76
|
Yan Z, Costanzo M, Heisler LE, Paw J, Kaper F, Andrews BJ, Boone C, Giaever G, Nislow C. Yeast Barcoders: a chemogenomic application of a universal donor-strain collection carrying bar-code identifiers. Nat Methods 2008; 5:719-25. [DOI: 10.1038/nmeth.1231] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 06/09/2008] [Indexed: 11/09/2022]
|
77
|
Musso G, Costanzo M, Huangfu M, Smith AM, Paw J, San Luis BJ, Boone C, Giaever G, Nislow C, Emili A, Zhang Z. The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast. Genome Res 2008; 18:1092-9. [PMID: 18463300 DOI: 10.1101/gr.076174.108] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since complete redundancy between extant duplicates (paralogs) is evolutionarily unfavorable, some degree of functional congruency is eventually lost. However, in budding yeast, experimental evidence collected for duplicated metabolic enzymes and in global physical interaction surveys had suggested widespread functional overlap between paralogs. While maintained functional overlap is thought to confer robustness against genetic mutation and facilitate environmental adaptability, it has yet to be determined what properties define paralogs that can compensate for the phenotypic consequence of deleting a sister gene, how extensive this epistasis is, and how adaptable it is toward alternate environmental states. To this end, we have performed a comprehensive experimental analysis of epistasis as indicated by aggravating genetic interactions between paralogs resulting from an ancient whole-genome duplication (WGD) event occurring in the budding yeast Saccharomyces cerevisiae, and thus were able to compare properties of large numbers of epistatic and non-epistatic paralogs with identical evolutionary times since divergence. We found that more than one-third (140) of the 399 examinable WGD paralog pairs were epistatic under standard laboratory conditions and that additional cases of epistasis became obvious only under media conditions designed to induce cellular stress. Despite a significant increase in within-species sequence co-conservation, analysis of protein interactions revealed that paralogs epistatic under standard laboratory conditions were not more functionally overlapping than those non-epistatic. As experimental conditions had an impact on the functional categorization of paralogs deemed epistatic and only a fraction of potential stress conditions have been interrogated here, we hypothesize that many epistatic relationships remain unresolved.
Collapse
|
78
|
Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St.Onge RP, Tyers M, Koller D, Altman RB, Davis RW, Nislow C, Giaever G. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 2008; 320:362-5. [PMID: 18420932 PMCID: PMC2794835 DOI: 10.1126/science.1150021] [Citation(s) in RCA: 738] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Genetics aims to understand the relation between genotype and phenotype. However, because complete deletion of most yeast genes ( approximately 80%) has no obvious phenotypic consequence in rich medium, it is difficult to study their functions. To uncover phenotypes for this nonessential fraction of the genome, we performed 1144 chemical genomic assays on the yeast whole-genome heterozygous and homozygous deletion collections and quantified the growth fitness of each deletion strain in the presence of chemical or environmental stress conditions. We found that 97% of gene deletions exhibited a measurable growth phenotype, suggesting that nearly all genes are essential for optimal growth in at least one condition.
Collapse
|
79
|
Jo WJ, Loguinov A, Chang M, Wintz H, Nislow C, Arkin AP, Giaever G, Vulpe CD. Identification of Genes Involved in the Toxic Response of Saccharomyces cerevisiae against Iron and Copper Overload by Parallel Analysis of Deletion Mutants. Toxicol Sci 2008. [DOI: 10.1093/toxsci/kfm307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
80
|
Arnoldo A, Curak J, Kittanakom S, Chevelev I, Lee VT, Sahebol-Amri M, Koscik B, Ljuma L, Roy PJ, Bedalov A, Giaever G, Nislow C, Merrill RA, Lory S, Stagljar I. Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen. PLoS Genet 2008; 4:e1000005. [PMID: 18454192 PMCID: PMC2265467 DOI: 10.1371/journal.pgen.1000005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 01/17/2008] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is a key factor in the mortality of cystic fibrosis patients, and infection represents an increased threat for human health worldwide. Because resistance of Pseudomonas aeruginosa to antibiotics is increasing, new inhibitors of pharmacologically validated targets of this bacterium are needed. Here we demonstrate that a cell-based yeast phenotypic assay, combined with a large-scale inhibitor screen, identified small molecule inhibitors that can suppress the toxicity caused by heterologous expression of selected Pseudomonas aeruginosa ORFs. We identified the first small molecule inhibitor of Exoenzyme S (ExoS), a toxin involved in Type III secretion. We show that this inhibitor, exosin, modulates ExoS ADP-ribosyltransferase activity in vitro, suggesting the inhibition is direct. Moreover, exosin and two of its analogues display a significant protective effect against Pseudomonas infection in vivo. Furthermore, because the assay was performed in yeast, we were able to demonstrate that several yeast homologues of the known human ExoS targets are likely ADP-ribosylated by the toxin. For example, using an in vitro enzymatic assay, we demonstrate that yeast Ras2p is directly modified by ExoS. Lastly, by surveying a collection of yeast deletion mutants, we identified Bmh1p, a yeast homologue of the human FAS, as an ExoS cofactor, revealing that portions of the bacterial toxin mode of action are conserved from yeast to human. Taken together, our integrated cell-based, chemical-genetic approach demonstrates that such screens can augment traditional drug screening approaches and facilitate the discovery of new compounds against a broad range of human pathogens.
Collapse
|
81
|
Lopez A, Parsons AB, Nislow C, Giaever G, Boone C. Chemical-genetic approaches for exploring the mode of action of natural products. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2008; 66:237-271. [PMID: 18416308 DOI: 10.1007/978-3-7643-8595-8_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Determining the mode of action of bioactive compounds, including natural products, is a central problem in chemical biology. Because many genes are conserved from the yeast Saccharomyces cerevisiae to humans and a number of powerful genomics tools and methodologies have been developed for this model system, yeast is making a major contribution to the field of chemical genetics. The set of barcoded yeast deletion mutants, including the set of approximately 5000 viable haploid and homozygous diploid deletion mutants and the complete set of approximately 6000 heterozygous deletion mutants, containing the set of approximately 1000 essential genes, are proving highly informative for identifying chemical-genetic interactions and deciphering compound mode of action. Gene deletions that render cells hypersensitive to a specific drug identify pathways that buffer the cell against the toxic effects of the drug and thereby provide clues about both gene and compound function. Moreover, compounds that show similar chemical-genetic profiles often perturb similar target pathways. Gene dosage can be exploited to discover connections between compounds and their targets. For example, haploinsufficiency profiling of an antifungal compound, in which the set of approximately 6000 heterozygous diploid deletion mutants are scored for hypersensitivity to a compound, may identify the target directly. Creating deletion mutant collections in other fungal species, including the major human fungal pathogen Candida albicans, will expand our chemical genomics tool set, allowing us to screen for antifungal lead drugs directly. The yeast deletion mutant collection is also being exploited to map large-scale genetic interaction data obtained from genome-wide synthetic lethal screens and the integration of this data with chemical genetic data should provide a powerful system for linking compounds to their target pathway. Extensive application of chemical genetics in yeast has the potential to develop a small molecule inhibitor for the majority of all approximately 6000 yeast genes.
Collapse
|
82
|
Pierce SE, Davis RW, Nislow C, Giaever G. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat Protoc 2007; 2:2958-74. [DOI: 10.1038/nprot.2007.427] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
83
|
Jo WJ, Loguinov A, Chang M, Wintz H, Nislow C, Arkin AP, Giaever G, Vulpe CD. Identification of Genes Involved in the Toxic Response of Saccharomyces cerevisiae against Iron and Copper Overload by Parallel Analysis of Deletion Mutants. Toxicol Sci 2007; 101:140-51. [PMID: 17785683 DOI: 10.1093/toxsci/kfm226] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Iron and copper are essential nutrients for life as they are required for the function of many proteins but can be toxic if present in excess. Accumulation of these metals in the human body as a consequence of overload disorders and/or high environmental exposures has detrimental effects on health. The budding yeast Saccharomyces cerevisiae is an accepted cellular model for iron and copper metabolism in humans primarily because of the high degree of conservation between pathways and proteins involved. Here we report a systematic screen using yeast deletion mutants to identify genes involved in the toxic response to growth-inhibitory concentrations of iron and copper sulfate. We aimed to understand the cellular responses to toxic concentrations of these two metals by analyzing the different subnetworks and biological processes significantly enriched with these genes. Our results indicate the presence of two different detoxification pathways for iron and copper that converge toward the vacuole. The product of several of the identified genes in these pathways form molecular complexes that are conserved in mammals and include the retromer, endosomal sorting complex required for transport (ESCRT) and AP-3 complexes, suggesting that the mechanisms involved can be extrapolated to humans. Our data also suggest a disruption in ion homeostasis and, in particular, of iron after copper exposure. Moreover, the identification of treatment-specific genes associated with biological processes such as DNA double-strand break repair for iron and tryptophan biosynthesis for copper suggests differences in the mechanisms by which these two metals are toxic at high concentrations.
Collapse
|
84
|
Gassner NC, Tamble CM, Bock JE, Cotton N, White KN, Tenney K, St. Onge RP, Proctor MJ, Giaever G, Davis RW, Crews P, Holman TR, Lokey RS. Accelerating the discovery of biologically active small molecules using a high-throughput yeast halo assay. JOURNAL OF NATURAL PRODUCTS 2007; 70:383-90. [PMID: 17291044 PMCID: PMC2533267 DOI: 10.1021/np060555t] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The budding yeast Saccharomyces cerevisiae, a powerful model system for the study of basic eukaryotic cell biology, has been used increasingly as a screening tool for the identification of bioactive small molecules. We have developed a novel yeast toxicity screen that is easily automated and compatible with high-throughput screening robotics. The new screen is quantitative and allows inhibitory potencies to be determined, since the diffusion of the sample provides a concentration gradient and a corresponding toxicity halo. The efficacy of this new screen was illustrated by testing materials including 3104 compounds from the NCI libraries, 167 marine sponge crude extracts, and 149 crude marine-derived fungal extracts. There were 46 active compounds among the NCI set. One very active extract was selected for bioactivity-guided fractionation, resulting in the identification of crambescidin 800 as a potent antifungal agent.
Collapse
|
85
|
St Onge RP, Mani R, Oh J, Proctor M, Fung E, Davis RW, Nislow C, Roth FP, Giaever G. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat Genet 2007; 39:199-206. [PMID: 17206143 PMCID: PMC2716756 DOI: 10.1038/ng1948] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/28/2006] [Indexed: 11/09/2022]
Abstract
Systematic genetic interaction studies have illuminated many cellular processes. Here we quantitatively examine genetic interactions among 26 Saccharomyces cerevisiae genes conferring resistance to the DNA-damaging agent methyl methanesulfonate (MMS), as determined by chemogenomic fitness profiling of pooled deletion strains. We constructed 650 double-deletion strains, corresponding to all pairings of these 26 deletions. The fitness of single- and double-deletion strains were measured in the presence and absence of MMS. Genetic interactions were defined by combining principles from both statistical and classical genetics. The resulting network predicts that the Mph1 helicase has a role in resolving homologous recombination-derived DNA intermediates that is similar to (but distinct from) that of the Sgs1 helicase. Our results emphasize the utility of small molecules and multifactorial deletion mutants in uncovering functional relationships and pathway order.
Collapse
|
86
|
Nislow C, Giaever G. 17 Chemical Genomic Tools for Understanding Gene Function and Drug Action. J Microbiol Methods 2007. [DOI: 10.1016/s0580-9517(06)36017-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
87
|
Costanzo M, Giaever G, Nislow C, Andrews B. Experimental approaches to identify genetic networks. Curr Opin Biotechnol 2006; 17:472-80. [PMID: 16962766 DOI: 10.1016/j.copbio.2006.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/10/2006] [Accepted: 08/31/2006] [Indexed: 01/09/2023]
Abstract
Systems biology offers the promise of a fully integrated view of cellular physiology. To realize this potential requires the analysis of diverse genome-wide datasets and the incorporation of these analyses into integrated networks. In the past decade, the budding yeast Saccharomyces cerevisiae has provided the benchmark for the design of such large-scale experiments. Many of these experimental approaches have been adopted and adapted to study other systems, including worm, fly, fish and mammalian cultured cells, using an ingenious set of molecular tools.
Collapse
|
88
|
Pierce SE, Fung EL, Jaramillo DF, Chu AM, Davis RW, Nislow C, Giaever G. A unique and universal molecular barcode array. Nat Methods 2006; 3:601-3. [PMID: 16862133 DOI: 10.1038/nmeth905] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 06/19/2006] [Indexed: 11/08/2022]
Abstract
Molecular barcode arrays allow the analysis of thousands of biological samples in parallel through the use of unique 20-base-pair (bp) DNA tags. Here we present a new barcode array, which is unique among microarrays in that it includes at least five replicates of every tag feature. The use of smaller dispersed replicate features dramatically improves performance versus a single larger feature and allows the correction of previously undetectable hybridization defects.
Collapse
|
89
|
Lee W, St.Onge RP, Proctor M, Flaherty P, Jordan MI, Arkin AP, Davis RW, Nislow C, Giaever G. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet 2005; 1:e24. [PMID: 16121259 PMCID: PMC1189734 DOI: 10.1371/journal.pgen.0010024] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 07/01/2005] [Indexed: 11/18/2022] Open
Abstract
The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of approximately 4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups.
Collapse
|
90
|
Flaherty P, Giaever G, Kumm J, Jordan MI, Arkin AP. A latent variable model for chemogenomic profiling. Bioinformatics 2005; 21:3286-93. [PMID: 15919724 DOI: 10.1093/bioinformatics/bti515] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION In haploinsufficiency profiling data, pleiotropic genes are often misclassified by clustering algorithms that impose the constraint that a gene or experiment belong to only one cluster. We have developed a general probabilistic model that clusters genes and experiments without requiring that a given gene or drug only appear in one cluster. The model also incorporates the functional annotation of known genes to guide the clustering procedure. RESULTS We applied our model to the clustering of 79 chemogenomic experiments in yeast. Known pleiotropic genes PDR5 and MAL11 are more accurately represented by the model than by a clustering procedure that requires genes to belong to a single cluster. Drugs such as miconazole and fenpropimorph that have different targets but similar off-target genes are clustered more accurately by the model-based framework. We show that this model is useful for summarizing the relationship among treatments and genes affected by those treatments in a compendium of microarray profiles. AVAILABILITY Supplementary information and computer code at http://genomics.lbl.gov/llda.
Collapse
|
91
|
Wall DP, Hirsh AE, Fraser HB, Kumm J, Giaever G, Eisen MB, Feldman MW. Functional genomic analysis of the rates of protein evolution. Proc Natl Acad Sci U S A 2005; 102:5483-8. [PMID: 15800036 PMCID: PMC555735 DOI: 10.1073/pnas.0501761102] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionary rates of proteins vary over several orders of magnitude. Recent work suggests that analysis of large data sets of evolutionary rates in conjunction with the results from high-throughput functional genomic experiments can identify the factors that cause proteins to evolve at such dramatically different rates. To this end, we estimated the evolutionary rates of >3,000 proteins in four species of the yeast genus Saccharomyces and investigated their relationship with levels of expression and protein dispensability. Each protein's dispensability was estimated by the growth rate of mutants deficient for the protein. Our analyses of these improved evolutionary and functional genomic data sets yield three main results. First, dispensability and expression have independent, significant effects on the rate of protein evolution. Second, measurements of expression levels in the laboratory can be used to filter data sets of dispensability estimates, removing variates that are unlikely to reflect real biological effects. Third, structural equation models show that although we may reasonably infer that dispensability and expression have significant effects on protein evolutionary rate, we cannot yet accurately estimate the relative strengths of these effects.
Collapse
|
92
|
Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME, Davis RW, Nislow C, Giaever G. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 2005; 169:1915-25. [PMID: 15716499 PMCID: PMC1449596 DOI: 10.1534/genetics.104.036871] [Citation(s) in RCA: 394] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Haploinsufficiency is defined as a dominant phenotype in diploid organisms that are heterozygous for a loss-of-function allele. Despite its relevance to human disease, neither the extent of haploinsufficiency nor its precise molecular mechanisms are well understood. We used the complete set of Saccharomyces cerevisiae heterozygous deletion strains to survey the genome for haploinsufficiency via fitness profiling in rich (YPD) and minimal media to identify all genes that confer a haploinsufficient growth defect. This assay revealed that approximately 3% of all approximately 5900 genes tested are haploinsufficient for growth in YPD. This class of genes is functionally enriched for metabolic processes carried out by molecular complexes such as the ribosome. Much of the haploinsufficiency in YPD is alleviated by slowing the growth rate of each strain in minimal media, suggesting that certain gene products are rate limiting for growth only in YPD. Overall, our results suggest that the primary mechanism of haploinsufficiency in yeast is due to insufficient protein production. We discuss the relevance of our findings in yeast to human haploinsufficiency disorders.
Collapse
|
93
|
Fraser HB, Hirsh AE, Giaever G, Kumm J, Eisen MB. Noise minimization in eukaryotic gene expression. PLoS Biol 2004; 2:e137. [PMID: 15124029 PMCID: PMC400249 DOI: 10.1371/journal.pbio.0020137] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 03/09/2004] [Indexed: 01/08/2023] Open
Abstract
All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or “noise.” Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection. Analysis of gene expression data for nearly every gene in yeast provides evidence that random variation in the production rate of proteins could significantly affect the fitness of an organism
Collapse
|
94
|
Giaever G, Flaherty P, Kumm J, Proctor M, Nislow C, Jaramillo DF, Chu AM, Jordan MI, Arkin AP, Davis RW. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci U S A 2004; 101:793-8. [PMID: 14718668 PMCID: PMC321760 DOI: 10.1073/pnas.0307490100] [Citation(s) in RCA: 383] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We demonstrate the efficacy of a genome-wide protocol in yeast that allows the identification of those gene products that functionally interact with small molecules and result in the inhibition of cellular proliferation. Here we present results from screening 10 diverse compounds in 80 genome-wide experiments against the complete collection of heterozygous yeast deletion strains. These compounds include anticancer and antifungal agents, statins, alverine citrate, and dyclonine. In several cases, we identified previously known interactions; furthermore, in each case, our analysis revealed novel cellular interactions, even when the relationship between a compound and its cellular target had been well established. In addition, we identified a chemical core structure shared among three therapeutically distinct compounds that inhibit the ERG24 heterozygous deletion strain, demonstrating that cells may respond similarly to compounds of related structure. The ability to identify on-and-off target effects in vivo is fundamental to understanding the cellular response to small-molecule perturbants.
Collapse
|
95
|
Abstract
The complete collection of yeast deletion strains represents a unique, living biological computer for understanding gene function. The molecular 'barcodes' present in each of the deletion strains allow a quantitative ranking of the importance of any gene under any experimental condition of choice. In this article, some of the recent results generated from experiments that exploit the yeast deletion collection to understand mechanisms of drug action are discussed.
Collapse
|
96
|
Nislow C, Giaever G. "Chemogenomics: tools for protein families" and "Chemical genomics: chemical and biological integration". Pharmacogenomics 2003; 4:15-8. [PMID: 12517281 DOI: 10.1517/phgs.4.1.15.22579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
97
|
Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman ZS, Jones T, Chu AM, Giaever G, Prokisch H, Oefner PJ, Davis RW. Systematic screen for human disease genes in yeast. Nat Genet 2002; 31:400-4. [PMID: 12134146 DOI: 10.1038/ng929] [Citation(s) in RCA: 403] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High similarity between yeast and human mitochondria allows functional genomic study of Saccharomyces cerevisiae to be used to identify human genes involved in disease. So far, 102 heritable disorders have been attributed to defects in a quarter of the known nuclear-encoded mitochondrial proteins in humans. Many mitochondrial diseases remain unexplained, however, in part because only 40-60% of the presumed 700-1,000 proteins involved in mitochondrial function and biogenesis have been identified. Here we apply a systematic functional screen using the pre-existing whole-genome pool of yeast deletion mutants to identify mitochondrial proteins. Three million measurements of strain fitness identified 466 genes whose deletions impaired mitochondrial respiration, of which 265 were new. Our approach gave higher selection than other systematic approaches, including fivefold greater selection than gene expression analysis. To apply these advantages to human disorders involving mitochondria, human orthologs were identified and linked to heritable diseases using genomic map positions.
Collapse
|
98
|
Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002; 418:387-91. [PMID: 12140549 DOI: 10.1038/nature00935] [Citation(s) in RCA: 3124] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.
Collapse
|
99
|
Birrell GW, Brown JA, Wu HI, Giaever G, Chu AM, Davis RW, Brown JM. Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc Natl Acad Sci U S A 2002; 99:8778-83. [PMID: 12077312 PMCID: PMC124375 DOI: 10.1073/pnas.132275199] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2002] [Indexed: 12/20/2022] Open
Abstract
The recent completion of the deletion of all of the nonessential genes in budding yeast has provided a powerful new way of determining those genes that affect the sensitivity of this organism to cytotoxic agents. We have used this system to test the hypothesis that genes whose transcription is increased after DNA damage are important for the survival to that damage. We used a pool of 4,627 diploid strains each with homozygous deletion of a nonessential gene to identify those genes that are important for the survival of yeast to four DNA-damaging agents: ionizing radiation, UV radiation, and exposure to cisplatin or to hydrogen peroxide. In addition we measured the transcriptional response of the wild-type parental strain to the same DNA-damaging agents. We found no relationship between the genes necessary for survival to the DNA-damaging agents and those genes whose transcription is increased after exposure. These data show that few, if any, of the genes involved in repairing the DNA lesions produced in this study, including double-strand breaks, pyrimidine dimers, single-strand breaks, base damage, and DNA cross-links, are induced in response to toxic doses of the agents that produce these lesions. This finding suggests that the enzymes necessary for the repair of these lesions are at sufficient levels within the cell. The data also suggest that the nature of the lesions produced by DNA-damaging agents cannot easily be deduced from gene expression profiling.
Collapse
|
100
|
Birrell GW, Giaever G, Chu AM, Davis RW, Brown JM. A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc Natl Acad Sci U S A 2001; 98:12608-13. [PMID: 11606770 PMCID: PMC60101 DOI: 10.1073/pnas.231366398] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent completion of the deletion of essentially all of the ORFs in yeast is an important new resource for identifying the phenotypes of unknown genes. Each ORF is replaced with a cassette containing unique tag sequences that allow rapid parallel analysis of strains in a pool by using hybridization to a high-density oligonucleotide array. We examined the utility of this system to identify genes conferring resistance to UV irradiation by using a pool of 4,627 individual homozygous deletion strains (representing deletions of all nonessential genes). We identified most of the nonessential genes previously shown to be involved in nucleotide excision repair, in cell cycle checkpoints, in homologous recombination, and in postreplication repair after UV damage. We also identified and individually confirmed, by replacing the genes, three new genes, to our knowledge not previously reported to confer UV sensitivity when deleted. Two of these newly identified genes have human orthologs associated with cancer, demonstrating the potential of this system to uncover human genes affecting sensitivity to DNA-damaging agents and genes potentially involved in cancer formation.
Collapse
|