76
|
Wernike K, Mundt A, Link EK, Aebischer A, Schlotthauer F, Sutter G, Fux R, Beer M. N-terminal domain of Schmallenberg virus envelope protein Gc delivered by recombinant equine herpesvirus type 1 and modified vaccinia virus Ankara: Immunogenicity and protective efficacy in cattle. Vaccine 2018; 36:5116-5123. [PMID: 30049630 DOI: 10.1016/j.vaccine.2018.07.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
Abstract
Schmallenberg virus (SBV), which emerged in 2011 in Central Europe and subsequently spread very rapidly throughout the continent, affects predominantly ruminants. SBV is transmitted by insect vectors, and therefore vaccination is one of the major tools of disease control. Only recently, a domain connected to virus neutralization has been identified at the amino-terminal part of the viral envelope protein Gc. Here, this Gc domain delivered by recombinant EHV-1 or MVA vector viruses was tested in a vaccination-challenge trial in cattle, one of the major target species of SBV. The EHV-1-based vaccine conferred protection in two of four animals, whereas immunization using the MVA vector vaccine efficiently induced an SBV-specific antibody response and full protection against SBV challenge infection in all the vaccinated animals. Moreover, due to the absence of antibodies against SBVs N-protein, both vector vaccines enable the differentiation between vaccinated and field-infected animals making them to a promising tool to control SBV spread as well as to prevent disease in domestic ruminants.
Collapse
|
77
|
Schlottau K, Wernike K, Forth L, Holsteg M, Höper D, Beer M, Hoffmann B. Presence of two different bovine hepacivirus clusters in Germany. Transbound Emerg Dis 2018; 65:1705-1711. [PMID: 29971937 DOI: 10.1111/tbed.12930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/24/2022]
Abstract
During the last years, genetic information of hepaciviruses (family Flaviviridae), whose type species is the human hepatitis C virus, was detected in a wide range of primates and non-primate vertebrates. Here, samples collected from 263 German cattle kept in 22 different holdings were analysed for the presence of hepacivirus N (syn. bovine hepacivirus; BovHepV). One hundred eighty-six cattle that suffered from unspecific clinical signs such as fever and a reduced milk yield as well as 77 apparently healthy animals were included. A total of 39 cattle (14.8%) tested positive for BovHepV by real-time RT-PCR, but a correlation between clinical signs and virus infection could not be found. From 31 of the virus-positive samples, sequences of the NS3 coding region were generated and from two samples, viral sequences of the complete coding region were produced and compared to further European and African BovHepV sequences. Based on the NS3 genomic region, two distinct German BovHepV clusters were identified which differed between each other up to 20% at the nucleotide level, the diversity within the individual clusters reached up to 10%. Based on the full-length sequences, the newly detected virus variants group together with further German and African viruses in a sister relationship to other hepaciviruses from primates and further mammalians, but form distinct clusters within the BovHepV branch. In conclusion, highly diverse hepaciviruses were detected in German cattle further expanding the known phylogenetic diversity of the genus Hepacivirus.
Collapse
|
78
|
Abstract
In late 2011, unspecific clinical symptoms such as fever, diarrhea, and decreased milk production were observed in dairy cattle in the Dutch/German border region. After exclusion of classical endemic and emerging viruses by targeted diagnostic systems, blood samples from acutely diseased cows were subjected to metagenomics analysis. An insect-transmitted orthobunyavirus of the Simbu serogroup was identified as the causative agent and named Schmallenberg virus (SBV). It was one of the first detections of the introduction of a novel virus of veterinary importance to Europe using the new technology of next-generation sequencing. The virus was subsequently isolated from identical samples as used for metagenomics analysis in insect and mammalian cell lines and disease symptoms were reproduced in calves experimentally infected with both, this culture-grown virus and blood samples of diseased cattle. Since its emergence, SBV spread very rapidly throughout the European ruminant population causing mild unspecific disease in adult animals, but also premature birth or stillbirth and severe fetal malformation when naive dams were infected during a critical phase of gestation. In the following years, SBV recirculated regularly to a larger extend; in the 2014 and 2016 vector seasons the virus was again repeatedly detected in the blood of adult ruminants, and in the following winter and spring months, a number of malformed calves and lambs was born. The genome of viruses present in viremic adult animals showed a very high sequence stability; in sequences generated between 2012 and 2016, only a few amino acid substitutions in comparison to the initial SBV isolate could be detected. In contrast, a high sequence variability was identified in the aminoterminal part of the glycoprotein Gc-encoding region of viruses present in the brain of malformed newborns. This mutation hotspot is independent of the region or host species from which the samples originated and is potentially involved in immune evasion mechanisms.
Collapse
|
79
|
Kraatz F, Wernike K, Reiche S, Aebischer A, Reimann I, Beer M. Schmallenberg virus non-structural protein NSm: Intracellular distribution and role of non-hydrophobic domains. Virology 2018; 516:46-54. [PMID: 29329078 DOI: 10.1016/j.virol.2017.12.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022]
Abstract
Schmallenberg virus (SBV) induces fetal malformation, abortions and stillbirth in ruminants. While the non-structural protein NSs is a major virulence factor, the biological function of NSm, the second non-structural protein which consists of three hydrophobic transmembrane (I, III, V) and two non-hydrophobic regions (II, IV), is still unknown. Here, a series of NSm mutants displaying deletions of nearly the entire NSm or of the non-hydrophobic domains was generated and the intracellular distribution of NSm was assessed. SBV-NSm is dispensable for the generation of infectious virus and mutants lacking domains II - V showed growth properties similar to the wild-type virus. In addition, a comparable intracellular distribution of SBV-NSm was observed in mammalian cells infected with domain II mutants or wild-type virus. In both cases, NSm co-localized with the glycoprotein Gc in the Golgi compartment. However, domain IV-deletion mutants showed an altered distribution pattern and no co-localization of NSm and Gc.
Collapse
|
80
|
Fehér E, Marton S, Tóth ÁG, Ursu K, Wernike K, Beer M, Dán Á, Bányai K. Sequence analysis of Schmallenberg virus genomes detected in Hungary. Acta Microbiol Immunol Hung 2017; 64:373-384. [PMID: 29239199 DOI: 10.1556/030.64.2017.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since its emergence near the German-Dutch border in 2011, Schmallenberg virus (SBV) has been identified in many European countries. In this study, we determined the complete coding sequence of seven Hungarian SBV genomes to expand our knowledge about the genetic diversity of circulating field strains. The samples originated from the first case, an aborted cattle fetus without malformation collected in 2012, and from the blood samples of six adult cattle in 2014. The Hungarian SBV sequences shared ≥99.3% nucleotide (nt) and ≥97.8% amino acid (aa) identity with each other, and ≥98.9 nt and ≥96.7% aa identity with reference strains. Although phylogenetic analyses showed low resolution in general, the M sequences of cattle and sheep origin SBV strains seemed to cluster on different branches. Both common and unique mutation sites were observed in different groups of sequences that might help understanding the evolution of emerging SBV strains.
Collapse
|
81
|
Wernike K, Gethmann J, Schirrmeier H, Schröder R, Conraths FJ, Beer M. Six Years (2011-2016) of Mandatory Nationwide Bovine Viral Diarrhea Control in Germany-A Success Story. Pathogens 2017; 6:pathogens6040050. [PMID: 29057796 PMCID: PMC5750574 DOI: 10.3390/pathogens6040050] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 11/23/2022] Open
Abstract
Bovine viral diarrhea (BVD) is one of the most important infectious diseases in cattle, causing major economic losses worldwide. Therefore, control programs have been implemented in several countries. In Germany, an obligatory nationwide eradication program has been in force since 2011. Its centerpiece is the detection of animals persistently infected (PI) with BVD virus, primarily based on the testing of ear tissue samples of all newborn calves for viral genome or antigen, and their removal from the cattle population. More than 48,000 PI animals have so far been detected and removed. Between the onset of the program and the end of 2016, the prevalence of these animals among all newborn calves decreased considerably, from 0.5% to less than 0.03%. The number of cattle holdings with PI animals likewise decreased from 3.44% in 2011 to only 0.16% in 2016. Since a large number of naïve, fully susceptible animals are now confronted with BVD virus, which is still present in the German cattle population, the challenge of the coming years will be the identification of remaining PI animals as quickly and efficiently as possible, and the efficient protection of BVD-free farms from reinfection.
Collapse
|
82
|
Blome S, Wernike K, Reimann I, König P, Moß C, Beer M. A decade of research into classical swine fever marker vaccine CP7_E2alf (Suvaxyn ® CSF Marker): a review of vaccine properties. Vet Res 2017; 48:51. [PMID: 28915927 PMCID: PMC5603031 DOI: 10.1186/s13567-017-0457-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/04/2017] [Indexed: 11/29/2022] Open
Abstract
Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. However, until recently, the available live vaccines did not allow a serological marker concept that is essentially important to circumvent long-term trade restrictions. In 2014, a new live attenuated marker vaccine, Suvaxyn® CSF Marker (Zoetis), was licensed by the European Medicines Agency. This vaccine is based on pestivirus chimera “CP7_E2alf” that carries the main immunogen of CSF virus “Alfort/187”, glycoprotein E2, in a bovine viral diarrhea virus type 1 backbone (“CP7”). This review summarizes the available data on design, safety, efficacy, marker diagnostics, and its possible integration into control strategies.
Collapse
|
83
|
Tauscher K, Wernike K, Fischer M, Wegelt A, Hoffmann B, Teifke JP, Beer M. Characterization of Simbu serogroup virus infections in type I interferon receptor knock-out mice. Arch Virol 2017; 162:3119-3129. [DOI: 10.1007/s00705-017-3475-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 06/05/2017] [Indexed: 11/29/2022]
|
84
|
Roman-Sosa G, Karger A, Kraatz F, Aebischer A, Wernike K, Maksimov P, Lillig CH, Reimann I, Brocchi E, Keller M, Beer M. The amino terminal subdomain of glycoprotein Gc of Schmallenberg virus: disulfide bonding and structural determinants of neutralization. J Gen Virol 2017. [PMID: 28640745 DOI: 10.1099/jgv.0.000810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orthobunyaviruses are enveloped viruses that can cause human and animal diseases. A novel and major member is the Schmallenberg virus (SBV), the etiological agent of an emerging disease of ruminants that has been spreading all over Europe since 2011. The glycoproteins Gn and Gc of orthobunyaviruses mediate the viral entry, and specifically Gc is a major target for the humoral immune response. For example, the N terminal subdomain of the SBV glycoprotein Gc is targeted by neutralizing monoclonal antibodies that recognize conformational epitopes. Here, we determined the structural features of the N terminus of Gc, and analysed its interaction with monoclonal antibodies. We were able to demonstrate that one of two N-glycosylation sites is essential for secretion and interaction with a subset of Gc-specific monoclonal antibodies. Furthermore, four disulfide bonds (S-S) were identified and the deletion of the third S-S blocked reactivity with another subset of mAbs with virus-neutralizing and non-neutralizing activity. The mutagenesis of the N-glycosylation sites and the disulfide bonds strongly indicated the independent folding of two subdomains within the SBV Gc N terminus. Further, the epitopes recognized by a panel of mAbs could be grouped into two clusters, as revealed by fine mapping using chimeric proteins. Combining the disulfide bonding and epitope mapping allowed us to generate a structural model of the SBV Gc N-terminus. This novel information about the role and structure of the amino terminal region of SBV Gc is of general relevance for the design of antivirals and vaccines against this virus.
Collapse
|
85
|
Wernike K, Aebischer A, Roman-Sosa G, Beer M. The N-terminal domain of Schmallenberg virus envelope protein Gc is highly immunogenic and can provide protection from infection. Sci Rep 2017; 7:42500. [PMID: 28211908 PMCID: PMC5304187 DOI: 10.1038/srep42500] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/13/2017] [Indexed: 01/30/2023] Open
Abstract
Schmallenberg virus (SBV) is transmitted by insect vectors, and therefore vaccination is one of the most important tools of disease control. In our study, novel subunit vaccines on the basis of an amino-terminal domain of SBV Gc of 234 amino acids (“Gc Amino”) first were tested and selected using a lethal small animal challenge model and then the best performing formulations also were tested in cattle. We could show that neither E. coli expressed nor the reduced form of “Gc Amino” protected from SBV infection. In contrast, both, immunization with “Gc Amino”-encoding DNA plasmids and “Gc-amino” expressed in a mammalian system, conferred protection in up to 66% of the animals. Interestingly, the best performance was achieved with a multivalent antigen containing the covalently linked Gc domains of both, SBV and the related Akabane virus. All vaccinated cattle and mice were fully protected against SBV challenge infection. Furthermore, in the absence of antibodies against the viral N-protein, differentiation between vaccinated and field-infected animals allows an SBV marker vaccination concept. Moreover, the presented vaccine design also could be tested for other members of the Simbu serogroup and might allow the inclusion of additional immunogenic domains.
Collapse
|
86
|
Abstract
Pestiviruses are a group of viruses of veterinary importance infecting livestock animals like pigs, cattle, and sheep, and also wildlife animals like wild boar and different deer species. While for decades only four classical species (Classical swine fever virus, Bovine viral diarrhea virus types 1 and 2, Border disease virus), and a few so-called atypical pestiviruses were known (e.g., Giraffe virus, Pronghorn virus, HoBi virus), a series of novel pestiviruses was identified in the last years (Bungowannah virus, Bat pestivirus, Norway rat pestivirus, Atypical porcine pestivirus, LINDA virus). The Australian Bungowannah virus could be isolated and further characterized by classical sequencing, but all the other latest novel pestiviruses were identified by metagenomics using next-generation sequencing technologies. Here, we describe these new viruses and their discovery and characterization. Differentiation is made between the occurrence of classical pestiviruses in new species and novel viruses or virus types.
Collapse
|
87
|
Wernike K, Brocchi E, Beer M. Effective interference between Simbu serogroup orthobunyaviruses in mammalian cells. Vet Microbiol 2016; 196:23-26. [PMID: 27939151 DOI: 10.1016/j.vetmic.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022]
Abstract
The Simbu serogroup of orthobunyaviruses comprises a wide range of viruses with different medical and veterinary relevance. These viruses are known to reassort, and coinfection of the same cell is one of the prerequisites for reassortment. Here, a mammalian cell line was infected with various members of this virus group, inoculated after several time points with a second Simbu serogroup virus, and analyzed by strain or species specific immunofluorescence staining. Different virus species or different strains of the same virus species were able to co-infect mammalian cells, but only for a limited time frame. After a few hours, the replication of the first virus led to a gradual inhibition of a second virus until a complete resistance to superinfection after 24h regardless whether it is another strain of the same virus species or a distinct member of the serogroup.
Collapse
|
88
|
Golender N, Wernike K, Bumbarov V, Aebischer A, Panshin A, Jenckel M, Khinich Y, Beer M. Characterization of Shuni viruses detected in Israel. Virus Genes 2016; 52:806-813. [PMID: 27540741 DOI: 10.1007/s11262-016-1381-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022]
Abstract
Shuni virus (SHUV) was recently identified in Israel in several brains of ovine, bovine, and goat fetuses and newborn animals with congenital arthrogryposis-hydranencephaly syndrome. In the present study, the sequences of several Israeli SHUV strains were analyzed in detail; based on the small genome segment which encodes the nucleocapsid protein and the small nonstructural protein (NSs), a very high similarity of 99-100 % among each other was found. In contrast to the highly conserved N protein, several mutations were found within the NSs-coding sequence of SHUVs present in brain samples of malformed fetuses, resulting in a considerably frequent appearance of stop codons. Interferon alpha/beta production was demonstrated in an in-vitro interferon bioassay; hence, the virus isolated from the brain of a malformed sheep fetus acquired mutations, resulting in the loss of its NSs protein function.
Collapse
|
89
|
Beer M, Wernike K, Dräger C, Höper D, Pohlmann A, Bergermann C, Schröder C, Klinkhammer S, Blome S, Hoffmann B. High Prevalence of Highly Variable Atypical Porcine Pestiviruses Found in Germany. Transbound Emerg Dis 2016; 64:e22-e26. [PMID: 27297961 DOI: 10.1111/tbed.12532] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 11/29/2022]
Abstract
Recently, a novel atypical porcine pestivirus (APPV) with significant distribution was described in the USA. Subsequent screening of the German pig sector showed a high prevalence of APPV with high variability among strains. First indication of a cell culture isolate is provided which will allow further investigations like pathogenesis studies.
Collapse
|
90
|
Wernike K, Beer M, Hoffmann B. Schmallenberg Virus Infection Diagnosis: Results of a German Proficiency Trial. Transbound Emerg Dis 2016; 64:1405-1410. [DOI: 10.1111/tbed.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 11/27/2022]
|
91
|
Abstract
Schmallenberg virus (SBV) emerged in Germany in 2011, spread rapidly across Europe, and almost disappeared in 2013. However, since late summer 2014, new cases have occurred in adult cattle. Full-genome analysis revealed some amino acid substitution differences from the first SBV sample. Viremia developed in experimentally infected sheep and cattle for 4-6 days.
Collapse
|
92
|
Wernike K, Beer M. Stability of Schmallenberg virus during long-term storage. BERLINER UND MUNCHENER TIERARZTLICHE WOCHENSCHRIFT 2016; 129:144-146. [PMID: 27169152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Schmallenberg virus (SBV), a novel insect-transmitted orthobunyavirus that infects ruminants, caused a large epidemic in European livestock since its emergence in 2011. For the in vitro characterization of this hitherto unknown virus as well as for antibody detection tests like indirect immunofluorescence and neutralization test infectious virus is necessary. To determine the most suitable storage temperature, culture-grown SBV was kept at 37°C, 28°C, 4°C, -20°C and -70°C for up to one year. A storage at 37°C led to a complete loss of infectivity within days and at 28°C within a few weeks. When stored at 4°C the infectious titer decreased dependent on the starting quantity, whereas the viral titer was almost constant for a month at -20°C and remained constant for the study period when stored at -70°C. Consequently, SBV should be kept at -70°C, if retention of infectivity is required.
Collapse
|
93
|
Schuster I, Mertens M, Mrenoshki S, Staubach C, Mertens C, Brüning F, Wernike K, Hechinger S, Berxholi K, Mitrov D, Groschup MH. Sheep and goats as indicator animals for the circulation of CCHFV in the environment. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 68:337-46. [PMID: 26704262 PMCID: PMC4720701 DOI: 10.1007/s10493-015-9996-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/11/2015] [Indexed: 05/31/2023]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus, which causes a serious illness with case-fatality rates of up to 80% in humans. CCHFV is endemic in many countries of Africa, Asia and Southeastern Europe. Next to the countries with endemic areas, the distribution of CCHFV is unknown in Southeastern Europe. As the antibody prevalence in animals is a good indicator for the presence or absence of the virus in a region, seroepidemiological studies can be used for the definition of risk areas for CCHFV. The aim of the present study was to reveal which ruminant species is best suited as indicator for the detection of a CCHFV circulation in an area. Therefore, the prevalence rates in sheep, goats and cattle in different regions of Albania and Former Yugoslav Republic of Macedonia were investigated. As there are no commercial tests available for the detection of CCHFV-specific antibodies in animals, two commercial tests for testing human sera were adapted for the investigation of sera from sheep and goats, and new in-house ELISAs were developed. The investigation of serum samples with these highly sensitive and specific assays (94-100%) resulted in an overall prevalence rate of 23% for Albania and of 49% for Former Yugoslav Republic of Macedonia. Significant lower seroprevalence rates for CCHFV were found in cattle than in small ruminants in given areas. These results indicate that small ruminants are more suitable indicator animals for CCHFV infections and should therefore be tested preferentially, when risk areas are to be identified.
Collapse
|
94
|
Abutarbush SM, La Rocca A, Wernike K, Beer M, Al Zuraikat K, Al Sheyab OM, Talafha AQ, Steinbach F. Circulation of a Simbu Serogroup Virus, Causing Schmallenberg Virus-Like Clinical Signs in Northern Jordan. Transbound Emerg Dis 2015; 64:1095-1099. [PMID: 26715241 DOI: 10.1111/tbed.12468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Indexed: 11/30/2022]
Abstract
Schmallenberg virus (SBV)-like clinical cases of abortions in northern Jordan in early 2013, together with the emergence of SBV in Europe in 2011, its rapid spread within the following years and the detection of this virus in Turkey, raised questions about the distribution of SBV or related orthobunyaviruses. To evaluate the occurrence of SBV or related members of the Simbu serogroup of orthobunyaviruses in Jordan, bulk milk (cattle) and serum samples (cattle, sheep and goat) collected in northern Jordan in 2013 were first tested by commercially available SBV antibody ELISAs. Indeed, 3 of 47 bulk milk samples and 57 of 115 serum samples provided positive results, but SBV specificity of the ELISA results could not be confirmed by virus neutralization assays. Instead, subsequent cross-neutralization tests were able to further investigate the specificity of these antibodies. Here, a significant inhibition of Aino virus was observed. Thus, the causative agent was most likely a Simbu serogroup virus closely related to Aino virus. Consequently, these results confirm that members of this group of virus are not only present in Europe, Africa or Australia, but also in the Middle East.
Collapse
|
95
|
Abstract
Since Schmallenberg virus, an orthobunyavirus of the Simbu serogroup, was identified near the German-Dutch border for the first time in late 2011 it has spread extremely quickly and caused a large epidemic in European livestock. The virus, which is transmitted by Culicoides biting midges, infects domestic and wild ruminants. Adult animals show only mild clinical symptoms or none at all, whereas an infection during a critical period of gestation can lead to abortion, stillbirth or the birth of severely malformed offspring. The impact of the disease is usually greater in sheep than in cattle. Vaccination could be an important aspect of disease control.
Collapse
|
96
|
Roman-Sosa G, Brocchi E, Schirrmeier H, Wernike K, Schelp C, Beer M. Analysis of the humoral immune response against the envelope glycoprotein Gc of Schmallenberg virus reveals a domain located at the amino terminus targeted by mAbs with neutralizing activity. J Gen Virol 2015; 97:571-580. [PMID: 26684324 DOI: 10.1099/jgv.0.000377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orthobunyaviruses are enveloped viruses that are arthropod-transmitted and cause disease in humans and livestock. Viral attachment and entry are mediated by the envelope glycoproteins Gn and Gc, and the major glycoprotein, Gc, of certain orthobunyaviruses is targeted by neutralizing antibodies. The domains in which the epitopes of such antibodies are located on the glycoproteins of the animal orthobunyavirus Schmallenberg virus (SBV) have not been identified. Here, we analysed the reactivity of a set of mAbs and antisera against recombinant SBV glycoproteins. The M-segment-encoded proteins Gn and Gc of SBV were expressed as full-length proteins, and Gc was also produced as two truncated forms, which consisted of its amino-terminal third and carboxyl-terminal two-thirds. The sera from convalescent animals reacted only against the full-length Gc and its subdomains and not against the SBV glycoprotein Gn. Interestingly, the amino-terminal domain of SBV-Gc was targeted not only by polyclonal sera but also by the majority of murine mAbs with a neutralizing activity. Furthermore, the newly defined amino-terminal domain of about 230 aa of the SBV Gc protein could be affinity-purified and further characterized. This major neutralizing domain might be relevant for the development of prophylactic, diagnostic and therapeutic approaches for SBV and other orthobunyaviruses.
Collapse
|
97
|
Wernike K, Holsteg M, Sasserath M, Beer M. Schmallenberg virus antibody development and decline in a naturally infected dairy cattle herd in Germany, 2011-2014. Vet Microbiol 2015; 181:294-7. [PMID: 26518458 DOI: 10.1016/j.vetmic.2015.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
In late 2011, the novel insect-transmitted orthobunyavirus Schmallenberg virus (SBV) emerged in Central Europe. Since that year, a dairy cattle herd kept in the German region in which the virus was initially detected was continuously monitored. In order to evaluate the development of the within-herd seroprevalence, but also to assess the long-term persistence of antibodies against SBV in individual animals, blood samples of all cows older than 24 months were taken yearly after the respective vector season and serologically analyzed. In December 2011, in 74% of the tested animals SBV-specific antibodies were detectable. Additional scattered seroconversions were observed between the 2011 and 2012 vector seasons, thereafter all seronegative animals remained negative. Until December 2014, the intra-herd seroprevalence decreased to 58%. A total of 122 cows infected presumable in autumn 2011 were sampled every year, 9 of them became seronegative until December 2014. Consequently, though SBV-specific antibodies were detected in about 90% of the monitored animals for more than three years, a lifelong antibody-based immunity is not expected in every animal. The loss of anti-SBV antibodies in individual animals combined with the missing infection of young stock results in a declining herd seroprevalence and increases the risk of a renewed virus circulation to a greater extent within the next years.
Collapse
|
98
|
Mouchantat S, Wernike K, Lutz W, Hoffmann B, Ulrich RG, Börner K, Wittstatt U, Beer M. A broad spectrum screening of Schmallenberg virus antibodies in wildlife animals in Germany. Vet Res 2015; 46:99. [PMID: 26394618 PMCID: PMC4579581 DOI: 10.1186/s13567-015-0232-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/28/2015] [Indexed: 11/10/2022] Open
Abstract
To identify native wildlife species possibly susceptible to infection with Schmallenberg virus (SBV), a midge-transmitted orthobunyavirus that predominantly infects domestic ruminants, samples from various free-living ruminants, but also carnivores, small mammals and wild boar were analyzed serologically. Before 2011, no SBV-specific antibodies were detectable in any of the tested species, thereafter, a large proportion of the ruminant population became seropositive, while every sample taken from carnivores or small mammals tested negative. Surprisingly, SBV-specific-antibodies were also present in a large number of blood samples from wild boar during the 2011/2012 and 2012/2013 hunting seasons. Hence, free-ranging artiodactyls may play a role as wildlife host.
Collapse
|
99
|
Eschbaumer M, Li W(M, Wernike K, Marshall F, Czub M. Probe-free real-time reverse transcription polymerase chain reaction assays for the detection and typing of porcine reproductive and respiratory syndrome virus in Canada. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2015; 79:170-179. [PMID: 26130848 PMCID: PMC4445508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has tremendous impact on the pork industry in North America. The molecular diagnosis of infection with PRRS virus (PRRSV) is hampered by its considerable strain diversity. In this study, 43 previously published or newly developed primers for probe-free real-time reverse transcription polymerase chain reaction (RT-PCR) were evaluated on their sensitivity, specificity, reproducibility, and repeatability, using a diverse panel of 36 PRRSV strains as well as other arteriviruses and unrelated porcine viruses. Three primer pairs had excellent diagnostic and analytical sensitivity on par with a probe-based reference assay, absolute specificity to virus genotype and species, as well as over 95% reproducibility and repeatability across a wide dynamic range.
Collapse
|
100
|
Tauscher K, Pietschmann J, Wernike K, Teifke JP, Beer M, Blome S. [On the situation of African swine fever and the biological characterization of recent virus isolates]. BERLINER UND MUNCHENER TIERARZTLICHE WOCHENSCHRIFT 2015; 128:169-176. [PMID: 26054220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
African swine fever (ASF), a disease notifiable to the World Organization of Animal Health (OIE), is characterized by severe, unspecific clinical signs and high mortality rates. Hosts for ASF virus (ASFV) are only members of the family Suidae and soft ticks of the genus Ornithodoros. Currently, no vaccine is available and therefore, the control is primarily based on strict sanitary measures. The most important part is the early detection of the disease within affected animal holdings and the fast and reliable confirmation by laboratory diagnosis. Infections of domestic pigs and European wild boar with recent Armenian, Sardinian, Lithuanian or Kenyan ASFV isolates lead to severe, acute disease courses with the predominant symptom of high fever (> 41 degrees C) accompanied by further unspecific clinical signs such as lethargy, loss of appetite, diarrhoea, respiratory symptoms, and an increased bleeding tendency. In experimental infection studies the mortality rate reached 100%. The most prominent pathomorphological findings included ebony-colored gastrohepatic lymph nodes, lung oedema, petechiae in the renal cortex, and oedema of the gallbladder wall. In the light of the current epidemiological situation with endemic ASFV infections on Sardinia, outbreaks in Russia and several Eastern EU Member States there is a risk for an introduction in further, previously unaffected EU countries including Germany. Hence, appropriate sample materials (serum, blood, spleen) of domestic pigs with unspecific clinical symptoms or pathomorphological findings should be examined for both ASFV and classical swine fever virus.
Collapse
|