76
|
Mineri R, Rimoldi M, Burlina AB, Koskull S, Perletti C, Heese B, von Dobeln U, Mereghetti P, Di Meo I, Invernizzi F, Zeviani M, Uziel G, Tiranti V. Identification of new mutations in the ETHE1 gene in a cohort of 14 patients presenting with ethylmalonic encephalopathy. J Med Genet 2008; 45:473-8. [DOI: 10.1136/jmg.2008.058271] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
77
|
Valente L, Tiranti V, Marsano RM, Malfatti E, Fernandez-Vizarra E, Donnini C, Mereghetti P, De Gioia L, Burlina A, Castellan C, Comi GP, Savasta S, Ferrero I, Zeviani M. Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am J Hum Genet 2007; 80:44-58. [PMID: 17160893 PMCID: PMC1785320 DOI: 10.1086/510559] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 10/25/2006] [Indexed: 11/03/2022] Open
Abstract
Mitochondrial protein translation is a complex process performed within mitochondria by an apparatus composed of mitochondrial DNA (mtDNA)-encoded RNAs and nuclear DNA-encoded proteins. Although the latter by far outnumber the former, the vast majority of mitochondrial translation defects in humans have been associated with mutations in RNA-encoding mtDNA genes, whereas mutations in protein-encoding nuclear genes have been identified in a handful of cases. Genetic investigation involving patients with defective mitochondrial translation led us to the discovery of novel mutations in the mitochondrial elongation factor G1 (EFG1) in one affected baby and, for the first time, in the mitochondrial elongation factor Tu (EFTu) in another one. Both patients were affected by severe lactic acidosis and rapidly progressive, fatal encephalopathy. The EFG1-mutant patient had early-onset Leigh syndrome, whereas the EFTu-mutant patient had severe infantile macrocystic leukodystrophy with micropolygyria. Structural modeling enabled us to make predictions about the effects of the mutations at the molecular level. Yeast and mammalian cell systems proved the pathogenic role of the mutant alleles by functional complementation in vivo. Nuclear-gene abnormalities causing mitochondrial translation defects represent a new, potentially broad field of mitochondrial medicine. Investigation of these defects is important to expand the molecular characterization of mitochondrial disorders and also may contribute to the elucidation of the complex control mechanisms, which regulate this fundamental pathway of mtDNA homeostasis.
Collapse
|
78
|
Alberio S, Mineri R, Tiranti V, Zeviani M. Depletion of mtDNA: syndromes and genes. Mitochondrion 2006; 7:6-12. [PMID: 17280874 DOI: 10.1016/j.mito.2006.11.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 10/06/2006] [Indexed: 11/23/2022]
Abstract
Maintenance of mitochondrial DNA (mtDNA) requires the concerted activity of several nuclear-encoded factors that participate in its replication, being part of the mitochondrial replisome or ensuring the balanced supply of dNTPs to mitochondria. In the past decade, a growing number of syndromes associated with dysfunction due to tissue-specific depletion of mtDNA (MDS) have been reported. This article reviews the current knowledge of the genes responsible for these disorders, the impact of different mutations in the epidemiology of MDS and their role in the pathogenic mechanisms underlying the different clinical presentations.
Collapse
|
79
|
Di Rocco M, Caruso U, Briem E, Rossi A, Allegri AEM, Buzzi D, Tiranti V. A case of ethylmalonic encephalopathy with atypical clinical and biochemical presentation. Mol Genet Metab 2006; 89:395-7. [PMID: 16828325 DOI: 10.1016/j.ymgme.2006.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 05/22/2006] [Indexed: 12/28/2022]
Abstract
A child is reported presenting with a clinical picture suggestive of genetic connective tissue disorders (vascular fragility, articular hyperlaxity, delayed motor development, and normal cognitive development), an absence of pathological ethylmalonic acid excretion during inter-critical phases and a homozygous R163W mutation in the ETHE1 gene. This case suggests that ethylmalonic aciduria is not a constant biochemical marker of ethylmalonic encephalopathy and that its normal excretion outside of metabolic decompensation episodes does not exclude this metabolic disease.
Collapse
|
80
|
Fernandez-Vizarra E, Berardinelli A, Valente L, Tiranti V, Zeviani M. Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J Med Genet 2006; 44:173-80. [PMID: 17056637 PMCID: PMC2598032 DOI: 10.1136/jmg.2006.045252] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Myopathy, lactic acidosis and sideroblastic anaemia (MLASA) is a rare condition that combines early-onset myopathy with lactic acidosis and sideroblastic anaemia. MLASA has been associated with a missense mutation in pseudouridylate synthase 1 (PUS1), an enzyme located in both nucleus and mitochondria, which converts uridine into pseudouridine in several cytosolic and mitochondrial tRNA positions and increases the efficiency of protein synthesis in both compartments. SUBJECTS AND METHODS We have identified two Italian brothers, offspring of distantly related parents, both of whom are affected by MLASA. The six exons of the PUS1 gene were analysed by automated sequencing. RESULTS We found combined defects in mitochondrial respiratory chain complexes in muscle and fibroblast homogenates of both patients, and low levels of mtDNA translation products in fibroblast mitochondria. A novel, homozygous stop mutation was present in PUS1 (E220X). We have investigated the structural and mechanistic aspects of the double localisation of PUS1, demonstrating that the isoform located in the nucleus contains an N-terminal extension which is absent in the mature mitochondrial isoform. CONCLUSIONS The stop mutation in PUS1 is likely to determine the loss of function of the protein, since it predicts the synthesis of a protein missing 208/427 amino acid residues on the C terminus, and was associated with low mtDNA translation. The structural differences in nuclear versus mitochondrial isoforms of PUS1 may be implicated in the variability of the clinical presentations in MLASA.
Collapse
MESH Headings
- Acidosis, Lactic/enzymology
- Acidosis, Lactic/genetics
- Amino Acid Sequence
- Anemia, Sideroblastic/enzymology
- Anemia, Sideroblastic/genetics
- Cell Nucleus/enzymology
- Codon, Nonsense
- Consanguinity
- Cytochrome-c Oxidase Deficiency/genetics
- Electron Transport Complex I/deficiency
- Fatal Outcome
- Fibroblasts/enzymology
- Fibroblasts/pathology
- HeLa Cells
- Human Growth Hormone/deficiency
- Humans
- Hydro-Lyases/chemistry
- Hydro-Lyases/deficiency
- Hydro-Lyases/genetics
- Infant, Newborn
- Intellectual Disability/genetics
- Male
- Mitochondria, Muscle/enzymology
- Mitochondrial Myopathies/enzymology
- Mitochondrial Myopathies/genetics
- Molecular Sequence Data
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Phenotype
- Protein Isoforms/analysis
- Protein Isoforms/genetics
- Protein Precursors/metabolism
- Protein Processing, Post-Translational
- Protein Transport/drug effects
- Syndrome
- Transcription, Genetic
- Transfection
- Valinomycin/pharmacology
Collapse
|
81
|
van Eijsden RGE, Gerards M, Eijssen LMT, Hendrickx ATM, Jongbloed RJE, Wokke JHJ, Hintzen RQ, Rubio-Gozalbo ME, De Coo IFM, Briem E, Tiranti V, Smeets HJM. Chip-based mtDNA mutation screening enables fast and reliable genetic diagnosis of OXPHOS patients. Genet Med 2006; 8:620-7. [PMID: 17079878 DOI: 10.1097/01.gim.0000237782.94878.05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Oxidative phosphorylation is under dual genetic control of the nuclear and the mitochondrial DNA (mtDNA). Oxidative phosphorylation disorders are clinically and genetically heterogeneous, which makes it difficult to determine the genetic defect, and symptom-based protocols which link clinical symptoms directly to a specific gene or mtDNA mutation are falling short. Moreover, approximately 25% of the pediatric patients with oxidative phosphorylation disorders is estimated to have mutations in the mtDNA and a standard screening approach for common mutations and deletions will only explain part of these cases. Therefore, we tested a new CHIP-based screening method for the mtDNA. METHODS MitoChip (Affymetrix) resequencing was performed on three test samples and on 28 patient samples. RESULTS Call rates were 94% on average and heteroplasmy detection levels varied from 5-50%. A genetic diagnosis can be made in almost one-quarter of the patients at a potential output of 8 complete mtDNA sequences every 4 days. Moreover, a number of potentially pathogenic unclassified variants (UV) were detected. CONCLUSIONS The availability of long-range PCR protocols and the predominance of single nucleotide substitutions in the mtDNA make the resequencing CHIP a very fast and reliable method to screen the complete mtDNA for mutations.
Collapse
|
82
|
Bugiani M, Tiranti V, Farina L, Uziel G, Zeviani M. Novel mutations in COX15 in a long surviving Leigh syndrome patient with cytochrome c oxidase deficiency. J Med Genet 2006; 42:e28. [PMID: 15863660 PMCID: PMC1736058 DOI: 10.1136/jmg.2004.029926] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Isolated cytochrome c oxidase (COX) deficiency is usually associated with mutations in several factors involved in the biogenesis of COX. METHODS We describe a patient with atypical, long surviving Leigh syndrome carrying two novel mutations in the COX15 gene, which encodes an enzyme involved in the biosynthesis of heme A. RESULTS Only two COX15 mutated patients, one with severe neonatal cardiomyopathy, the other with rapidly fatal Leigh syndrome, have been described to date. In contrast, our patient had a slowly progressive course with no heart involvement. COX deficiency was mild in muscle and a normal amount of fully assembled COX was present in cultured fibroblasts. CONCLUSIONS The clinical and biochemical phenotypes in COX15 defects are more heterogeneous than in other conditions associated with COX deficiency, such as mutations in SURF1.
Collapse
|
83
|
Spinazzola A, Viscomi C, Fernandez-Vizarra E, Carrara F, D'Adamo P, Calvo S, Marsano RM, Donnini C, Weiher H, Strisciuglio P, Parini R, Sarzi E, Chan A, DiMauro S, Rötig A, Gasparini P, Ferrero I, Mootha VK, Tiranti V, Zeviani M. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat Genet 2006; 38:570-5. [PMID: 16582910 DOI: 10.1038/ng1765] [Citation(s) in RCA: 314] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 02/15/2006] [Indexed: 12/22/2022]
Abstract
The mitochondrial (mt) DNA depletion syndromes (MDDS) are genetic disorders characterized by a severe, tissue-specific decrease of mtDNA copy number, leading to organ failure. There are two main clinical presentations: myopathic (OMIM 609560) and hepatocerebral (OMIM 251880). Known mutant genes, including TK2, SUCLA2, DGUOK and POLG, account for only a fraction of MDDS cases. We found a new locus for hepatocerebral MDDS on chromosome 2p21-23 and prioritized the genes on this locus using a new integrative genomics strategy. One of the top-scoring candidates was the human ortholog of the mouse kidney disease gene Mpv17. We found disease-segregating mutations in three families with hepatocerebral MDDS and demonstrated that, contrary to the alleged peroxisomal localization of the MPV17 gene product, MPV17 is a mitochondrial inner membrane protein, and its absence or malfunction causes oxidative phosphorylation (OXPHOS) failure and mtDNA depletion, not only in affected individuals but also in Mpv17-/- mice.
Collapse
|
84
|
Limongelli A, Tiranti V. Inherited Mendelian defects of nuclear-mitochondrial communication affecting the stability of mitochondrial DNA. Mitochondrion 2005; 2:39-46. [PMID: 16120307 DOI: 10.1016/s1567-7249(02)00043-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2001] [Revised: 05/20/2002] [Accepted: 05/24/2002] [Indexed: 12/24/2022]
Abstract
The presence of mtDNA abnormalities inherited as Mendelian traits indicates the existence of mutations in nuclear genes affecting the integrity of the mitochondrial genome. Two groups of nucleus-driven abnormalities have been described: qualitative alterations of mtDNA, i.e. multiple large-scale deletions of mtDNA, and quantitative decrease of the mtDNA copy number, i.e. tissue-specific depletion of mtDNA. Autosomal dominant or recessive (adPEO), progressive ophthalmoplegia and autosomal-recessive mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), are three neurodegenerative disorders associated with the coexistence of wild-type mtDNA with several deletion-containing mtDNA species. Heterozygous mutations of the genes encoding the muscle-heart isoform of the adenosine diphosphate/adenosine triphosphate mitochondrial translocator (ANT1), the main subunit of polymerase gamma (POLG1), and of the putative mtDNA helicase (Twinkle) have been found in adPEO families linked to three different loci, on chromosomes 4q34-35, 10q24, and 15q25, respectively. Mutations in the gene encoding thymidine phosphorylase have been identified in several MNGIE patients. Severe, tissue-specific depletion of mtDNA is the molecular hallmark of rapidly progressive hepatopathies or myopathies of infancy and childhood. Two genes, deoxyguanosine kinase and thymidine kinase type 2, both involved in the mitochondrion-specific salvage pathways of deoxynucleotide pools, have been associated with depletion syndromes in selected families.
Collapse
|
85
|
Tiranti V, Briem E, Lamantea E, Mineri R, Papaleo E, De Gioia L, Forlani F, Rinaldo P, Dickson P, Abu-Libdeh B, Cindro-Heberle L, Owaidha M, Jack RM, Christensen E, Burlina A, Zeviani M. ETHE1 mutations are specific to ethylmalonic encephalopathy. J Med Genet 2005; 43:340-6. [PMID: 16183799 PMCID: PMC2563233 DOI: 10.1136/jmg.2005.036210] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mutations in ETHE1, a gene located at chromosome 19q13, have recently been identified in patients affected by ethylmalonic encephalopathy (EE). EE is a devastating infantile metabolic disorder, characterised by widespread lesions in the brain, hyperlactic acidaemia, petechiae, orthostatic acrocyanosis, and high levels of ethylmalonic acid in body fluids. To investigate to what extent ETHE1 is responsible for EE, we analysed this gene in 29 patients with typical EE and in 11 patients presenting with early onset progressive encephalopathy with ethylmalonic aciduria (non-EE EMA). Frameshift, stop, splice site, and missense mutations of ETHE1 were detected in all the typical EE patients analysed. Western blot analysis of the ETHE1 protein indicated that some of the missense mutations are associated with the presence of the protein, suggesting that the corresponding wild type amino acid residues have a catalytic function. No ETHE1 mutations were identified in non-EE EMA patients. Experiments based on two dimensional blue native electrophoresis indicated that ETHE1 protein works as a supramolecular, presumably homodimeric, complex, and a three dimensional model of the protein suggests that it is likely to be a mitochondrial matrix thioesterase acting on a still unknown substrate. Finally, the 625G-->A single nucleotide polymorphism in the gene encoding the short chain acyl-coenzyme A dehydrogenase (SCAD) was previously proposed as a co-factor in the aetiology of EE and other EMA syndromes. SNP analysis in our patients ruled out a pathogenic role of SCAD variants in EE, but did show a highly significant prevalence of the 625A alleles in non-EE EMA patients.
Collapse
|
86
|
Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 2005; 1:409-14. [PMID: 16054090 DOI: 10.1016/j.cmet.2005.05.002] [Citation(s) in RCA: 570] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 03/17/2005] [Accepted: 05/11/2005] [Indexed: 11/17/2022]
Abstract
Mammalian cells detect decreases in oxygen concentrations to activate a variety of responses that help cells adapt to low oxygen levels (hypoxia). One such response is stabilization of the protein HIF-1 alpha, a component of the transcription factor HIF-1. Here we show that a small interfering RNA (siRNA) against the Rieske iron-sulfur protein of mitochondrial complex III prevents the hypoxic stabilization of HIF-1 alpha protein. Fibroblasts from a patient with Leigh's syndrome, which display residual levels of electron transport activity and are incompetent in oxidative phosphorylation, stabilize HIF-1 alpha during hypoxia. The expression of glutathione peroxidase or catalase, but not superoxide dismutase 1 or 2, prevents the hypoxic stabilization of HIF-1 alpha. These findings provide genetic evidence that oxygen sensing is dependent on mitochondrial-generated reactive oxygen species (ROS) but independent of oxidative phosphorylation.
Collapse
|
87
|
Carrara F, Chinnery PF, Yu-Wai-Man P, Zeviani M, Tiranti V. Pitfalls in restriction fragment length polymorphism analysis of Leber's hereditary optic neuropathy patients. Mitochondrion 2004; 4:37-9. [PMID: 16120372 DOI: 10.1016/j.mito.2004.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 05/25/2004] [Indexed: 10/26/2022]
|
88
|
Fontanesi F, Palmieri L, Scarcia P, Lodi T, Donnini C, Limongelli A, Tiranti V, Zeviani M, Ferrero I, Viola AM. Mutations in AAC2, equivalent to human adPEO-associated ANT1 mutations, lead to defective oxidative phosphorylation in Saccharomyces cerevisiae and affect mitochondrial DNA stability. Hum Mol Genet 2004; 13:923-34. [PMID: 15016764 DOI: 10.1093/hmg/ddh108] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Autosomal dominant and recessive forms of progressive external ophthalmoplegia (adPEO and arPEO) are mitochondrial disorders characterized by the presence of multiple deletions of mitochondrial DNA in affected tissues. Four adPEO-associated missense mutations have been identified in the ANT1 gene. In order to investigate their functional consequences on cellular physiology, we introduced three of them at equivalent positions in AAC2, the yeast orthologue of human ANT1. We demonstrate here that expression of the equivalent mutations in aac2-defective haploid strains of Saccharomyces cerevisiae results in (a) a marked growth defect on non-fermentable carbon sources, and (b) a concurrent reduction of the amount of mitochondrial cytochromes, cytochrome c oxidase activity and cellular respiration. The efficiency of ATP and ADP transport was variably affected by the different AAC2 mutations. However, irrespective of the absolute level of activity, the AAC2 pathogenic mutants showed a significant defect in ADP versus ATP transport compared with wild-type AAC2. In order to study whether a dominant phenotype, as in humans, could be observed, the aac2 mutant alleles were also inserted in combination with the endogenous wild-type AAC2 gene. The heteroallelic strains behaved as recessive for oxidative growth and petite-negative phenotype. In contrast, reduction in cytochrome content and increased mtDNA instability appeared to behave as dominant traits in heteroallelic strains. Our results indicate that S. cerevisiae is a suitable in vivo model to study the pathogenicity of the human ANT1 mutations and the pathophysiology leading to impairment of oxidative phosphorylation and damage of mtDNA integrity, as found in adPEO.
Collapse
|
89
|
Tiranti V, D’Adamo P, Briem E, Ferrari G, Mineri R, Lamantea E, Mandel H, Balestri P, Garcia-Silva MT, Vollmer B, Rinaldo P, Hahn SH, Leonard J, Rahman S, Dionisi-Vici C, Garavaglia B, Gasparini P, Zeviani M. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am J Hum Genet 2004; 74:239-52. [PMID: 14732903 PMCID: PMC1181922 DOI: 10.1086/381653] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 11/17/2003] [Indexed: 01/18/2023] Open
Abstract
Ethylmalonic encephalopathy (EE) is a devastating infantile metabolic disorder affecting the brain, gastrointestinal tract, and peripheral vessels. High levels of ethylmalonic acid are detected in the body fluids, and cytochrome c oxidase activity is decreased in skeletal muscle. By use of a combination of homozygosity mapping, integration of physical and functional genomic data sets, and mutational screening, we identified GenBank D83198 as the gene responsible for EE. We also demonstrated that the D83198 protein product is targeted to mitochondria and internalized into the matrix after energy-dependent cleavage of a short leader peptide. The gene had previously been known as "HSCO" (for hepatoma subtracted clone one). However, given its role in EE, the name of the gene has been changed to "ETHE1." The severe consequences of its malfunctioning indicate an important role of the ETHE1 gene product in mitochondrial homeostasis and energy metabolism.
Collapse
|
90
|
Agostino A, Valletta L, Chinnery PF, Ferrari G, Carrara F, Taylor RW, Schaefer AM, Turnbull DM, Tiranti V, Zeviani M. Mutations of ANT1, Twinkle, and POLG1 in sporadic progressive external ophthalmoplegia (PEO). Neurology 2003; 60:1354-6. [PMID: 12707443 DOI: 10.1212/01.wnl.0000056088.09408.3c] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To verify the impact of mutations in ANT1, Twinkle, and POLG1 genes in sporadic progressive external ophthalmoplegia associated with multiple mitochondrial DNA (mtDNA) deletions, DNA samples from 15 Italian and 12 British patients were screened. Mutations in ANT1 were found in one patient, in Twinkle in two patients, and in POLG1 in seven patients. Irrespective of the inheritance mode, screening of these genes should be performed in all patients with progressive external ophthalmoplegia with multiple mtDNA deletions.
Collapse
|
91
|
Agostino A, Invernizzi F, Tiveron C, Fagiolari G, Prelle A, Lamantea E, Giavazzi A, Battaglia G, Tatangelo L, Tiranti V, Zeviani M. Constitutive knockout of Surf1 is associated with high embryonic lethality, mitochondrial disease and cytochrome c oxidase deficiency in mice. Hum Mol Genet 2003; 12:399-413. [PMID: 12566387 DOI: 10.1093/hmg/ddg038] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report here the creation of a constitutive knockout mouse for SURF1, a gene encoding one of the assembly proteins involved in the formation of cytochrome c oxidase (COX). Loss-of-function mutations of SURF1 cause Leigh syndrome associated with an isolated and generalized COX deficiency in humans. The murine phenotype is characterized by the following hallmarks: (1) high post-implantation embryonic lethality, affecting approximately 90% of the Surf1(-/-) individuals; (2) early-onset mortality of post-natal individuals; (3) highly significant deficit in muscle strength and motor performance; (4) profound and isolated defect of COX activity in skeletal muscle and liver, and, to a lesser extent, heart and brain; (5) morphological abnormalities of skeletal muscle, characterized by reduced histochemical reaction to COX and mitochondrial proliferation; (6) no obvious abnormalities in brain morphology, reflecting the virtual absence of overt neurological symptoms. These results indicate a function for murine Surf1 protein (Surf1p) specifically related to COX and recapitulate, at least in part, the human phenotype. This is the first mammalian model for a nuclear disease gene of a human mitochondrial disorder. Our model constitutes a useful tool to investigate the function of Surf1p, help understand the pathogenesis of Surf1p deficiency in vivo, and evaluate the efficacy of treatment.
Collapse
|
92
|
Arenas J, Briem E, Dahl H, Hutchison W, Lewis S, Martin MA, Spelbrink H, Tiranti V, Jacobs H, Zeviani M. The V368i mutation in Twinkle does not segregate with AdPEO. Ann Neurol 2003; 53:278. [PMID: 12557300 DOI: 10.1002/ana.10430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
93
|
Testa D, Tiranti V, Girotti F. Unusual association of sporadic olivopontocerebellar atrophy and motor neuron disease. Neurol Sci 2002; 23:243-5. [PMID: 12522682 DOI: 10.1007/s100720200049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sporadic olivopontocerebellar atrophy (OPCA) is a neurodegenerative disorder that presents a wide clinical spectrum. Motor neuron disease (MND) is characterized by a selective degeneration of motor neurons. A 60-year-old man developed slurred speech and unsteadiness of gait. He had also noticed difficulty in holding his head upright and shoulder weakness. The disease had a rapid progression. At the age of 63 years, magnetic resonance imaging supported a diagnosis of OPCA, and a diagnosis of MND was suggested by clinical and electrophysiological findings. He also had upward gaze palsy. A muscular biopsy showed sporadic ragged red and Cox deficient fibers. The present case could define a unique disorder, as the occasional occurrence of two degenerative disorders appears unlikely.
Collapse
|
94
|
Lamantea E, Tiranti V, Bordoni A, Toscano A, Bono F, Servidei S, Papadimitriou A, Spelbrink H, Silvestri L, Casari G, Comi GP, Zeviani M. Mutations of mitochondrial DNA polymerase gammaA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Ann Neurol 2002; 52:211-9. [PMID: 12210792 DOI: 10.1002/ana.10278] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One form of familial progressive external ophthalmoplegia with multiple mitochondrial DNA deletions recently has been associated with mutations in POLG1, the gene encoding pol gammaA, the catalytic subunit of mitochondrial DNA polymerase. We screened the POLG1 gene in several PEO families and identified five different heterozygous missense mutations of POLG1 in 10 autosomal dominant families. Recessive mutations were found in three families. Our data show that mutations of POLG1 are the most frequent cause of familial progressive external ophthalmoplegia associated with accumulation of multiple mitochondrial DNA deletions, accounting for approximately 45% of our family cohort.
Collapse
|
95
|
Lamantea E, Carrara F, Mariotti C, Morandi L, Tiranti V, Zeviani M. A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul Disord 2002; 12:49-52. [PMID: 11731284 DOI: 10.1016/s0960-8966(01)00244-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We identified a novel mitochondrial cytochrome b mutation in a patient with progressive exercise intolerance, muscle cramps and lactic acidosis. A marked reduction of the enzymatic activities of respiratory chain complexes I and III was found in muscle biopsy. The mutation was a heteroplasmic C15800T transition, determining a stop-codon at amino acid position 352 (Q352X). Mutant mtDNA was approximately 45% of total genomes in muscle, while it was absent in all of the other examined tissues of the patient and in lymphocytes of the patient's mother. Clinical presentation and laboratory findings strongly support the hypothesis that this mutation is the primary cause of the disease in our patient.
Collapse
|
96
|
Napoli L, Bordoni A, Zeviani M, Hadjigeorgiou GM, Sciacco M, Tiranti V, Terentiou A, Moggio M, Papadimitriou A, Scarlato G, Comi GP. A novel missense adenine nucleotide translocator-1 gene mutation in a Greek adPEO family. Neurology 2001; 57:2295-8. [PMID: 11756613 DOI: 10.1212/wnl.57.12.2295] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Autosomal dominant progressive external ophthalmoplegia (adPEO) is caused by mutations in at least three different genes: ANT1 (chromosome 4q34-35), TWINKLE, and POLG. The ANT1 gene encodes the adenine nucleotide translocator-1 (ANT1). We identified a heterozygous T293C mutation of the ANT1 gene in a Greek family with adPEO. The resulting leucine to proline substitution likely modifies the secondary structure of the ANT1 protein. ANT1 gene mutations may account for adPEO in families with different ethnic backgrounds.
Collapse
|
97
|
Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP, Tariq M, Wanrooij S, Garrido N, Comi G, Morandi L, Santoro L, Toscano A, Fabrizi GM, Somer H, Croxen R, Beeson D, Poulton J, Suomalainen A, Jacobs HT, Zeviani M, Larsson C. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 2001; 28:223-31. [PMID: 11431692 DOI: 10.1038/90058] [Citation(s) in RCA: 607] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gene products involved in mammalian mitochondrial DNA (mtDNA) maintenance and organization remain largely unknown. We report here a novel mitochondrial protein, Twinkle, with structural similarity to phage T7 gene 4 primase/helicase and other hexameric ring helicases. Twinkle colocalizes with mtDNA in mitochondrial nucleoids. Screening of the gene encoding Twinkle in individuals with autosomal dominant progressive external ophthalmoplegia (adPEO), associated with multiple mtDNA deletions, identified 11 different coding-region mutations co-segregating with the disorder in 12 adPEO pedigrees of various ethnic origins. The mutations cluster in a region of the protein proposed to be involved in subunit interactions. The function of Twinkle is inferred to be critical for lifetime maintenance of human mtDNA integrity.
Collapse
|
98
|
Péquignot MO, Dey R, Zeviani M, Tiranti V, Godinot C, Poyau A, Sue C, Di Mauro S, Abitbol M, Marsac C. Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome C oxidase deficiency. Hum Mutat 2001; 17:374-81. [PMID: 11317352 DOI: 10.1002/humu.1112] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytochrome c oxidase (COX) deficiency is one of the major causes of Leigh Syndrome (LS), a fatal encephalopathy of infancy or childhood, characterized by symmetrical lesions in the basal ganglia and brainstem. Mutations in the nuclear genes encoding COX subunits have not been found in patients with LS and COX deficiency, but mutations have been identified in SURF1. SURF1 encodes a factor involved in COX biogenesis. To date, 30 different mutations have been reported in 40 unrelated patients. We aim to provide an overview of all known mutations in SURF1, and to propose a common nomenclature. Twelve of the mutations were insertion/deletion mutations in exons 1, 4, 6, 8, and 9; 10 were missense/nonsense mutations in exons 2, 4, 5, 7, and 8; and eight were detected at splicing sites in introns 3 to 7. The most frequent mutation was 312_321del 311_312insAT which was found in 12 patients out of 40. Twenty mutations have been described only once. We also list all polymorphisms discovered to date.
Collapse
|
99
|
Hutchin TP, Navarro-Coy NC, Van Camp G, Tiranti V, Zeviani M, Schuelke M, Jaksch M, Newton V, Mueller RF. Multiple origins of the mtDNA 7472insC mutation associated with hearing loss and neurological dysfunction. Eur J Hum Genet 2001; 9:385-7. [PMID: 11378827 DOI: 10.1038/sj.ejhg.5200640] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2000] [Revised: 01/23/2001] [Accepted: 01/31/2001] [Indexed: 11/09/2022] Open
Abstract
Several mtDNA mutations have been reported in families with both syndromic and non-syndromic hearing loss. One such mutation is the heteroplasmic 7472insC in the tRNA(Ser(UCN)) gene which has been found in six families, all from Western Europe. However, it was not clear if this distribution was due to a common founder effect or chance sampling of several unrelated families, the 7472insC mutation having occurred multiple times. Haplotype analysis of all six families supports the latter notion. This confirms the pathogenicity of the 7472insC mutation and suggests it may exist in other populations where it may prove to be a small but significant cause of hearing loss, particularly when neurological symptoms are also present.
Collapse
|
100
|
Corona P, Antozzi C, Carrara F, D'Incerti L, Lamantea E, Tiranti V, Zeviani M. A novel mtDNA mutation in the ND5 subunit of complex I in two MELAS patients. Ann Neurol 2001; 49:106-10. [PMID: 11198278 DOI: 10.1002/1531-8249(200101)49:1<106::aid-ana16>3.0.co;2-t] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We identified a novel heteroplasmic mutation in the mitochodrial DNA gene encoding the ND5 subunit of complex I. This mutation (13514A-->G) hits the same codon affected by a previously reported mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS)-associated mutation (13513G-->A), but the amino acid replacement is different (D393G vs D393N). The 13514A-->G mutation was found in two unrelated MELAS-like patients. However, in contrast to typical MELAS, lactic acidosis was absent or mild and the muscle biopsy was morphologically normal. Strongly positive correlation between the percentage of heteroplasmy and defective activity of complex I was found in cybrids. We found an additional 13513G-->A-positive case, affected by a progressive mitochondrial encephalomyopathy. Our results clearly demonstrate that the amino acid position D393 is crucial for the function of complex I. Search for D393 mutations should be part of the routine screening for mitochondrial disorders.
Collapse
|