, Risch HA, Rosen B, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Schildkraut JM, Schwaab I, Sellers TA, Shu XO, Shvetsov YB, Siddiqui N, Sieh W, Song H, Southey MC, Sucheston L, Tangen IL, Teo SH, Terry KL, Thompson PJ, Timorek A, Tsai YY, Tworoger SS, van Altena AM, Van Nieuwenhuysen E, Vergote I, Vierkant RA, Wang-Gohrke S, Walsh C, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Woo YL, Wu X, Wu AH, Yang H, Zheng W, Ziogas A, Monteiro A, Pharoah PD, Gayther SA, Freedman ML. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer. Nat Commun 2015; 6:8234. [PMID: 26391404 PMCID: PMC4580986 DOI: 10.1038/ncomms9234] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/31/2015] [Indexed: 12/23/2022] Open
Abstract
Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10(-5)). For three cis-eQTL associations (P<1.4 × 10(-3), FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10(-10) for risk variants (P<10(-4)) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC.
Collapse
|
94
|
Jim HS, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Chornokur G, Chen Z, Chen AY, Permuth-Wey J, Aben KKH, Anton-Culver H, Antonenkova N, Bruinsma F, Bandera EV, Bean YT, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bunker CH, Butzow R, Campbell IG, Carty K, Chang-Claude J, Cook LS, Cramer DW, Cunningham JM, Cybulski C, Dansonka-Mieszkowska A, du Bois A, Despierre E, Sieh W, Doherty JA, Dörk T, Dürst M, Easton DF, Eccles DM, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goodman MT, Gronwald J, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MA, Hillemanns P, Hogdall CK, Hogdall E, Hosono S, Iversen ES, Jakubowska A, Jensen A, Ji BT, Karlan BY, Kellar M, Kiemeney LA, Krakstad C, Kjaer SK, Kupryjanczyk J, Vierkant RA, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lim BK, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger LF, Matsuo K, McGuire V, McLaughlin JR, McNeish I, Menon U, Milne RL, Modugno F, Thomsen L, Moysich KB, Ness RB, Nevanlinna H, Eilber U, Odunsi K, Olson SH, Orlow I, Orsulic S, Palmieri Weber R, Paul J, Pearce CL, Pejovic T, Pelttari LM, Pike MC, Poole EM, Schernhammer E, Risch HA, Rosen B, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Schwaab I, Shu XO, Shvetsov YB, Siddiqui N, Song H, Southey MC, Spiewankiewicz B, Sucheston-Campbell L, Teo SH, Terry KL, Thompson PJ, Tangen IL, Tworoger SS, van Altena AM, Vergote I, Walsh CS, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Wu AH, Wu X, Woo YL, Yang H, Zheng W, Ziogas A, Amankwah E, Berchuck A, Schildkraut JM, Kelemen LE, Ramus SJ, Monteiro AN, Goode EL, Narod SA, Gayther SA, Pharoah PDP, Sellers TA, Phelan CM. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). JOURNAL OF GENETICS AND GENOME RESEARCH 2015; 2:017. [PMID: 26807442 PMCID: PMC4722961 DOI: 10.23937/2378-3648/1410017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10-4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.
Collapse
|
95
|
Haldorsen IS, Popa M, Fonnes T, Brekke N, Kopperud R, Visser NC, Rygh CB, Pavlin T, Salvesen HB, McCormack E, Krakstad C. Multimodal Imaging of Orthotopic Mouse Model of Endometrial Carcinoma. PLoS One 2015; 10:e0135220. [PMID: 26252891 PMCID: PMC4529312 DOI: 10.1371/journal.pone.0135220] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/20/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Orthotopic endometrial cancer models provide a unique tool for studies of tumour growth and metastatic spread. Novel preclinical imaging methods also have the potential to quantify functional tumour characteristics in vivo, with potential relevance for monitoring response to therapy. METHODS After orthotopic injection with luc-expressing endometrial cancer cells, eleven mice developed disease detected by weekly bioluminescence imaging (BLI). In parallel the same mice underwent positron emission tomography-computed tomography (PET-CT) and magnetic resonance imaging (MRI) employing 18F-fluorodeoxyglocose (18F-FDG) or 18F- fluorothymidine (18F-FLT) and contrast reagent, respectively. The mice were sacrificed when moribund, and post-mortem examination included macroscopic and microscopic examination for validation of growth of primary uterine tumours and metastases. PET-CT was also performed on a patient derived model (PDX) generated from a patient with grade 3 endometrioid endometrial cancer. RESULTS Increased BLI signal during tumour growth was accompanied by increasing metabolic tumour volume (MTV) and increasing MTV x mean standard uptake value of the tumour (SUVmean) in 18F-FDG and 18F-FLT PET-CT, and MRI conspicuously depicted the uterine tumour. At necropsy 82% (9/11) of the mice developed metastases detected by the applied imaging methods. 18F-FDG PET proved to be a good imaging method for detection of patient derived tumour tissue. CONCLUSIONS We demonstrate that all imaging modalities enable monitoring of tumour growth and metastatic spread in an orthotopic mouse model of endometrial carcinoma. Both PET tracers, 18F-FDG and 18F-FLT, appear to be equally feasible for detecting tumour development and represent, together with MRI, promising imaging tools for monitoring of patient-derived xenograft (PDX) cancer models.
Collapse
|
96
|
Halle MK, Ojesina AI, Tangen IL, Holst F, Engerud HR, Bertelsen BI, Krakstad C, Salvesen HB. Abstract LB-120: HER2 as a potential predictive marker and target for therapy in cervical cancer. Cancer Res 2015. [DOI: 10.1158/1538-7445.am2015-lb-120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Cervical cancer is the third leading cause of cancer in the female population worldwide, causing the death of more than 240,000 patients annually in developing countries. Increased molecular knowledge is crucial to identify robust prognostic and predictive biomarkers that can better guide treatment. The tumor response to trastuzumab is well established and strongly links to HER2 expression status evaluated by the Hercep Test, hence, it is essential to define the level of expression of this receptor using the FDA-approved Hercep Test to stratify cervical cancer patients with potential benefits from trastuzumab treatment.
Comprehensive molecular characterization has been conducted on 88 paired normal and tumor cases identifying ERBB2 to be frequently altered in cervical cancers. We here explore the protein expression of HER2 by immunohistochemical staining in a larger validation series (n = 220) and relate HER2 expression to the ERBB2 gene alterations, patients molecular profile and clinicopathological features.
We find a highly significant correlation between Hercep Test score and mRNA ERBB2 expression (p<0.001). The level of ERBB2 mRNA was also significantly associated with copy number status (p = 0.007). Further clinocopathological parameters like high FIGO stage, high grade, adenocarcinomas and normal p53 status was significantly linked to high HER2 protein expression. Kaplan Meier survival analysis revealed that within the squamous cell carcinomas, high protein levels of HER2 was linked to poorer disease specific survival.
Our results show a link between ERBB2 amplification, high mRNA expression and protein levels for HER2 in aggressive cervical cancers. Further studies of HER2 as a potential predictive marker for response to trastuzumab treatment in cervical cancer are needed.
Citation Format: Mari K. Halle, Akinyemi I. Ojesina, Ingvild L. Tangen, Frederik Holst, Hilde R. Engerud, Bjørn I. Bertelsen, Camilla Krakstad, Helga B. Salvesen. HER2 as a potential predictive marker and target for therapy in cervical cancer. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr LB-120. doi:10.1158/1538-7445.AM2015-LB-120
Collapse
|
97
|
Chornokur G, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Amankwah EK, Qu X, Tsai YY, Jim HSL, Chen Z, Chen AY, Permuth-Wey J, Aben KKH, Anton-Culver H, Antonenkova N, Bruinsma F, Bandera EV, Bean YT, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bunker CH, Butzow R, Campbell IG, Carty K, Chang-Claude J, Cook LS, Cramer DW, Cunningham JM, Cybulski C, Dansonka-Mieszkowska A, du Bois A, Despierre E, Dicks E, Doherty JA, Dörk T, Dürst M, Easton DF, Eccles DM, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goodman MT, Gronwald J, Harrington P, Harter P, Hein A, Heitz F, Hildebrandt MAT, Hillemanns P, Hogdall CK, Hogdall E, Hosono S, Jakubowska A, Jensen A, Ji BT, Karlan BY, Kelemen LE, Kellar M, Kiemeney LA, Krakstad C, Kjaer SK, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lim BK, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger LFAG, Matsuo K, McGuire V, McLaughlin JR, McNeish I, Menon U, Milne RL, Modugno F, Moysich KB, Ness RB, Nevanlinna H, Eilber U, Odunsi K, Olson SH, Orlow I, Orsulic S, Weber RP, Paul J, Pearce CL, Pejovic T, Pelttari LM, Pike MC, Poole EM, Risch HA, Rosen B, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Schernhammer E, Schwaab I, Shu XO, Shvetsov YB, Siddiqui N, Sieh W, Song H, Southey MC, Spiewankiewicz B, Sucheston L, Teo SH, Terry KL, Thompson PJ, Thomsen L, Tangen IL, Tworoger SS, van Altena AM, Vierkant RA, Vergote I, Walsh CS, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Wu AH, Wu X, Woo YL, Yang H, Zheng W, Ziogas A, Hasmad HN, Berchuck A, Iversen ES, Schildkraut JM, Ramus SJ, Goode EL, Monteiro ANA, Gayther SA, Narod SA, Pharoah PDP, Sellers TA, Phelan CM. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk. PLoS One 2015; 10:e0128106. [PMID: 26091520 PMCID: PMC4474865 DOI: 10.1371/journal.pone.0128106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. METHODS In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. RESULTS The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). CONCLUSION These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes.
Collapse
|
98
|
Edqvist PHD, Huvila J, Forsström B, Talve L, Carpén O, Salvesen HB, Krakstad C, Grénman S, Johannesson H, Ljungqvist O, Uhlén M, Pontén F, Auranen A. Loss of ASRGL1 expression is an independent biomarker for disease-specific survival in endometrioid endometrial carcinoma. Gynecol Oncol 2015; 137:529-37. [PMID: 25858696 DOI: 10.1016/j.ygyno.2015.03.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE For endometrial carcinoma, prognostic stratification methods do not satisfactorily identify patients with adverse outcome. Currently, histology, tumor grade and stage are used to tailoring surgical treatment and to determine the need for adjuvant treatment. Low-risk patients are not considered to require adjuvant therapy or staging lymphadenectomy. For patients with intermediate or high risk, some guidelines recommend tailoring adjuvant treatment according to additional negative prognostic factors. Our objective was to evaluate the biomarker potential of the ASRGL1 protein in endometrial carcinoma. METHODS Using The Human Protein Atlas (www.proteinatlas.org), the l-asparaginase (ASRGL1) protein was identified as an endometrial carcinoma biomarker candidate. ASRGL1 expression was immunohistochemically evaluated with an extensively validated antibody on two independent endometrial carcinoma cohorts (n=229 and n=286) arranged as tissue microarrays. Staining results were correlated with clinical features. RESULTS Reduced expression of ASRGL1, defined as <75% positively stained tumor cells, was significantly associated with poor prognosis and reduced disease-specific survival in endometrioid endometrial adenocarcinoma (EEA). In multivariate analysis the hazard ratios for disease-specific survival were 3.55 (95% CI=1.10-11.43; p=0.003) and 3.23 (95% CI=1.53-6.81; p=0.002) in the two cohorts, respectively. Of the 48 cases with Grade 3 Stage I tumor all disease-related deaths were associated with low ASRGL1 expression. CONCLUSIONS Loss of ASRGL1 in EEA is a powerful biomarker for poor prognosis and retained ASRGL1 has a positive impact on survival. ASRGL1 immunohistochemistry has potential to become an additional tool for prognostication in cases where tailoring adjuvant treatment according to additional prognostic factors besides grade and stage is recommended.
Collapse
|
99
|
Lee AW, Tyrer JP, Doherty JA, Stram DA, Kupryjanczyk J, Dansonka-Mieszkowska A, Plisiecka-Halasa J, Spiewankiewicz B, Myers EJ, Chenevix-Trench G, Fasching PA, Beckmann MW, Ekici AB, Hein A, Vergote I, Van Nieuwenhuysen E, Lambrechts D, Wicklund KG, Eilber U, Wang-Gohrke S, Chang-Claude J, Rudolph A, Sucheston-Campbell L, Odunsi K, Moysich KB, Shvetsov YB, Thompson PJ, Goodman MT, Wilkens LR, Dörk T, Hillemanns P, Dürst M, Runnebaum IB, Bogdanova N, Pelttari LM, Nevanlinna H, Leminen A, Edwards RP, Kelley JL, Harter P, Schwaab I, Heitz F, du Bois A, Orsulic S, Lester J, Walsh C, Karlan BY, Hogdall E, Kjaer SK, Jensen A, Vierkant RA, Cunningham JM, Goode EL, Fridley BL, Southey MC, Giles GG, Bruinsma F, Wu X, Hildebrandt MAT, Lu K, Liang D, Bisogna M, Levine DA, Weber RP, Schildkraut JM, Iversen ES, Berchuck A, Terry KL, Cramer DW, Tworoger SS, Poole EM, Olson SH, Orlow I, Bandera EV, Bjorge L, Tangen IL, Salvesen HB, Krakstad C, Massuger LFAG, Kiemeney LA, Aben KKH, van Altena AM, Bean Y, Pejovic T, Kellar M, Le ND, Cook LS, Kelemen LE, Brooks-Wilson A, Lubinski J, Gronwald J, Cybulski C, Jakubowska A, Wentzensen N, Brinton LA, Lissowska J, Yang H, Nedergaard L, Lundvall L, Hogdall C, Song H, Campbell IG, Eccles D, Glasspool R, Siddiqui N, Carty K, Paul J, McNeish IA, Sieh W, McGuire V, Rothstein JH, Whittemore AS, McLaughlin JR, Risch HA, Phelan CM, Anton-Culver H, Ziogas A, Menon U, Ramus SJ, Gentry-Maharaj A, Harrington P, Pike MC, Modugno F, Rossing MA, Ness RB, Pharoah PDP, Stram DO, Wu AH, Pearce CL. Evaluating the ovarian cancer gonadotropin hypothesis: a candidate gene study. Gynecol Oncol 2015; 136:542-8. [PMID: 25528498 PMCID: PMC4892108 DOI: 10.1016/j.ygyno.2014.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Ovarian cancer is a hormone-related disease with a strong genetic basis. However, none of its high-penetrance susceptibility genes and GWAS-identified variants to date are known to be involved in hormonal pathways. Given the hypothesized etiologic role of gonadotropins, an assessment of how variability in genes involved in the gonadotropin signaling pathway impacts disease risk is warranted. METHODS Genetic data from 41 ovarian cancer study sites were pooled and unconditional logistic regression was used to evaluate whether any of the 2185 SNPs from 11 gonadotropin signaling pathway genes was associated with ovarian cancer risk. A burden test using the admixture likelihood (AML) method was also used to evaluate gene-level associations. RESULTS We did not find any genome-wide significant associations between individual SNPs and ovarian cancer risk. However, there was some suggestion of gene-level associations for four gonadotropin signaling pathway genes: INHBB (p=0.045, mucinous), LHCGR (p=0.046, high-grade serous), GNRH (p=0.041, high-grade serous), and FSHB (p=0.036, overall invasive). There was also suggestive evidence for INHA (p=0.060, overall invasive). CONCLUSIONS Ovarian cancer studies have limited sample numbers, thus fewer genome-wide susceptibility alleles, with only modest associations, have been identified relative to breast and prostate cancers. We have evaluated the majority of ovarian cancer studies with biological samples, to our knowledge, leaving no opportunity for replication. Using both our understanding of biology and powerful gene-level tests, we have identified four putative ovarian cancer loci near INHBB, LHCGR, GNRH, and FSHB that warrant a second look if larger sample sizes and denser genotype chips become available.
Collapse
|
100
|
Kuchenbaecker KB, Ramus SJ, Tyrer J, Lee A, Shen HC, Beesley J, Lawrenson K, McGuffog L, Healey S, Lee JM, Spindler TJ, Lin YG, Pejovic T, Bean Y, Li Q, Coetzee S, Hazelett D, Miron A, Southey M, Terry MB, Goldgar DE, Buys SS, Janavicius R, Dorfling CM, van Rensburg EJ, Neuhausen SL, Ding YC, Hansen TVO, Jønson L, Gerdes AM, Ejlertsen B, Barrowdale D, Dennis J, Benitez J, Osorio A, Garcia MJ, Komenaka I, Weitzel JN, Ganschow P, Peterlongo P, Bernard L, Viel A, Bonanni B, Peissel B, Manoukian S, Radice P, Papi L, Ottini L, Fostira F, Konstantopoulou I, Garber J, Frost D, Perkins J, Platte R, Ellis S, Godwin AK, Schmutzler RK, Meindl A, Engel C, Sutter C, Sinilnikova OM, Damiola F, Mazoyer S, Stoppa-Lyonnet D, Claes K, De Leeneer K, Kirk J, Rodriguez GC, Piedmonte M, O'Malley DM, de la Hoya M, Caldes T, Aittomäki K, Nevanlinna H, Collée JM, Rookus MA, Oosterwijk JC, Tihomirova L, Tung N, Hamann U, Isaccs C, Tischkowitz M, Imyanitov EN, Caligo MA, Campbell IG, Hogervorst FBL, Olah E, Diez O, Blanco I, Brunet J, Lazaro C, Pujana MA, Jakubowska A, Gronwald J, Lubinski J, Sukiennicki G, Barkardottir RB, Plante M, Simard J, Soucy P, Montagna M, Tognazzo S, Teixeira MR, Pankratz VS, Wang X, Lindor N, Szabo CI, Kauff N, Vijai J, Aghajanian CA, Pfeiler G, Berger A, Singer CF, Tea MK, Phelan CM, Greene MH, Mai PL, Rennert G, Mulligan AM, Tchatchou S, Andrulis IL, Glendon G, Toland AE, Jensen UB, Kruse TA, Thomassen M, Bojesen A, Zidan J, Friedman E, Laitman Y, Soller M, Liljegren A, Arver B, Einbeigi Z, Stenmark-Askmalm M, Olopade OI, Nussbaum RL, Rebbeck TR, Nathanson KL, Domchek SM, Lu KH, Karlan BY, Walsh C, Lester J, Hein A, Ekici AB, Beckmann MW, Fasching PA, Lambrechts D, Van Nieuwenhuysen E, Vergote I, Lambrechts S, Dicks E, Doherty JA, Wicklund KG, Rossing MA, Rudolph A, Chang-Claude J, Wang-Gohrke S, Eilber U, Moysich KB, Odunsi K, Sucheston L, Lele S, Wilkens LR, Goodman MT, Thompson PJ, Shvetsov YB, Runnebaum IB, Dürst M, Hillemanns P, Dörk T, Antonenkova N, Bogdanova N, Leminen A, Pelttari LM, Butzow R, Modugno F, Kelley JL, Edwards RP, Ness RB, du Bois A, Heitz F, Schwaab I, Harter P, Matsuo K, Hosono S, Orsulic S, Jensen A, Kjaer SK, Hogdall E, Hasmad HN, Azmi MAN, Teo SH, Woo YL, Fridley BL, Goode EL, Cunningham JM, Vierkant RA, Bruinsma F, Giles GG, Liang D, Hildebrandt MAT, Wu X, Levine DA, Bisogna M, Berchuck A, Iversen ES, Schildkraut JM, Concannon P, Weber RP, Cramer DW, Terry KL, Poole EM, Tworoger SS, Bandera EV, Orlow I, Olson SH, Krakstad C, Salvesen HB, Tangen IL, Bjorge L, van Altena AM, Aben KKH, Kiemeney LA, Massuger LFAG, Kellar M, Brooks-Wilson A, Kelemen LE, Cook LS, Le ND, Cybulski C, Yang H, Lissowska J, Brinton LA, Wentzensen N, Hogdall C, Lundvall L, Nedergaard L, Baker H, Song H, Eccles D, McNeish I, Paul J, Carty K, Siddiqui N, Glasspool R, Whittemore AS, Rothstein JH, McGuire V, Sieh W, Ji BT, Zheng W, Shu XO, Gao YT, Rosen B, Risch HA, McLaughlin JR, Narod SA, Monteiro AN, Chen A, Lin HY, Permuth-Wey J, Sellers TA, Tsai YY, Chen Z, Ziogas A, Anton-Culver H, Gentry-Maharaj A, Menon U, Harrington P, Lee AW, Wu AH, Pearce CL, Coetzee G, Pike MC, Dansonka-Mieszkowska A, Timorek A, Rzepecka IK, Kupryjanczyk J, Freedman M, Noushmehr H, Easton DF, Offit K, Couch FJ, Gayther S, Pharoah PP, Antoniou AC, Chenevix-Trench G. Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nat Genet 2015; 47:164-71. [PMID: 25581431 PMCID: PMC4445140 DOI: 10.1038/ng.3185] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/05/2014] [Indexed: 02/08/2023]
Abstract
Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
Collapse
|