1
|
Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, Masters C, Milner A, Pike K, Rowe C, Savage G, Szoeke C, Taddei K, Villemagne V, Woodward M, Ames D. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease. Int Psychogeriatr 2009; 21:672-87. [PMID: 19470201 DOI: 10.1017/s1041610209009405] [Citation(s) in RCA: 567] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The Australian Imaging, Biomarkers and Lifestyle (AIBL) flagship study of aging aimed to recruit 1000 individuals aged over 60 to assist with prospective research into Alzheimer's disease (AD). This paper describes the recruitment of the cohort and gives information about the study methodology, baseline demography, diagnoses, medical comorbidities, medication use, and cognitive function of the participants. METHODS Volunteers underwent a screening interview, had comprehensive cognitive testing, gave 80 ml of blood, and completed health and lifestyle questionnaires. One quarter of the sample also underwent amyloid PET brain imaging with Pittsburgh compound B (PiB PET) and MRI brain imaging, and a subgroup of 10% had ActiGraph activity monitoring and body composition scanning. RESULTS A total of 1166 volunteers were recruited, 54 of whom were excluded from further study due to comorbid disorders which could affect cognition or because of withdrawal of consent. Participants with AD (211) had neuropsychological profiles which were consistent with AD, and were more impaired than participants with mild cognitive impairment (133) or healthy controls (768), who performed within expected norms for age on neuropsychological testing. PiB PET scans were performed on 287 participants, 100 had DEXA scans and 91 participated in ActiGraph monitoring. CONCLUSION The participants comprising the AIBL cohort represent a group of highly motivated and well-characterized individuals who represent a unique resource for the study of AD. They will be reassessed at 18-month intervals in order to determine the predictive utility of various biomarkers, cognitive parameters and lifestyle factors as indicators of AD, and as predictors of future cognitive decline.
Collapse
|
|
16 |
567 |
2
|
Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC, Lam CP, Mondal A, Bedo J, Bush AI, Brown B, De Ruyck K, Ellis KA, Fowler C, Gupta VB, Head R, Macaulay SL, Pertile K, Rowe CC, Rembach A, Rodrigues M, Rumble R, Szoeke C, Taddei K, Taddei T, Trounson B, Ames D, Masters CL, Martins RN. Blood-based protein biomarkers for diagnosis of Alzheimer disease. ARCHIVES OF NEUROLOGY 2012; 69:1318-25. [PMID: 22801742 PMCID: PMC6287606 DOI: 10.1001/archneurol.2012.1282] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To identify plasma biomarkers for the diagnosis of Alzheimer disease (AD). DESIGN Baseline plasma screening of 151 multiplexed analytes combined with targeted biomarker and clinical pathology data. SETTING General community-based, prospective, longitudinal study of aging. PARTICIPANTS A total of 754 healthy individuals serving as controls and 207 participants with AD from the Australian Imaging Biomarker and Lifestyle study (AIBL) cohort with identified biomarkers that were validated in 58 healthy controls and 112 individuals with AD from the Alzheimer Disease Neuroimaging Initiative (ADNI) cohort. RESULTS A biomarker panel was identified that included markers significantly increased (cortisol, pancreatic polypeptide, insulinlike growth factor binding protein 2, β(2) microglobulin, vascular cell adhesion molecule 1, carcinoembryonic antigen, matrix metalloprotein 2, CD40, macrophage inflammatory protein 1α, superoxide dismutase, and homocysteine) and decreased (apolipoprotein E, epidermal growth factor receptor, hemoglobin, calcium, zinc, interleukin 17, and albumin) in AD. Cross-validated accuracy measures from the AIBL cohort reached a mean (SD) of 85% (3.0%) for sensitivity and specificity and 93% (3.0) for the area under the receiver operating characteristic curve. A second validation using the ADNI cohort attained accuracy measures of 80% (3.0%) for sensitivity and specificity and 85% (3.0) for area under the receiver operating characteristic curve. CONCLUSIONS This study identified a panel of plasma biomarkers that distinguish individuals with AD from cognitively healthy control subjects with high sensitivity and specificity. Cross-validation within the AIBL cohort and further validation within the ADNI cohort provides strong evidence that the identified biomarkers are important for AD diagnosis.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
275 |
3
|
Chatterjee P, Pedrini S, Stoops E, Goozee K, Villemagne VL, Asih PR, Verberk IMW, Dave P, Taddei K, Sohrabi HR, Zetterberg H, Blennow K, Teunissen CE, Vanderstichele HM, Martins RN. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer's disease. Transl Psychiatry 2021; 11:27. [PMID: 33431793 PMCID: PMC7801513 DOI: 10.1038/s41398-020-01137-1] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal protein, can be measured in blood samples, and has been associated with Alzheimer's disease (AD). However, plasma GFAP has not been investigated in cognitively normal older adults at risk of AD, based on brain amyloid-β (Aβ) load. Cross-sectional analyses were carried out for plasma GFAP and plasma Aβ1-42/Aβ1-40 ratio, a blood-based marker associated with brain Aβ load, in participants (65-90 years) categorised into low (Aβ-, n = 63) and high (Aβ+, n = 33) brain Aβ load groups via Aβ positron emission tomography. Plasma GFAP, Aβ1-42, and Aβ1-40 were measured using the Single molecule array (Simoa) platform. Plasma GFAP levels were significantly higher (p < 0.00001), and plasma Aβ1-42/Aβ1-40 ratios were significantly lower (p < 0.005), in Aβ+ participants compared to Aβ- participants, adjusted for covariates age, sex, and apolipoprotein E-ε4 carriage. A receiver operating characteristic curve based on a logistic regression of the same covariates, the base model, distinguished Aβ+ from Aβ- (area under the curve, AUC = 0.78), but was outperformed when plasma GFAP was added to the base model (AUC = 0.91) and further improved with plasma Aβ1-42/Aβ1-40 ratio (AUC = 0.92). The current findings demonstrate that plasma GFAP levels are elevated in cognitively normal older adults at risk of AD. These observations suggest that astrocytic damage or activation begins from the pre-symptomatic stage of AD and is associated with brain Aβ load. Observations from the present study highlight the potential of plasma GFAP to contribute to a diagnostic blood biomarker panel (along with plasma Aβ1-42/Aβ1-40 ratios) for cognitively normal older adults at risk of AD.
Collapse
|
research-article |
4 |
257 |
4
|
Brown BM, Peiffer JJ, Taddei K, Lui JK, Laws SM, Gupta VB, Taddei T, Ward VK, Rodrigues MA, Burnham S, Rainey-Smith SR, Villemagne VL, Bush A, Ellis KA, Masters CL, Ames D, Macaulay SL, Szoeke C, Rowe CC, Martins RN, Martins RN. Physical activity and amyloid-β plasma and brain levels: results from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Mol Psychiatry 2013; 18:875-81. [PMID: 22889922 DOI: 10.1038/mp.2012.107] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 06/15/2012] [Accepted: 06/26/2012] [Indexed: 11/10/2022]
Abstract
Previous studies suggest physical activity improves cognition and lowers Alzheimer's disease (AD) risk. However, key AD pathogenic factors that are thought to be influenced by physical activity, particularly plasma amyloid-β (Aβ) and Aβ brain load, have yet to be thoroughly investigated. The objective of this study was to determine if plasma Aβ and amyloid brain deposition are associated with physical activity levels, and whether these associations differed between carriers and non-carriers of the apolipoprotein E (APOE) ε4 allele. Five-hundred and forty six cognitively intact participants (aged 60-95 years) from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing (AIBL) were included in these analyses. Habitual physical activity levels were measured using the International Physical Activity Questionnaire (IPAQ). Serum insulin, glucose, cholesterol and plasma Aβ levels were measured in fasting blood samples. A subgroup (n=116) underwent (11)C-Pittsburgh compound B (PiB) positron emission tomography (PET) scanning to quantify brain amyloid load. Higher levels of physical activity were associated with higher high density lipoprotein (HDL) (P=0.037), and lower insulin (P<0.001), triglycerides (P=0.019) and Aβ1-42/1-40 ratio (P=0.001). After stratification of the cohort based on APOE ε4 allele carriage, it was evident that only non-carriers received the benefit of reduced plasma Aβ from physical activity. Conversely, lower levels of PiB SUVR (standardised uptake value ratio) were observed in higher exercising APOE ε4 carriers. Lower plasma Aβ1-42/1-40 and brain amyloid was observed in those reporting higher levels of physical activity, consistent with the hypothesis that physical activity may be involved in the modulation of pathogenic changes associated with AD.
Collapse
|
|
12 |
169 |
5
|
Avdesh A, Chen M, Martin-Iverson MT, Mondal A, Ong D, Rainey-Smith S, Taddei K, Lardelli M, Groth DM, Verdile G, Martins RN. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. J Vis Exp 2012. [PMID: 23183629 PMCID: PMC3916945 DOI: 10.3791/4196] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This protocol describes regular care and maintenance of a zebrafish laboratory. Zebrafish are now gaining popularity in genetics, pharmacological and behavioural research. As a vertebrate, zebrafish share considerable genetic sequence similarity with humans and are being used as an animal model for various human disease conditions. The advantages of zebrafish in comparison to other common vertebrate models include high fecundity, low maintenance cost, transparent embryos, and rapid development. Due to the spur of interest in zebrafish research, the need to establish and maintain a productive zebrafish housing facility is also increasing. Although literature is available for the maintenance of a zebrafish laboratory, a concise video protocol is lacking. This video illustrates the protocol for regular housing, feeding, breeding and raising of zebrafish larvae. This process will help researchers to understand the natural behaviour and optimal conditions of zebrafish husbandry and hence troubleshoot experimental issues that originate from the fish husbandry conditions. This protocol will be of immense help to researchers planning to establish a zebrafish laboratory, and also to graduate students who are intending to use zebrafish as an animal model.
Collapse
|
Video-Audio Media |
13 |
162 |
6
|
Chatterjee P, Pedrini S, Ashton NJ, Tegg M, Goozee K, Singh AK, Karikari TK, Simrén J, Vanmechelen E, Armstrong NJ, Hone E, Asih PR, Taddei K, Doré V, Villemagne VL, Sohrabi HR, Zetterberg H, Masters CL, Blennow K, Martins RN. Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer's disease. Alzheimers Dement 2021; 18:1141-1154. [PMID: 34494715 DOI: 10.1002/alz.12447] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION This study involved a parallel comparison of the diagnostic and longitudinal monitoring potential of plasma glial fibrillary acidic protein (GFAP), total tau (t-tau), phosphorylated tau (p-tau181 and p-tau231), and neurofilament light (NFL) in preclinical Alzheimer's disease (AD). METHODS Plasma proteins were measured using Simoa assays in cognitively unimpaired older adults (CU), with either absence (Aβ-) or presence (Aβ+) of brain amyloidosis. RESULTS Plasma GFAP, t-tau, p-tau181, and p-tau231 concentrations were higher in Aβ+ CU compared with Aβ- CU cross-sectionally. GFAP had the highest effect size and area under the curve (AUC) in differentiating between Aβ+ and Aβ- CU; however, no statistically significant differences were observed between the AUCs of GFAP, p-tau181, and p-tau231, but all were significantly higher than the AUC of NFL, and the AUC of GFAP was higher than the AUC of t-tau. The combination of a base model (BM), comprising the AD risk factors, age, sex, and apolipoprotein E gene (APOE) ε4 status with GFAP was observed to have a higher AUC (>90%) compared with the combination of BM with any of the other proteins investigated in the current study. Longitudinal analyses showed increased GFAP and p-tau181 in Aβ+ CU and increased NFL in Aβ- CU, over a 12-month duration. GFAP, p-tau181, p-tau231, and NFL showed significant correlations with cognition, whereas no significant correlations were observed with hippocampal volume. DISCUSSION These findings highlight the diagnostic and longitudinal monitoring potential of GFAP and p-tau for preclinical AD.
Collapse
|
|
4 |
127 |
7
|
Brown BM, Rainey-Smith SR, Villemagne VL, Weinborn M, Bucks RS, Sohrabi HR, Laws SM, Taddei K, Macaulay SL, Ames D, Fowler C, Maruff P, Masters CL, Rowe CC, Martins RN. The Relationship between Sleep Quality and Brain Amyloid Burden. Sleep 2016; 39:1063-8. [PMID: 27091528 DOI: 10.5665/sleep.5756] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/24/2015] [Indexed: 01/30/2023] Open
Abstract
STUDY OBJECTIVES To evaluate the association between self-reported sleep quality and levels of brain β-amyloid (Aβ) burden, and to determine the effect of the apolipoprotein E (APOE) ε4 allele on any associations found. METHODS This study is a cross-sectional analysis of 184 cognitively healthy men and women aged over 60 y. We measured sleep quality factors: specifically, sleep duration, latency (time taken to fall asleep), disturbances, efficiency, daytime dysfunction, and overall sleep quality, using the Pittsburgh Sleep Quality Index. All participants underwent Aβ positron emission tomography imaging for the quantification of brain Aβ burden and were APOE genotyped. Linear regression analyses were used to evaluate the relationship between sleep quality factors and brain Aβ burden, adjusting for age, body mass index, cardiovascular disease, and symptoms of depression, with APOE ε4 carriage entered as a moderator. RESULTS Of the sleep factors, longer sleep latency was associated with higher levels of brain Aβ (B = 0.003 [standard error = 0.001], P = 0.02). APOE ε4 allele (carrier/noncarrier) did not moderate the relationship between sleep latency and brain Aβ burden. CONCLUSIONS Our findings suggest a relationship between brain Aβ burden and sleep latency, independent of APOE ε4 genotype.
Collapse
|
Journal Article |
9 |
124 |
8
|
Gardener S, Gu Y, Rainey-Smith SR, Keogh JB, Clifton PM, Mathieson SL, Taddei K, Mondal A, Ward VK, Scarmeas N, Barnes M, Ellis KA, Head R, Masters CL, Ames D, Macaulay SL, Rowe CC, Szoeke C, Martins RN. Adherence to a Mediterranean diet and Alzheimer's disease risk in an Australian population. Transl Psychiatry 2012; 2:e164. [PMID: 23032941 PMCID: PMC3565821 DOI: 10.1038/tp.2012.91] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Mediterranean diet (MeDi), due to its correlation with a low morbidity and mortality for many chronic diseases, has been widely recognised as a healthy eating model. We aimed to investigate, in a cross-sectional study, the association between adherence to a MeDi and risk for Alzheimer's disease (AD) and mild cognitive impairment (MCI) in a large, elderly, Australian cohort. Subjects in the Australian Imaging, Biomarkers and Lifestyle Study of Ageing cohort (723 healthy controls (HC), 98 MCI and 149 AD participants) completed the Cancer Council of Victoria Food Frequency Questionnaire. Adherence to the MeDi (0- to 9-point scale with higher scores indicating higher adherence) was the main predictor of AD and MCI status in multinominal logistic regression models that were adjusted for cohort age, sex, country of birth, education, apolipoprotein E genotype, total caloric intake, current smoking status, body mass index, history of diabetes, hypertension, angina, heart attack and stroke. There was a significant difference in adherence to the MeDi between HC and AD subjects (P < 0.001), and in adherence between HC and MCI subjects (P < 0.05). MeDi is associated with change in Mini-Mental State Examination score over an 18-month time period (P < 0.05) in HCs. We conclude that in this Australian cohort, AD and MCI participants had a lower adherence to the MeDi than HC participants.
Collapse
|
research-article |
13 |
121 |
9
|
Gupta VB, Laws SM, Villemagne VL, Ames D, Bush AI, Ellis KA, Lui JK, Masters C, Rowe CC, Szoeke C, Taddei K, Martins RN. Plasma apolipoprotein E and Alzheimer disease risk: the AIBL study of aging. Neurology 2011; 76:1091-8. [PMID: 21422459 DOI: 10.1212/wnl.0b013e318211c352] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE There is mounting evidence for the contribution of apoE to the pathophysiology of Alzheimer disease (AD). Studies also indicate that plasma apoE levels may reflect disease status, suggesting that apoE is a potential AD biomarker. However, while some studies of apoE levels in plasma have presented correlations with AD pathology, others have not. Thus, there is a lack of consensus as to the suitability of plasma apoE as an AD biomarker. The major objective of this cross-sectional study was to investigate total plasma apoE as well as levels of the apoE4 form in a large, highly characterized cohort which included both healthy controls and participants with early-stage AD. METHODS Total apoE and apoE4 were measured in 1,079 individuals drawn from the highly characterized Australian Imaging, Biomarkers and Lifestyle (AIBL) study. Total and isoform-specific plasma apoE levels were then compared with cerebral Aβ load, as assessed by PET using Pittsburgh compound B (PiB). RESULTS Total apoE and apoE4 levels were found to be significantly lower in patients with AD in the entire cohort, and decrease with Aβ load in the PiB-PET subset. ApoE levels were significantly lower among ε4 homozygous individuals. In APOE ε3/ε4 heterozygote carriers, apoE4 levels decrease, indicating that apoE3 levels increase with disease. CONCLUSION Analysis of cross-sectional data from the AIBL study indicates that plasma apoE levels are altered in AD and correlate with AD pathology level. The significance of these findings will be determined in the AIBL longitudinal study of aging.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
117 |
10
|
Chatterjee P, Pedrini S, Doecke JD, Thota R, Villemagne VL, Doré V, Singh AK, Wang P, Rainey-Smith S, Fowler C, Taddei K, Sohrabi HR, Molloy MP, Ames D, Maruff P, Rowe CC, Masters CL, Martins RN. Plasma Aβ42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer's disease continuum: A cross-sectional and longitudinal study in the AIBL cohort. Alzheimers Dement 2023; 19:1117-1134. [PMID: 36574591 DOI: 10.1002/alz.12724] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Plasma amyloid beta (Aβ)1-42/Aβ1-40 ratio, phosphorylated-tau181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) are putative blood biomarkers for Alzheimer's disease (AD). However, head-to-head cross-sectional and longitudinal comparisons of the aforementioned biomarkers across the AD continuum are lacking. METHODS Plasma Aβ1-42, Aβ1-40, p-tau181, GFAP, and NfL were measured utilizing the Single Molecule Array (Simoa) platform and compared cross-sectionally across the AD continuum, wherein Aβ-PET (positron emission tomography)-negative cognitively unimpaired (CU Aβ-, n = 81) and mild cognitive impairment (MCI Aβ-, n = 26) participants were compared with Aβ-PET-positive participants across the AD continuum (CU Aβ+, n = 39; MCI Aβ+, n = 33; AD Aβ+, n = 46) from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) cohort. Longitudinal plasma biomarker changes were also assessed in MCI (n = 27) and AD (n = 29) participants compared with CU (n = 120) participants. In addition, associations between baseline plasma biomarker levels and prospective cognitive decline and Aβ-PET load were assessed over a 7 to 10-year duration. RESULTS Lower plasma Aβ1-42/Aβ1-40 ratio and elevated p-tau181 and GFAP were observed in CU Aβ+, MCI Aβ+, and AD Aβ+, whereas elevated plasma NfL was observed in MCI Aβ+ and AD Aβ+, compared with CU Aβ- and MCI Aβ-. Among the aforementioned plasma biomarkers, for models with and without AD risk factors (age, sex, and apolipoprotein E (APOE) ε4 carrier status), p-tau181 performed equivalent to or better than other biomarkers in predicting a brain Aβ-/+ status across the AD continuum. However, for models with and without the AD risk factors, a biomarker panel of Aβ1-42/Aβ1-40, p-tau181, and GFAP performed equivalent to or better than any of the biomarkers alone in predicting brain Aβ-/+ status across the AD continuum. Longitudinally, plasma Aβ1-42/Aβ1-40, p-tau181, and GFAP were altered in MCI compared with CU, and plasma GFAP and NfL were altered in AD compared with CU. In addition, lower plasma Aβ1-42/Aβ1-40 and higher p-tau181, GFAP, and NfL were associated with prospective cognitive decline and lower plasma Aβ1-42/Aβ1-40, and higher p-tau181 and GFAP were associated with increased Aβ-PET load prospectively. DISCUSSION These findings suggest that plasma biomarkers are altered cross-sectionally and longitudinally, along the AD continuum, and are prospectively associated with cognitive decline and brain Aβ-PET load. In addition, although p-tau181 performed equivalent to or better than other biomarkers in predicting an Aβ-/+ status across the AD continuum, a panel of biomarkers may have superior Aβ-/+ status predictive capability across the AD continuum. HIGHLIGHTS Area under the curve (AUC) of p-tau181 ≥ AUC of Aβ42/40, GFAP, NfL in predicting PET Aβ-/+ status (Aβ-/+). AUC of Aβ42/40+p-tau181+GFAP panel ≥ AUC of Aβ42/40/p-tau181/GFAP/NfL for Aβ-/+. Longitudinally, Aβ42/40, p-tau181, and GFAP were altered in MCI versus CU. Longitudinally, GFAP and NfL were altered in AD versus CU. Aβ42/40, p-tau181, GFAP, and NfL are associated with prospective cognitive decline. Aβ42/40, p-tau181, and GFAP are associated with increased PET Aβ load prospectively.
Collapse
|
|
2 |
106 |
11
|
Morenas-Rodríguez E, Li Y, Nuscher B, Franzmeier N, Xiong C, Suárez-Calvet M, Fagan AM, Schultz S, Gordon BA, Benzinger TLS, Hassenstab J, McDade E, Feederle R, Karch CM, Schlepckow K, Morris JC, Kleinberger G, Nellgard B, Vöglein J, Blennow K, Zetterberg H, Ewers M, Jucker M, Levin J, Bateman RJ, Haass C, Allegri R, Araki A, Barthelemy N, Bechara J, Berman S, Bodge C, Brandon S, Brooks W(B, Brosch J, Buck J, Buckles V, Carter K, Cash L, Chen C, Chhatwal J, Chrem P, Chua J, Chui H, Cruchaga C, Day GS, De La Cruz C, Denner D, Diffenbacher A, Dincer A, Donahue T, Douglas J, Duong D, Egido N, Esposito B, Farlow M, Feldman B, Fitzpatrick C, Flores S, Fox N, Franklin E, Friedrichsen N, Fujii H, Gardener S, Ghetti B, Goate A, Goldberg S, Goldman J, Gonzalez A, Gräber-Sultan S, Graff-Radford N, Graham M, Gray J, Gremminger E, Grilo M, Groves A, Häsler L, Hellm C, Herries E, Hoechst-Swisher L, Hofmann A, Holtzman D, Hornbeck R, Igor Y, Ihara R, Ikeuchi T, Ikonomovic S, Ishii K, Jack C, Jerome G, Johnson E, Käser S, Kasuga K, Keefe S, Klunk W(B, Koeppe R, Koudelis D, Kuder-Buletta E, Laske C, Levey A, et alMorenas-Rodríguez E, Li Y, Nuscher B, Franzmeier N, Xiong C, Suárez-Calvet M, Fagan AM, Schultz S, Gordon BA, Benzinger TLS, Hassenstab J, McDade E, Feederle R, Karch CM, Schlepckow K, Morris JC, Kleinberger G, Nellgard B, Vöglein J, Blennow K, Zetterberg H, Ewers M, Jucker M, Levin J, Bateman RJ, Haass C, Allegri R, Araki A, Barthelemy N, Bechara J, Berman S, Bodge C, Brandon S, Brooks W(B, Brosch J, Buck J, Buckles V, Carter K, Cash L, Chen C, Chhatwal J, Chrem P, Chua J, Chui H, Cruchaga C, Day GS, De La Cruz C, Denner D, Diffenbacher A, Dincer A, Donahue T, Douglas J, Duong D, Egido N, Esposito B, Farlow M, Feldman B, Fitzpatrick C, Flores S, Fox N, Franklin E, Friedrichsen N, Fujii H, Gardener S, Ghetti B, Goate A, Goldberg S, Goldman J, Gonzalez A, Gräber-Sultan S, Graff-Radford N, Graham M, Gray J, Gremminger E, Grilo M, Groves A, Häsler L, Hellm C, Herries E, Hoechst-Swisher L, Hofmann A, Holtzman D, Hornbeck R, Igor Y, Ihara R, Ikeuchi T, Ikonomovic S, Ishii K, Jack C, Jerome G, Johnson E, Käser S, Kasuga K, Keefe S, Klunk W(B, Koeppe R, Koudelis D, Kuder-Buletta E, Laske C, Levey A, Lopez O, Marsh J, Martinez R, Martins R, Mason NS, Masters C, Mawuenyega K, McCullough A, Mejia A, MountzMD J, Mummery C, Nadkarni N, Nagamatsu A, Neimeyer K, Niimi Y, Noble J, Norton J, Nuscher B, O'Connor A, Obermüller U, Patira R, Perrin R, Ping L, Preische O, Renton A, Ringman J, Salloway S, Schofield P, Senda M, Seyfried N, Shady K, Shimada H, Sigurdson W, Smith J, Smith L, Snitz B, Sohrabi H, Stephens S, Taddei K, Thompson S, Wang P, Wang Q, Weamer E, Xu J, Xu X. Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer's disease: a longitudinal observational study. Lancet Neurol 2022; 21:329-341. [PMID: 35305339 PMCID: PMC8926925 DOI: 10.1016/s1474-4422(22)00027-8] [Show More Authors] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Therapeutic modulation of TREM2-dependent microglial function might provide an additional strategy to slow the progression of Alzheimer's disease. Although studies in animal models suggest that TREM2 is protective against Alzheimer's pathology, its effect on tau pathology and its potential beneficial role in people with Alzheimer's disease is still unclear. Our aim was to study associations between the dynamics of soluble TREM2, as a biomarker of TREM2 signalling, and amyloid β (Aβ) deposition, tau-related pathology, neuroimaging markers, and cognitive decline, during the progression of autosomal dominant Alzheimer's disease. METHODS We did a longitudinal analysis of data from the Dominantly Inherited Alzheimer Network (DIAN) observational study, which includes families with a history of autosomal dominant Alzheimer's disease. Participants aged over 18 years who were enrolled in DIAN between Jan 1, 2009, and July 31, 2019, were categorised as either carriers of pathogenic variants in PSEN1, PSEN2, and APP genes (n=155) or non-carriers (n=93). We measured amounts of cleaved soluble TREM2 using a novel immunoassay in CSF samples obtained every 2 years from participants who were asymptomatic (Clinical Dementia Rating [CDR]=0) and annually for those who were symptomatic (CDR>0). CSF concentrations of Aβ40, Aβ42, total tau (t-tau), and tau phosphorylated on threonine 181 (p-tau) were measured by validated immunoassays. Predefined neuroimaging measurements were total cortical uptake of Pittsburgh compound B PET (PiB-PET), cortical thickness in the precuneus ascertained by MRI, and hippocampal volume determined by MRI. Cognition was measured using a validated cognitive composite (including DIAN word list test, logical memory delayed recall, digit symbol coding test [total score], and minimental status examination). We based our statistical analysis on univariate and bivariate linear mixed effects models. FINDINGS In carriers of pathogenic variants, a high amyloid burden at baseline, represented by low CSF Aβ42 (β=-4·28 × 10-2 [SE 0·013], p=0·0012), but not high cortical uptake in PiB-PET (β=-5·51 × 10-3 [0·011], p=0·63), was the only predictor of an augmented annual rate of subsequent increase in soluble TREM2. Augmented annual rates of increase in soluble TREM2 were associated with a diminished rate of decrease in amyloid deposition, as measured by Aβ42 in CSF (r=0·56 [0·22], p=0·011), in presymptomatic carriers of pathogenic variants, and with diminished annual rate of increase in PiB-PET (r=-0·67 [0·25], p=0·0060) in symptomatic carriers of pathogenic variants. Presymptomatic carriers of pathogenic variants with annual rates of increase in soluble TREM2 lower than the median showed a correlation between enhanced annual rates of increase in p-tau in CSF and augmented annual rates of increase in PiB-PET signal (r=0·45 [0·21], p=0·035), that was not observed in those with rates of increase in soluble TREM2 higher than the median. Furthermore, presymptomatic carriers of pathogenic variants with rates of increase in soluble TREM2 above or below the median had opposite associations between Aβ42 in CSF and PiB-PET uptake when assessed longitudinally. Augmented annual rates of increase in soluble TREM2 in presymptomatic carriers of pathogenic variants correlated with decreased cortical shrinkage in the precuneus (r=0·46 [0·22]), p=0·040) and diminished cognitive decline (r=0·67 [0·22], p=0·0020). INTERPRETATION Our findings in autosomal dominant Alzheimer's disease position the TREM2 response within the amyloid cascade immediately after the first pathological changes in Aβ aggregation and further support the role of TREM2 on Aβ plaque deposition and compaction. Furthermore, these findings underpin a beneficial effect of TREM2 on Aβ deposition, Aβ-dependent tau pathology, cortical shrinkage, and cognitive decline. Soluble TREM2 could, therefore, be a key marker for clinical trial design and interpretation. Efforts to develop TREM2-boosting therapies are ongoing. FUNDING German Research Foundation, US National Institutes of Health.
Collapse
|
Observational Study |
3 |
106 |
12
|
Lui JK, Laws SM, Li QX, Villemagne VL, Ames D, Brown B, Bush AI, De Ruyck K, Dromey J, Ellis KA, Faux NG, Foster J, Fowler C, Gupta V, Hudson P, Laughton K, Masters CL, Pertile K, Rembach A, Rimajova M, Rodrigues M, Rowe CC, Rumble R, Szoeke C, Taddei K, Taddei T, Trounson B, Ward V, Martins RN, AIBL Research Group. Plasma amyloid-beta as a biomarker in Alzheimer's disease: the AIBL study of aging. J Alzheimers Dis 2010; 20:1233-42. [PMID: 20413897 DOI: 10.3233/jad-2010-090249] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyloid-beta (Abeta) plays a central role in the pathogenesis of Alzheimer's disease (AD) and has been postulated as a potential biomarker for AD. However, there is a lack of consensus as to its suitability as an AD biomarker. The objective of this study was to determine the significance of plasma Abeta as an AD biomarker and its relationship with Abeta load and to determine the effect of different assay methods on the interpretation of Abeta levels. Plasma Abeta1-40, Abeta1-42, and N-terminal cleaved fragments were measured using both a commercial multiplex assay and a well-documented ELISA in 1032 individuals drawn from the well-characterized Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Further, Abeta levels were compared to Abeta load derived from positron-emission tomography (PET) with the Pittsburgh compound B (PiB). Lower Abeta1-42 and Abeta1-42/1-40 ratio were observed in patients with AD and inversely correlated with PiB-PET derived Abeta load. However, assay methodology significantly impacted the interpretation of data. The cross-sectional analysis of plasma Abeta isoforms suggests that they may not be sufficient per se to diagnose AD. The value of their measurement in prognosis and monitoring of AD interventions needs further study, in addition to future longitudinal comparisons together with other predictors, which will determine whether plasma Abeta has diagnostic value in a panel of biomarkers.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
103 |
13
|
Kwok JB, Taddei K, Hallupp M, Fisher C, Brooks WS, Broe GA, Hardy J, Fulham MJ, Nicholson GA, Stell R, St George Hyslop PH, Fraser PE, Kakulas B, Clarnette R, Relkin N, Gandy SE, Schofield PR, Martins RN. Two novel (M233T and R278T) presenilin-1 mutations in early-onset Alzheimer's disease pedigrees and preliminary evidence for association of presenilin-1 mutations with a novel phenotype. Neuroreport 1997; 8:1537-42. [PMID: 9172170 DOI: 10.1097/00001756-199704140-00043] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Eleven early-onset dementia families, all with affected individuals who have either presented clinical symptoms of early onset familial Alzheimer's disease (EOFAD) or have been confirmed to have EOFAD by autopsy, and two early onset cases with biopsy-confirmed AD pathology, were screened for missense mutations in the entire coding region of presenilin-1 (PS-1) and -2 (PS-2) genes. Missense mutations were detected by direct sequence analysis of PCR products amplified from genomic DNA templates of affected individuals. Three pedigrees were attributable to known mutations in the PS-1 gene: P264L, E280A and the splice acceptor site (G to T) mutation, which results in the deletion of residues 290-319 of PS-1 (PS-1 delta 290-319). In a fourth pedigree, a novel PS-1 mutation was identified in exon 7 (M233T), which is homologous to a pathogenic PS-2 mutation (M239V), and is characterized by a very early average age of onset (before the age of 35). In one early onset case, another novel PS-1 mutation was identified in exon 8 (R278T). Of the five remaining families and the other early onset case, none have missense mutations in the PS-1 or PS-2 genes, or in exon 16 and 17 of the APP gene. Moreover, two of the PS-1 mutations, PS-1 delta 290-319 and R278T, are associated with the co-presentation of familial spastic paraparesis (FSP) in some of the affected family members. Our data raise the possibility that the phenotypic spectrum associated with PS-1 mutations may extend beyond typical FAD to include FSP, a disease heretofore unsuspected to bear any relationship to FAD. In addition, our data suggest that other novel EOFAD loci, in addition to APP and the presenilin genes, are involved in the aetiology of up to 50% of EOFAD cases.
Collapse
|
|
28 |
103 |
14
|
Rembach A, Faux NG, Watt AD, Pertile KK, Rumble RL, Trounson BO, Fowler CJ, Roberts BR, Perez KA, Li QX, Laws SM, Taddei K, Rainey-Smith S, Robertson JS, Vandijck M, Vanderstichele H, Barnham KJ, Ellis KA, Szoeke C, Macaulay L, Rowe CC, Villemagne VL, Ames D, Martins RN, Bush AI, Masters CL. Changes in plasma amyloid beta in a longitudinal study of aging and Alzheimer's disease. Alzheimers Dement 2013; 10:53-61. [PMID: 23491263 DOI: 10.1016/j.jalz.2012.12.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 10/19/2012] [Accepted: 12/08/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND A practical biomarker is required to facilitate the preclinical diagnosis of Alzheimer's disease (AD). METHODS Plasma amyloid beta (Aβ)1-40, Aβ1-42, Aβn-40, and Aβn-42 peptides were measured at baseline and after 18 months in 771 participants from the Australian Imaging Biomarkers and Lifestyle (AIBL) study of aging. Aβ peptide levels were compared with clinical pathology, neuroimaging and neuropsychological measurements. RESULTS Although inflammatory and renal function covariates influenced plasma Aβ levels significantly, a decrease in Aβ1-42/Aβ1-40 was observed in patients with AD, and was also inversely correlated with neocortical amyloid burden. During the 18 months, plasma Aβ1-42 decreased in subjects with mild cognitive impairment (MCI) and in those transitioning from healthy to MCI. CONCLUSION Our findings are consistent with a number of published plasma Aβ studies and, although the prognostic value of individual measures in any given subject is limited, the diagnostic contribution of plasma Aβ may demonstrate utility when combined with a panel of peripheral biomarkers.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
99 |
15
|
Verdile G, Laws SM, Henley D, Ames D, Bush AI, Ellis KA, Faux NG, Gupta VB, Li QX, Masters CL, Pike KE, Rowe CC, Szoeke C, Taddei K, Villemagne VL, Martins RN. Associations between gonadotropins, testosterone and β amyloid in men at risk of Alzheimer's disease. Mol Psychiatry 2014; 19:69-75. [PMID: 23089633 DOI: 10.1038/mp.2012.147] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/07/2012] [Accepted: 09/04/2012] [Indexed: 11/09/2022]
Abstract
Testosterone and gonadotropins have been associated with cognitive decline in men and the modulation of β amyloid (Aβ) metabolism. The relatively few studies that have investigated whether changes in one or a combination of these hormones influence Aβ levels have focused primarily on plasma Aβ(1-40) and not on the more pathogenic Aβ(1-42). Currently, no study has investigated whether these hormones are associated with an increase in brain amyloid deposition, ante mortem. Through the highly characterised Australian imaging, biomarkers and lifestyle study, we have determined the impact of these hormones on plasma Aβ levels and brain amyloid burden (Pittsburgh compound B (PiB) retention). Spearman's rank correlation and linear regression analysis was carried out across the cohort and within subclassifications. Luteinizing hormone (LH) was the only variable shown, in the total cohort, to have a significant impact on plasma Aβ(1-40) and Aβ(1-42) levels (beta=0.163, P<0.001; beta=0.446, P<0.001). This held in subjective memory complainers (SMC) (Aβ(1-40); beta=0.208, P=0.017; Aβ(1-42); beta=0.215, P=0.017) but was absent in mild cognitive impairment (MCI) and Alzheimer's disease (AD) groups. In SMC, increased frequency of the APOE-ɛ4 allele (beta=0.536, P<0.001) and increasing serum LH levels (beta=0.421, P=0.004) had a significant impact on PiB retention. Whereas in MCI, PiB retention was associated with increased APOE-ɛ4 allele copy number (beta=0.674, P<0.001) and decreasing calculated free testosterone (beta=-0.303, P=0.043). These findings suggest a potential progressive involvement of LH and testosterone in the early preclinical stages of AD. Furthermore, these hormones should be considered while attempting to predict AD at these earliest stages of the disease.
Collapse
|
|
11 |
98 |
16
|
Sohrabi HR, Bates KA, Weinborn MG, Johnston ANB, Bahramian A, Taddei K, Laws SM, Rodrigues M, Morici M, Howard M, Martins G, Mackay-Sim A, Gandy SE, Martins RN. Olfactory discrimination predicts cognitive decline among community-dwelling older adults. Transl Psychiatry 2012; 2:e118. [PMID: 22832962 PMCID: PMC3365262 DOI: 10.1038/tp.2012.43] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The presence of olfactory dysfunction in individuals at higher risk of Alzheimer's disease has significant diagnostic and screening implications for preventive and ameliorative drug trials. Olfactory threshold, discrimination and identification can be reliably recorded in the early stages of neurodegenerative diseases. The current study has examined the ability of various olfactory functions in predicting cognitive decline in a community-dwelling sample. A group of 308 participants, aged 46-86 years old, were recruited for this study. After 3 years of follow-up, participants were divided into cognitively declined and non-declined groups based on their performance on a neuropsychological battery. Assessment of olfactory functions using the Sniffin' Sticks battery indicated that, contrary to previous findings, olfactory discrimination, but not olfactory identification, significantly predicted subsequent cognitive decline (odds ratio = 0.869; P<0.05; 95% confidence interval = 0.764-0.988). The current study findings confirm previously reported associations between olfactory and cognitive functions, and indicate that impairment in olfactory discrimination can predict future cognitive decline. These findings further our current understanding of the association between cognition and olfaction, and support olfactory assessment in screening those at higher risk of dementia.
Collapse
|
research-article |
13 |
85 |
17
|
Martins RN, Villemagne V, Sohrabi HR, Chatterjee P, Shah TM, Verdile G, Fraser P, Taddei K, Gupta VB, Rainey-Smith SR, Hone E, Pedrini S, Lim WL, Martins I, Frost S, Gupta S, O’Bryant S, Rembach A, Ames D, Ellis K, Fuller SJ, Brown B, Gardener SL, Fernando B, Bharadwaj P, Burnham S, Laws SM, Barron AM, Goozee K, Wahjoepramono EJ, Asih PR, Doecke JD, Salvado O, Bush AI, Rowe CC, Gandy SE, Masters CL. Alzheimer's Disease: A Journey from Amyloid Peptides and Oxidative Stress, to Biomarker Technologies and Disease Prevention Strategies-Gains from AIBL and DIAN Cohort Studies. J Alzheimers Dis 2018; 62:965-992. [PMID: 29562546 PMCID: PMC5870031 DOI: 10.3233/jad-171145] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Worldwide there are over 46 million people living with dementia, and this number is expected to double every 20 years reaching about 131 million by 2050. The cost to the community and government health systems, as well as the stress on families and carers is incalculable. Over three decades of research into this disease have been undertaken by several research groups in Australia, including work by our original research group in Western Australia which was involved in the discovery and sequencing of the amyloid-β peptide (also known as Aβ or A4 peptide) extracted from cerebral amyloid plaques. This review discusses the journey from the discovery of the Aβ peptide in Alzheimer's disease (AD) brain to the establishment of pre-clinical AD using PET amyloid tracers, a method now serving as the gold standard for developing peripheral diagnostic approaches in the blood and the eye. The latter developments for early diagnosis have been largely achieved through the establishment of the Australian Imaging Biomarker and Lifestyle research group that has followed 1,100 Australians for 11 years. AIBL has also been instrumental in providing insight into the role of the major genetic risk factor apolipoprotein E ɛ4, as well as better understanding the role of lifestyle factors particularly diet, physical activity and sleep to cognitive decline and the accumulation of cerebral Aβ.
Collapse
|
Review |
7 |
78 |
18
|
Taddei K, Clarnette R, Gandy SE, Martins RN. Increased plasma apolipoprotein E (apoE) levels in Alzheimer's disease. Neurosci Lett 1997; 223:29-32. [PMID: 9058415 DOI: 10.1016/s0304-3940(97)13394-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We measured the concentration of apolipoprotein E (apoE) in plasma from 184 non-fasted subjects in order to determine whether important variations might exist linking plasma apoE levels to clinical phenotypes among early and late onset sporadic Alzheimer's disease (AD) and Down's syndrome (DS). A significant increase in the level of plasma apoE was observed in non-fasted late-onset AD patients (with a mean level of 3.26 +/- 0.08 microgram apoE/mg total protein for n = 84 patients) when compared with the plasma apoE levels of control individuals (mean of 2.32 +/- 0.10 microgram apoE/mg total protein, n = 51 patients; P < 0.001). A similar increase was found for non-fasted early-onset AD patients (mean of 3.69 +/- 0.17 microgram apoE/mg total protein, n = 20) when compared with the plasma apoE levels of control individuals (P < 0.001). Plasma apoE levels for DS patients did not differ significantly from those of controls (P > 0.05). The association of elevated plasma apoE levels in AD may be relevant to clarifying the mechanism(s) whereby apoE isoforms specify differential risk for development of AD.
Collapse
|
|
28 |
77 |
19
|
Faux NG, Ellis KA, Porter L, Fowler CJ, Laws SM, Martins RN, Pertile KK, Rembach A, Rowe CC, Rumble RL, Szoeke C, Taddei K, Taddei T, Trounson BO, Villemagne VL, Ward V, Ames D, Masters CL, Bush AI. Homocysteine, Vitamin B12, and Folic Acid Levels in Alzheimer's Disease, Mild Cognitive Impairment, and Healthy Elderly: Baseline Characteristics in Subjects of the Australian Imaging Biomarker Lifestyle Study. ACTA ACUST UNITED AC 2011; 27:909-22. [DOI: 10.3233/jad-2011-110752] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
14 |
70 |
20
|
Fowler C, Rainey-Smith SR, Bird S, Bomke J, Bourgeat P, Brown BM, Burnham SC, Bush AI, Chadunow C, Collins S, Doecke J, Doré V, Ellis KA, Evered L, Fazlollahi A, Fripp J, Gardener SL, Gibson S, Grenfell R, Harrison E, Head R, Jin L, Kamer A, Lamb F, Lautenschlager NT, Laws SM, Li QX, Lim L, Lim YY, Louey A, Macaulay SL, Mackintosh L, Martins RN, Maruff P, Masters CL, McBride S, Milicic L, Peretti M, Pertile K, Porter T, Radler M, Rembach A, Robertson J, Rodrigues M, Rowe CC, Rumble R, Salvado O, Savage G, Silbert B, Soh M, Sohrabi HR, Taddei K, Taddei T, Thai C, Trounson B, Tyrrell R, Vacher M, Varghese S, Villemagne VL, Weinborn M, Woodward M, Xia Y, Ames D. Fifteen Years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: Progress and Observations from 2,359 Older Adults Spanning the Spectrum from Cognitive Normality to Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:443-468. [PMID: 34368630 PMCID: PMC8293663 DOI: 10.3233/adr-210005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: The Australian Imaging, Biomarkers and Lifestyle (AIBL) Study commenced in 2006 as a prospective study of 1,112 individuals (768 cognitively normal (CN), 133 with mild cognitive impairment (MCI), and 211 with Alzheimer’s disease dementia (AD)) as an ‘Inception cohort’ who underwent detailed ssessments every 18 months. Over the past decade, an additional 1247 subjects have been added as an ‘Enrichment cohort’ (as of 10 April 2019). Objective: Here we provide an overview of these Inception and Enrichment cohorts of more than 8,500 person-years of investigation. Methods: Participants underwent reassessment every 18 months including comprehensive cognitive testing, neuroimaging (magnetic resonance imaging, MRI; positron emission tomography, PET), biofluid biomarkers and lifestyle evaluations. Results: AIBL has made major contributions to the understanding of the natural history of AD, with cognitive and biological definitions of its three major stages: preclinical, prodromal and clinical. Early deployment of Aβ-amyloid and tau molecular PET imaging and the development of more sensitive and specific blood tests have facilitated the assessment of genetic and environmental factors which affect age at onset and rates of progression. Conclusion: This fifteen-year study provides a large database of highly characterized individuals with longitudinal cognitive, imaging and lifestyle data and biofluid collections, to aid in the development of interventions to delay onset, prevent or treat AD. Harmonization with similar large longitudinal cohort studies is underway to further these aims.
Collapse
|
Journal Article |
4 |
64 |
21
|
Laws SM, Taddei K, Martins G, Paton A, Fisher C, Clarnette R, Hallmayer J, Brooks WS, Gandy SE, Martins RN. The -491AA polymorphism in the APOE gene is associated with increased plasma apoE levels in Alzheimer's disease. Neuroreport 1999; 10:879-82. [PMID: 10208564 DOI: 10.1097/00001756-199903170-00038] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent evidence suggests that a polymorphism in the regulatory region of the apolipoprotein E gene (APOE) is associated with an increased risk for developing Alzheimer's disease (AD) independent of that conveyed by the epsilon4 allele of APOE. Previous work by our group indicated that plasma apolipoprotein E (apoE) levels were elevated in AD, raising the possibility that the -491 genotype might modify AD risk by increasing expression of the APOE gene. In a total of 638 individuals the -491AA genotype was significantly associated with AD (P < 0.005) while the TT genotype was associated with controls (P < 0.005). In 138 individuals the AA genotype showed significantly higher plasma apoE levels, independent of epsilon4 and AD status (P < 0.01) as well as within control and AD groups (P < 0.05). Within the AD group the AA genotype showed increased apoE levels when compared to AA controls (P < 0.0001). These results suggest that the -491 AA genotype is associated with increased plasma apoE levels, providing a potential basis for elucidating how that genotype increases the risk for developing AD.
Collapse
|
Clinical Trial |
26 |
55 |
22
|
Brown BM, Bourgeat P, Peiffer JJ, Burnham S, Laws SM, Rainey-Smith SR, Bartres-Faz D, Villemagne VL, Taddei K, Rembach A, Bush A, Ellis KA, Macaulay SL, Rowe CC, Ames D, Masters CL, Maruff P, Martins RN. Influence of BDNF Val66Met on the relationship between physical activity and brain volume. Neurology 2014; 83:1345-52. [DOI: 10.1212/wnl.0000000000000867] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
|
11 |
51 |
23
|
Cadby G, Giles C, Melton PE, Huynh K, Mellett NA, Duong T, Nguyen A, Cinel M, Smith A, Olshansky G, Wang T, Brozynska M, Inouye M, McCarthy NS, Ariff A, Hung J, Hui J, Beilby J, Dubé MP, Watts GF, Shah S, Wray NR, Lim WLF, Chatterjee P, Martins I, Laws SM, Porter T, Vacher M, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Taddei K, Arnold M, Kastenmüller G, Nho K, Saykin AJ, Han X, Kaddurah-Daouk R, Martins RN, Blangero J, Meikle PJ, Moses EK. Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease. Nat Commun 2022; 13:3124. [PMID: 35668104 PMCID: PMC9170690 DOI: 10.1038/s41467-022-30875-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ∼456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P < 1 × 10-3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases.
Collapse
|
Meta-Analysis |
3 |
51 |
24
|
Laws SM, Clarnette RM, Taddei K, Martins G, Paton A, Hallmayer J, Almeida OP, Groth DM, Gandy SE, Förstl H, Martins RN. APOE-epsilon4 and APOE -491A polymorphisms in individuals with subjective memory loss. Mol Psychiatry 2003; 7:768-75. [PMID: 12192621 DOI: 10.1038/sj.mp.4001083] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Revised: 12/13/2001] [Accepted: 01/16/2002] [Indexed: 11/09/2022]
Abstract
The accurate clinical diagnosis of Alzheimer's disease can only be made with a high degree of certainty in specialized centres. The identification of predictive or diagnostic genetic factors may improve accuracy of disease prediction or diagnosis. One major genetic risk factor, the epsilon4 allele of the apolipoprotein E gene, is universally recognised. We have recently shown that the A allele of the apolipoprotein E, -491A/T promoter polymorphism is also an important risk factor for Alzheimer's disease in an Australian population. We designed the present study to investigate the association between apolipoprotein E genotype, -491A/T polymorphism, plasma apoE levels and the subjective experience of memory decline among 98 subjects and 49 age, gender and education-matched normal controls. An increased frequency of the epsilon4 allele of apolipoprotein E was significantly associated with the 'memory complainers' group (OR = 2.35, P = 0.02) as was the A allele of the -491A/T polymorphism (OR = 2, P = 0.02). Among all subjects, only seven individuals were homozygous for both of these alleles, and six of these seven individuals belonged to the 'memory complainers' group. This sub-group also had relatively elevated plasma apolipoprotein E levels (P < 0.01) and tended to score lower on the Mini-Mental State Examination (MMSE) and Cambridge Cognition Test. These data suggest that the epsilon4 allele of apolipoprotein E and the -491A allele are over-represented among individuals who complain of memory difficulties. Follow-up studies should clarify whether these genotypes and phenotypes are useful in the prediction and/or diagnosis of Alzheimer's disease.
Collapse
|
|
22 |
50 |
25
|
Chatterjee P, Goozee K, Lim CK, James I, Shen K, Jacobs KR, Sohrabi HR, Shah T, Asih PR, Dave P, ManYan C, Taddei K, Lovejoy DB, Chung R, Guillemin GJ, Martins RN. Alterations in serum kynurenine pathway metabolites in individuals with high neocortical amyloid-β load: A pilot study. Sci Rep 2018; 8:8008. [PMID: 29789640 PMCID: PMC5964182 DOI: 10.1038/s41598-018-25968-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
The kynurenine pathway (KP) is dysregulated in neuroinflammatory diseases including Alzheimer’s disease (AD), however has not been investigated in preclinical AD characterized by high neocortical amyloid-β load (NAL), prior to cognitive impairment. Serum KP metabolites were measured in the cognitively normal KARVIAH cohort. Participants, aged 65–90 y, were categorised into NAL+ (n = 35) and NAL− (n = 65) using a standard uptake value ratio cut-off = 1.35. Employing linear models adjusting for age and APOEε4, higher kynurenine and anthranilic acid (AA) in NAL+ versus NAL− participants were observed in females (kynurenine, p = 0.004; AA, p = 0.001) but not males (NALxGender, p = 0.001, 0.038, respectively). To evaluate the predictive potential of kynurenine or/and AA for NAL+ in females, logistic regressions with NAL+/− as outcome were carried out. After age and APOEε4 adjustment, kynurenine and AA were individually and jointly significant predictors (p = 0.007, 0.005, 0.0004, respectively). Areas under the receiver operating characteristic curves were 0.794 using age and APOEε4 as predictors, and 0.844, 0.866 and 0.871 when kynurenine, AA and both were added. Findings from the current study exhibit increased KP activation in NAL+ females and highlight the predictive potential of KP metabolites, AA and kynurenine, for NAL+. Additionally, the current study also provides insight into he influence of gender in AD pathogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
48 |