1
|
Abstract
The crystal structure has been determined at 2.8 A resolution for a chemically-trapped covalent reaction intermediate between the HhaI DNA cytosine-5-methyltransferase, S-adenosyl-L-homocysteine, and a duplex 13-mer DNA oligonucleotide containing methylated 5-fluorocytosine at its target. The DNA is located in a cleft between the two domains of the protein and has the characteristic conformation of B-form DNA, except for a disrupted G-C base pair that contains the target cytosine. The cytosine residue has swung completely out of the DNA helix and is positioned in the active site, which itself has undergone a large conformational change. The DNA is contacted from both the major and the minor grooves, but almost all base-specific interactions between the enzyme and the recognition bases occur in the major groove, through two glycine-rich loops from the small domain. The structure suggests how the active nucleophile reaches its target, directly supports the proposed mechanism for cytosine-5 DNA methylation, and illustrates a novel mode of sequence-specific DNA recognition.
Collapse
|
|
31 |
740 |
2
|
Malone T, Blumenthal RM, Cheng X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 1995; 253:618-32. [PMID: 7473738 DOI: 10.1006/jmbi.1995.0577] [Citation(s) in RCA: 394] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous X-ray crystallographic studies have revealed that the catalytic domain of a DNA methyltransferase (Mtase) generating C5-methylcytosine bears a striking structural similarity to that of a Mtase generating N6-methyladenine. Guided by this common structure, we performed a multiple sequence alignment of 42 amino-Mtases (N6-adenine and N4-cytosine). This comparison revealed nine conserved motifs, corresponding to the motifs I to VIII and X previously defined in C5-cytosine Mtases. The amino and C5-cytosine Mtases thus appear to be more closely related than has been appreciated. The amino Mtases could be divided into three groups, based on the sequential order of motifs, and this variation in order may explain why only two motifs were previously recognized in the amino Mtases. The Mtases grouped in this way show several other group-specific properties, including differences in amino acid sequence, molecular mass and DNA sequence specificity. Surprisingly, the N4-cytosine and N6-adenine Mtases do not form separate groups. These results have implications for the catalytic mechanisms, evolution and diversification of this family of enzymes. Furthermore, a comparative analysis of the S-adenosyl-L-methionine and adenine/cytosine binding pockets suggests that, structurally and functionally, they are remarkably similar to one another.
Collapse
|
Comparative Study |
30 |
394 |
3
|
Cheng X, Roberts RJ. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res 2001; 29:3784-95. [PMID: 11557810 PMCID: PMC55914 DOI: 10.1093/nar/29.18.3784] [Citation(s) in RCA: 365] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Twenty AdoMet-dependent methyltransferases (MTases) have been characterized structurally by X-ray crystallography and NMR. These include seven DNA MTases, five RNA MTases, four protein MTases and four small molecule MTases acting on the carbon, oxygen or nitrogen atoms of their substrates. The MTases share a common core structure of a mixed seven-stranded beta-sheet (6 downward arrow 7 upward arrow 5 downward arrow 4 downward arrow 1 downward arrow 2 downward arrow 3 downward arrow) referred to as an 'AdoMet-dependent MTase fold', with the exception of a protein arginine MTase which contains a compact consensus fold lacking the antiparallel hairpin strands (6 downward arrow 7 upward arrow). The consensus fold is useful to identify hypothetical MTases during structural proteomics efforts on unannotated proteins. The same core structure works for very different classes of MTase including those that act on substrates differing in size from small molecules (catechol or glycine) to macromolecules (DNA, RNA and protein). DNA MTases use a 'base flipping' mechanism to deliver a specific base within a DNA molecule into a typically concave catalytic pocket. Base flipping involves rotation of backbone bonds in double-stranded DNA to expose an out-of-stack nucleotide, which can then be a substrate for an enzyme-catalyzed chemical reaction. The phenomenon is fully established for DNA MTases and for DNA base excision repair enzymes, and is likely to prove general for enzymes that require access to unpaired, mismatched or damaged nucleotides within base-paired regions in DNA and RNA. Several newly discovered MTase families in eukaryotes (DNA 5mC MTases and protein arginine and lysine MTases) offer new challenges in the MTase field.
Collapse
|
research-article |
24 |
365 |
4
|
Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, Wilson GG. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 1994; 22:1-10. [PMID: 8127644 PMCID: PMC307737 DOI: 10.1093/nar/22.1.1] [Citation(s) in RCA: 336] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The m5C-MTases form a closely-knit family of enzymes in which common amino acid sequence motifs almost certainly translate into common structural and functional elements. These common elements are located predominantly in a single structural domain that performs the chemistry of the reaction. Sequence-specific DNA recognition is accomplished by a separate domain that contains recognition elements not seen in other structures. This, combined with the novel and unexpected mechanistic feature of trapping a base out of the DNA helix, makes the m5C-MTases an intriguing class of enzymes for further study. The reaction pathway has suddenly become more complicated because of the base-flipping and much remains to be learned about the DNA recognition elements in the family members for which structural information is not yet available.
Collapse
|
research-article |
31 |
336 |
5
|
Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 2013; 1:319-31. [PMID: 24024167 PMCID: PMC3757694 DOI: 10.1016/j.redox.2013.04.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/21/2013] [Indexed: 12/04/2022] Open
Abstract
4-hydroxynonenal (HNE) is a lipid hydroperoxide end product formed from the oxidation of n-6 polyunsaturated fatty acids. The relative abundance of HNE within the vasculature is dependent not only on the rate of lipid peroxidation and HNE synthesis but also on the removal of HNE adducts by phase II metabolic pathways such as glutathione-S-transferases. Depending on its relative concentration, HNE can induce a range of hormetic effects in vascular endothelial and smooth muscle cells, including kinase activation, proliferation, induction of phase II enzymes and in high doses inactivation of enzymatic processes and apoptosis. HNE also plays an important role in the pathogenesis of vascular diseases such as atherosclerosis, diabetes, neurodegenerative disorders and in utero diseases such as pre-eclampsia. This review examines the known production, metabolism and consequences of HNE synthesis within vascular endothelial and smooth muscle cells, highlighting alterations in mitochondrial and endoplasmic reticulum function and their association with various vascular pathologies. HNE is a lipid peroxidation endproduct regulating vascular redox signaling. HNE detoxification is tightly regulated in vascular and other cell types. Elevated HNE levels are associated with various vascular diseases.
Collapse
Key Words
- 15d-PGJ2, 15-deoxy-Delta (12,14) prostaglandin-J2
- 4-hydroxynonenal
- AP-1, Activator protein-1
- AR, Aldose reductase
- ARE, Antioxidant response element
- ATF6, Activating transcription factor 6
- Akt, Protein kinase B
- BAEC, Bovine aortic endothelial cells
- BH4, Tetrahydrobiopterin
- BLMVEC, Bovine lung microvascular vein endothelial cells
- BPAEC, Bovine pulmonary arterial endothelial cells
- BTB, Broad complex Tramtrack and Bric–brac domain
- CHOP, C/EBP-homologous protein
- CREB, cAMP response element-binding protein
- EGFR, Epidermal growth factor receptor
- ER, Endoplasmic reticulum
- ERAD, Endoplasmic reticulum assisted degradation
- ERK1/2, Extracellular signal-regulated kinase 1/2
- Elk1, ETS domain-containing protein
- Endothelial cells
- EpRE, Electrophile response element
- FAK, Focal adhesion kinase
- FAP, Familial amyloidotic polyneuropathy
- GCLC, Glutamate cysteine ligase catalytic subunit
- GCLM, Glutamate cysteine ligase modifier subunit
- GS-DHN, Glutathionyl-1,4 dihydroxynonene
- GS-HNE, HNE-conjugates
- GSH, Glutathione
- GST, Glutathione-S-transferase
- GTPCH, Guanosine triphosphate cyclohydrolase I
- HASMC, Human aortic smooth muscle cells
- HCSMC, Human coronary smooth muscle cells
- HERP, Homocysteine inducible ER protein
- HMEC, Human microvascular endothelial cells
- HNE, 4-hydroxynonenal
- HO-1, Heme oxygenase-1
- HUVEC, Human umbilical vein endothelial cells
- Hsp-70/72/90, Heat shock proteins-70/ -72/ -90
- IRE1, Inositol requiring enzyme 1 IRE1
- IVR, Central intervening region
- JNK, c-jun N-terminal kinase
- Keap1, Kelch-like ECH-associated protein 1
- MASMC, Mouse aortic smooth muscle cells
- MEK1/2, Mitogen activated protein kinase kinase 1/2
- MMP-1/2, Matrix metalloproteinase-1/ -2
- MPEC, Mouse pancreatic islet endothelial cells
- NAC, N-acetylcysteine
- NFκB, Nuclear factor kappa B
- NO, Nitric oxide
- NQO1, NAD(P)H quinone oxidoreductase
- Nrf2
- Nrf2, Nuclear factor-E2-related factor 2
- PCEC, Porcine cerebral endothelial cells
- PDGF, Platelet-derived growth factor
- PDI, Protein disulfide isomerases
- PERK, Protein kinase-like endoplasmic reticulum kinase
- PKC, Protein kinase C
- PUFAs, Polyunsaturated fatty acids
- RASMC, Rat aortic smooth muscle cells
- ROS, Reactive oxygen species
- RVSMC, Rat vascular smooth muscle cells
- Redox signaling
- SMC, Smooth muscle cell
- TKR, Tyrosine kinase receptor
- UPR, Unfolded protein response
- Vascular biology
- Vascular smooth muscle cells
- eNOS, Endothelial nitric oxide synthase
- elF2α, Eukaryotic translation initiation factor 2α
- iNOS, Inducible nitric oxide synthase
- oxLDL, Oxidized low density lipoprotein
- tBHP, Tert-butylhydroperoxide
- xCT, cystine/glutamate amino acid transporter
Collapse
|
Review |
12 |
329 |
6
|
Cheng X, Kumar S, Posfai J, Pflugrath JW, Roberts RJ. Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell 1993; 74:299-307. [PMID: 8343957 DOI: 10.1016/0092-8674(93)90421-l] [Citation(s) in RCA: 293] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The first three-dimensional structure of a DNA methyltransferase is presented. The crystal structure of the DNA (cytosine-5)-methyltransferase, M.HhaI (recognition sequence: GCGC), complexed with S-adenosyl-L-methionine has been determined and refined at 2.5 A resolution. The core of the structure is dominated by sequence motifs conserved among all DNA (cytosine-5)-methyltransferases, and these are responsible for cofactor binding and methyltransferase function.
Collapse
|
|
32 |
293 |
7
|
Abstract
Base flipping is the phenomenon whereby a base in normal B-DNA is swung completely out of the helix into an extrahelical position. It was discovered in 1994 when the first co-crystal structure was reported for a cytosine-5 DNA methyltransferase binding to DNA. Since then it has been shown to occur in many systems where enzymes need access to a DNA base to perform chemistry on it. Many DNA glycosylases that remove abnormal bases from DNA use this mechanism. This review describes systems known to use base flipping as well as many systems where it is likely to occur but has not yet been rigorously demonstrated. The mechanism and evolution of base flipping are also discussed.
Collapse
|
Review |
27 |
292 |
8
|
Boas DA, Gaudette T, Strangman G, Cheng X, Marota JJ, Mandeville JB. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage 2001; 13:76-90. [PMID: 11133311 DOI: 10.1006/nimg.2000.0674] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Near infrared spectroscopy (NIRS) can detect changes in the concentrations of oxy-hemoglobin ([HbO]) and deoxy-hemoglobin ([Hb]) in tissue based upon differential absorption at multiple wavelengths. The common analysis of NIRS data uses the modified Beer-Lambert law, which is an empirical formulation that assumes global concentration changes. We used simulations to examine the errors that result when this analysis is applied to focal hemodynamic changes, and we performed simultaneous NIRS measurements during a motor task in adult humans and a neonate to evaluate the dependence of the measured changes on detector-probe geometry. For both simulations and in vivo measurements, the wide range of NIRS results was compared to an imaging analysis, diffuse optical tomography (DOT). The results demonstrate that relative changes in [HbO] and [Hb] cannot, in general, be quantified with NIRS. In contrast to that method, DOT analysis was shown to accurately quantify simulated changes in chromophore concentrations. These results and the general principles suggest that DOT can accurately measure changes in [Hb] and [HbO], but NIRS cannot accurately determine even relative focal changes in these chromophore concentrations. For the standard NIRS analysis to become more accurate for focal changes, it must account for the position of the focal change relative to the source and detector as well as the wavelength dependent optical properties of the medium.
Collapse
|
Clinical Trial |
24 |
260 |
9
|
Zhou L, Cheng X, Connolly B, Dickman M, Hurd P, Hornby D. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol 2002; 321:591-9. [PMID: 12206775 PMCID: PMC2713825 DOI: 10.1016/s0022-2836(02)00676-9] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mechanism-based inhibitors of enzymes, which mimic reactive intermediates in the reaction pathway, have been deployed extensively in the analysis of metabolic pathways and as candidate drugs. The inhibition of cytosine-[C5]-specific DNA methyltransferases (C5 MTases) by oligodeoxynucleotides containing 5-azadeoxycytidine (AzadC) and 5-fluorodeoxycytidine (FdC) provides a well-documented example of mechanism-based inhibition of enzymes central to nucleic acid metabolism. Here, we describe the interaction between the C5 MTase from Haemophilus haemolyticus (M.HhaI) and an oligodeoxynucleotide duplex containing 2-H pyrimidinone, an analogue often referred to as zebularine and known to give rise to high-affinity complexes with MTases. X-ray crystallography has demonstrated the formation of a covalent bond between M.HhaI and the 2-H pyrimidinone-containing oligodeoxynucleotide. This observation enables a comparison between the mechanisms of action of 2-H pyrimidinone with other mechanism-based inhibitors such as FdC. This novel complex provides a molecular explanation for the mechanism of action of the anti-cancer drug zebularine.
Collapse
|
research-article |
23 |
251 |
10
|
Zhang X, Zhou L, Cheng X. Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J 2000; 19:3509-19. [PMID: 10899106 PMCID: PMC313989 DOI: 10.1093/emboj/19.14.3509] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein arginine methylation has been implicated in signal transduction, nuclear transport and transcription regulation. Protein arginine methyltransferases (PRMTs) mediate the AdoMet-dependent methylation of many proteins, including many RNA binding proteins involved in various aspects of RNA processing and/or transport. Here we describe the crystal structure of the rat PRMT3 catalytic core in complex with reaction product AdoHcy, determined at 2.0 A resolution. The results reveal a two-domain structure: an AdoMet-binding domain and a barrel-like domain. The AdoMet-binding domain is a compact version of the consensus AdoMet-dependent methyltransferase fold. The active site is situated in a cone-shaped pocket between the two domains. The residues that make up the active site are conserved across the PRMT family, consisting of a double-E loop containing two invariant Glu and one His-Asp proton-relay system. The structure suggests a mechanism for the methylation reaction and provides the structural basis for functional characterization of the PRMT family. In addition, crystal packing and solution behavior suggest dimer formation of the PRMT3 core.
Collapse
|
research-article |
25 |
242 |
11
|
Cheng X. Structure and function of DNA methyltransferases. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1995; 24:293-318. [PMID: 7663118 DOI: 10.1146/annurev.bb.24.060195.001453] [Citation(s) in RCA: 242] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In prokaryotes, the major role of DNA methylation is to protect host DNA against degradation by restriction enzymes. In eukaryotes, DNA methylation has been implicated in the control of several cellular processes, including differentiation, gene regulation, and embryonic development. Structural work on HhaI DNA methyltransferase demonstrates that the substrate nucleotide is completely flipped out of the helix during the modification reaction and has provided much insight into the enzymatic properties of S-adenosyl-L-methionine (SAM)-dependent DNA-modifying enzymes. Structural comparison of three enzymes, HhaI C5-cytosine methyltransferase, TaqI N6-adenine methyltransferase, and catechol O-methyltransferase, reveals a striking similarity in protein folding and indicates that many SAM-dependent methyltransferases have a common catalytic-domain structure. This feature permits the prediction of tertiary structure for other DNA, RNA, protein, and small-molecule methyltransferases from their amino acid sequences, including the eukaryotic CpG methyltransferases.
Collapse
|
Review |
30 |
242 |
12
|
Schluckebier G, O'Gara M, Saenger W, Cheng X. Universal catalytic domain structure of AdoMet-dependent methyltransferases. J Mol Biol 1995; 247:16-20. [PMID: 7897657 DOI: 10.1006/jmbi.1994.0117] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The DNA methyltransferases, M.HhaI and M.TaqI, and catechol O-methyl-transferase (COMT) catalyze the transfer of a methyl group from the cofactor S-adenosyl-L-methionine (AdoMet) to carbon-5 of cytosine, to nitrogen-6 of adenine, and to a hydroxyl group of catechol, respectively. The catalytic domains of the bilobal proteins, M.HhaI and M.TaqI, and the entire single domain of COMT have similar folding with an alpha/beta structure containing a mixed central beta-sheet. The functional residues are located in equivalent regions at the carboxyl ends of the parallel beta-strands. The cofactor binding sites are almost identical and the essential catalytic amino acids coincide. The comparable protein folding and the existence of equivalent amino acids in similar secondary and tertiary positions indicate that many (if not all) AdoMet-dependent methyltransferases have a common catalytic domain structure. This permits tertiary structure prediction of other DNA, RNA, protein, and small-molecule AdoMet-dependent methyltransferases from their amino acid sequences.
Collapse
|
Comparative Study |
30 |
214 |
13
|
Cheng X, Zhang X, Pflugrath JW, Studier FW. The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proc Natl Acad Sci U S A 1994; 91:4034-8. [PMID: 8171031 PMCID: PMC43717 DOI: 10.1073/pnas.91.9.4034] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The lysozyme of bacteriophage T7 is a bifunctional protein that cuts amide bonds in the bacterial cell wall and binds to and inhibits transcription by T7 RNA polymerase. The structure of a mutant T7 lysozyme has been determined by x-ray crystallography and refined at 2.2-A resolution. The protein folds into an alpha/beta-sheet structure that has a prominent cleft. A zinc atom is located in the cleft, bound directly to three amino acids and, through a water molecule, to a fourth. Zinc is required for amidase activity but not for inhibition of T7 RNA polymerase. Alignment of the zinc ligands of T7 lysozyme with those of carboxypeptidase A and thermolysin suggests structural similarity among the catalytic sites for the amidase and these zinc proteases. Mutational analysis identified presumed catalytic residues for amidase activity within the cleft and a surface that appears to be the site of binding to T7 RNA polymerase. Binding of T7 RNA polymerase inhibits amidase activity.
Collapse
|
research-article |
31 |
177 |
14
|
Cheng X, Ma Y, Moore M, Hemmings BA, Taylor SS. Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. Proc Natl Acad Sci U S A 1998; 95:9849-54. [PMID: 9707564 PMCID: PMC21425 DOI: 10.1073/pnas.95.17.9849] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although phosphorylation of Thr-197 in the activation loop of the catalytic subunit of cAMP-dependent protein kinase (PKA) is an essential step for its proper biological function, the kinase responsible for this reaction in vivo has remained elusive. Using nonphosphorylated recombinant catalytic subunit as a substrate, we have shown that the phosphoinositide-dependent protein kinase, PDK1, expressed in 293 cells, phosphorylates and activates the catalytic subunit of PKA. The phosphorylation of PKA by PDK1 is rapid and is insensitive to PKI, the highly specific heat-stable protein kinase inhibitor. A mutant form of the catalytic subunit where Thr-197 was replaced with Asp was not a substrate for PDK1. In addition, phosphorylation of the catalytic subunit can be monitored immunochemically by using antibodies that recognize Thr-197 phosphorylated enzyme but not unphosphorylated enzyme or the Thr197Asp mutant. PDK1, or one of its homologs, is thus a likely candidate for the in vivo PKA kinase that phosphorylates Thr-197. This finding opens a new dimension in our thinking about this ubiquitous protein kinase and how it is regulated in the cell.
Collapse
|
research-article |
27 |
170 |
15
|
Cheng X, Ku CH, Siow RCM. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis. Free Radic Biol Med 2013; 64:4-11. [PMID: 23880293 DOI: 10.1016/j.freeradbiomed.2013.07.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 01/27/2023]
Abstract
MicroRNAs are now thought to play a central role in the regulation of many diverse aspects of cell biology; however, it remains to be fully elucidated how microRNAs can orchestrate cellular redox homeostasis, which plays a central role in a multitude of physiological and pathophysiological processes. The redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) serves as a "master regulator" of cell survival through the coordinated induction of phase II and antioxidant defense enzymes to counteract oxidative stress and modulate redox signaling events. MicroRNAs are able to "fine-tune" the regulation of processes including those directly interacting with the Nrf2 pathway and the generation of reactive oxygen species (ROS). This review highlights that cellular redox homeostasis can be regulated by microRNAs through their modulation of Nrf2-driven antioxidant gene expression as well as key enzymes that generate ROS, which in turn can alter the biogenesis and processing of microRNAs. Therefore redox sensitive microRNAs or "redoximiRs" add an important regulatory mechanism for redox signaling beyond the well-characterized actions of Nrf2. The potential exists for microRNA-based therapies where diminished antioxidant defenses and dysregulated redox signaling can lead to cardiovascular diseases, cancers, neurodegeneration, and accelerated aging.
Collapse
|
Review |
12 |
167 |
16
|
Cheng X, Kuang B, Yang Y. Numerical analysis of heat transfer in supercritical water cooled flow channels. NUCLEAR ENGINEERING AND DESIGN 2007. [DOI: 10.1016/j.nucengdes.2006.06.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
18 |
165 |
17
|
Dong A, Yoder JA, Zhang X, Zhou L, Bestor TH, Cheng X. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res 2001; 29:439-48. [PMID: 11139614 PMCID: PMC29660 DOI: 10.1093/nar/29.2.439] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNMT2 is a human protein that displays strong sequence similarities to DNA (cytosine-5)-methyltransferases (m(5)C MTases) of both prokaryotes and eukaryotes. DNMT2 contains all 10 sequence motifs that are conserved among m(5)C MTases, including the consensus S:-adenosyl-L-methionine-binding motifs and the active site ProCys dipeptide. DNMT2 has close homologs in plants, insects and Schizosaccharomyces pombe, but no related sequence can be found in the genomes of Saccharomyces cerevisiae or Caenorhabditis elegans. The crystal structure of a deletion mutant of DNMT2 complexed with S-adenosyl-L-homocysteine (AdoHcy) has been determined at 1.8 A resolution. The structure of the large domain that contains the sequence motifs involved in catalysis is remarkably similar to that of M.HHAI, a confirmed bacterial m(5)C MTase, and the smaller target recognition domains of DNMT2 and M.HHAI are also closely related in overall structure. The small domain of DNMT2 contains three short helices that are not present in M.HHAI. DNMT2 binds AdoHcy in the same conformation as confirmed m(5)C MTases and, while DNMT2 shares all sequence and structural features with m(5)C MTases, it has failed to demonstrate detectable transmethylase activity. We show here that homologs of DNMT2, which are present in some organisms that are not known to methylate their genomes, contain a specific target-recognizing sequence motif including an invariant CysPheThr tripeptide. DNMT2 binds DNA to form a denaturant-resistant complex in vitro. While the biological function of DNMT2 is not yet known, the strong binding to DNA suggests that DNMT2 may mark specific sequences in the genome by binding to DNA through the specific target-recognizing motif.
Collapse
|
research-article |
24 |
164 |
18
|
Abstract
We have determined the structure of PvuII endonuclease complexed with cognate DNA by X-ray crystallography. The DNA substrate is bound with a single homodimeric protein, each subunit of which reveals three structural regions. The catalytic region strongly resembles structures of other restriction endonucleases, even though these regions have dissimilar primary sequences. Comparison of the active site with those of EcoRV and EcoRI endonucleases reveals a conserved triplet sequence close to the reactive phosphodiester group and a conserved acidic pair that may represent the ligands for the catalytic cofactor Mg2+. The DNA duplex is not significantly bent and maintains a B-DNA-like conformation. The subunit interface region of the homodimeric protein consists of a pseudo-three-helix bundle. Direct contacts between the protein and the base pairs of the PvuII recognition site occur exclusively in the major groove through two antiparallel beta strands from the sequence recognition region of the protein. Water-mediated contacts are made in the minor grooves to central bases of the site. If restriction enzymes do share a common ancestor, as has been proposed, their catalytic regions have been very strongly conserved, while their subunit interfaces and DNA sequence recognition regions have undergone remarkable structural variation.
Collapse
|
|
31 |
158 |
19
|
Xu RM, Carmel G, Sweet RM, Kuret J, Cheng X. Crystal structure of casein kinase-1, a phosphate-directed protein kinase. EMBO J 1995; 14:1015-23. [PMID: 7889932 PMCID: PMC398173 DOI: 10.1002/j.1460-2075.1995.tb07082.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The structure of a truncated variant of casein kinase-1 from Schizosaccharomyces pombe, has been determined in complex with MgATP at 2.0 A resolution. The model resembles the 'closed', ATP-bound conformations of the cyclin-dependent kinase 2 and the cAMP-dependent protein kinase, with clear differences in the structure of surface loops that impart unique features to casein kinase-1. The structure is of unphosphorylated, active conformation of casein kinase-1 and the peptide-binding site is fully accessible to substrate.
Collapse
|
|
30 |
151 |
20
|
Cheng X, Siow RCM, Mann GE. Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway. Antioxid Redox Signal 2011; 14:469-87. [PMID: 20524845 DOI: 10.1089/ars.2010.3283] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes is an age-related disease associated with vascular pathologies, including severe blindness, renal failure, atherosclerosis, and stroke. Reactive oxygen species (ROS), especially mitochondrial ROS, play a key role in regulating the cellular redox status, and an overproduction of ROS may in part underlie the pathogenesis of diabetes and other age-related diseases. Cells have evolved endogenous defense mechanisms against sustained oxidative stress such as the redox-sensitive transcription factor nuclear factor E2-related factor 2 (Nrf2), which regulates antioxidant response element (ARE/electrophile response element)-mediated expression of detoxifying and antioxidant enzymes and the cystine/glutamate transporter involved in glutathione biosynthesis. We hypothesize that diminished Nrf2/ARE activity contributes to increased oxidative stress and mitochondrial dysfunction in the vasculature leading to endothelial dysfunction, insulin resistance, and abnormal angiogenesis observed in diabetes. Sustained hyperglycemia further exacerbates redox dysregulation, thereby providing a positive feedback loop for severe diabetic complications. This review focuses on the role that Nrf2/ARE-linked gene expression plays in regulating endothelial redox homeostasis in health and type 2 diabetes, highlighting recent evidence that Nrf2 may provide a therapeutic target for countering oxidative stress associated with vascular disease and aging.
Collapse
|
Review |
14 |
150 |
21
|
Cheng X, Hart GW. Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation activity. J Biol Chem 2001; 276:10570-5. [PMID: 11150304 DOI: 10.1074/jbc.m010411200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Linked N-acetylglucosamine (O-GlcNAc) is a dynamic post-translational modification abundant on nuclear and cytoplasmic proteins. Recently, we demonstrated that the murine estrogen receptor-beta (mER-beta) is alternatively O-GlcNAcylated or O-phosphorylated at Ser(16). Analyses of mER-betas containing mutations in the three adjacent hydroxyl amino acids at this locus confirmed that Ser(16) is the major site of O-GlcNAc modification on mER-beta and that mutants lacking hydroxyl amino acids at this locus are glycosylation-deficient. Pulse-chase studies in transfected Cos-1 cells demonstrate that the turnover rate of the mutant containing a glutamic acid moiety at Ser(16), which mimics constitutive phosphorylation at this locus, is faster than that of the wild type receptor. Whereas, the mutant without hydroxyl amino acids at this locus is degraded at a slower rate, indicating that O-GlcNAc/O-phosphate at Ser(16) modulates mER-beta protein stability. Luciferase reporter assays also show that the Ser(16) locus mutants have abnormal transactivation activities, suggesting that the two alternative modifications at Ser(16) on mER-beta may also be involved in transcriptional regulation. DNA mobility shift assays show that the mutants do not have altered DNA binding. Green fluorescence protein constructs of both wild type and mutant forms of mER-beta show that the receptor is nearly exclusively localized within the nucleus. It appears that reciprocal occupancy of Ser(16) by either O-phosphate or O-GlcNAc modulates the degradation and activity of mER-beta.
Collapse
|
|
24 |
148 |
22
|
O'Gara M, Klimasauskas S, Roberts RJ, Cheng X. Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for HhaL methyltransferase-DNA-AdoHcy complexes. J Mol Biol 1996; 261:634-45. [PMID: 8800212 DOI: 10.1006/jmbi.1996.0489] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The refined crystal structures of HhaI methyltransferase complexed with cognate unmethylated or methylated DNA together with S-adenosyl-L-homocysteine, along with the previously-solved binary and covalent ternary structures, offer a detailed picture of the active site at individual stages throughout the reaction cycle. This picture supports and extends a proposed mechanism for C5-cytosine methylation that may be general for the whole family of C5-cytosine methyltransferases. The structures of the two new complexes have been refined to crystallographic R-factors of 0.189 and 0.178, respectively, at 2.7 A resolution. We observe that both unmethylated 2'-deoxycytidine and 5-methyl-2'-deoxycytidine flip out of the DNA helix and fit into the active site of the enzyme. The catalytic sulfur atom of Cys81 interacts strongly with C6. The C5 methyl group of the flipped 5-methyl-2'-deoxycytidine is bent approximately 50 degrees out of the plane of the cytosine ring and towards the sulfur atom of S-adenosyl-L-homocysteine. This unusual position is probably due to partial sp3 character at C5 and C6 and to steric effects of the conserved amino acid residues Pro80 and Cys81. Two water molecules are held near the hydrophobic edge (C5 and C6) of the flipped cytosine by two conserved amino acid residues (Gln82 and Asn304) and the phosphoryl oxygen atom of the phosphate group 3' to the flipped nucleotide, and one of them may serve as the general base for eliminating the proton from C5. Protonation of the cytosine N3 during the methylation reaction may involve Glu119, which itself might be protonated via a water-mediated interaction between the terminal carboxyl group of Glu119 and the amino group of the methionine moiety of S-adenosyl-L-methionine. The cofactor thus plays two key roles in the reaction.
Collapse
|
Comparative Study |
29 |
146 |
23
|
Gong W, O'Gara M, Blumenthal RM, Cheng X. Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. Nucleic Acids Res 1997; 25:2702-15. [PMID: 9207015 PMCID: PMC146797 DOI: 10.1093/nar/25.14.2702] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have determined the structure of Pvu II methyltransferase (M. Pvu II) complexed with S -adenosyl-L-methionine (AdoMet) by multiwavelength anomalous diffraction, using a crystal of the selenomethionine-substituted protein. M. Pvu II catalyzes transfer of the methyl group from AdoMet to the exocyclic amino (N4) nitrogen of the central cytosine in its recognition sequence 5'-CAGCTG-3'. The protein is dominated by an open alpha/beta-sheet structure with a prominent V-shaped cleft: AdoMet and catalytic amino acids are located at the bottom of this cleft. The size and the basic nature of the cleft are consistent with duplex DNA binding. The target (methylatable) cytosine, if flipped out of the double helical DNA as seen for DNA methyltransferases that generate 5-methylcytosine, would fit into the concave active site next to the AdoMet. This M. Pvu IIalpha/beta-sheet structure is very similar to those of M. Hha I (a cytosine C5 methyltransferase) and M. Taq I (an adenine N6 methyltransferase), consistent with a model predicting that DNA methyltransferases share a common structural fold while having the major functional regions permuted into three distinct linear orders. The main feature of the common fold is a seven-stranded beta-sheet (6 7 5 4 1 2 3) formed by five parallel beta-strands and an antiparallel beta-hairpin. The beta-sheet is flanked by six parallel alpha-helices, three on each side. The AdoMet binding site is located at the C-terminal ends of strands beta1 and beta2 and the active site is at the C-terminal ends of strands beta4 and beta5 and the N-terminal end of strand beta7. The AdoMet-protein interactions are almost identical among M. Pvu II, M. Hha I and M. Taq I, as well as in an RNA methyltransferase and at least one small molecule methyltransferase. The structural similarity among the active sites of M. Pvu II, M. Taq I and M. Hha I reveals that catalytic amino acids essential for cytosine N4 and adenine N6 methylation coincide spatially with those for cytosine C5 methylation, suggesting a mechanism for amino methylation.
Collapse
|
research-article |
28 |
141 |
24
|
Croyle MA, Cheng X, Wilson JM. Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther 2001; 8:1281-90. [PMID: 11571564 DOI: 10.1038/sj.gt.3301527] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2001] [Accepted: 06/11/2001] [Indexed: 11/09/2022]
Abstract
This study summarizes our initial efforts to address an issue that is critical to the success of any multicenter gene therapy clinical trial - maintenance of vector viability during shipping and storage at remote test sites. We have identified formulation and processing factors that influence stability of viral preparations such as selection of appropriate buffer systems, cryoprotectants, and storage conditions. Adenovirus and adeno-associated virus expressing E. coli beta-galactosidase (lacZ) were suspended in blends of complex carbohydrates, cyclodextrins and various surfactants. X-gal stains of 293 and 84-31 cells were used to determine infectious titer of all preparations. Potassium phosphate-buffered preparations consistently maintained high viral titers after storage at -20 and 4 degrees C. Blends of sucrose, mannitol, and surfactant showed negligible loss of titer for 35 days at 4 degrees C. Formulations of sucrose and cyclodextrin were stable for 2 years at -20 degrees C. Negligible loss in titer was observed in unit-dose viral preparations lyophilized in sucrose and stored at 4 degrees C for 1 year after an initial loss of 0.5 log due to processing. Studies with lyophilized sucrose/mannitol blends have shown that viral recovery after processing is directly related to the final moisture content of the dried product. Virus concentration also plays a significant role in recovery after processing with highly concentrated preparations showing minimal loss in titer after lyophilization. In summary, lyophilized preparations that can be shipped and stored at 25 degrees C offer a solution to the current problem of distribution of viral vectors for clinical trials.
Collapse
|
|
24 |
137 |
25
|
Cheng X, Cole RN, Zaia J, Hart GW. Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. Biochemistry 2000; 39:11609-20. [PMID: 10995228 DOI: 10.1021/bi000755i] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Estrogen receptor beta, a homologue to estrogen receptor alpha, is a new member of the steroid hormone receptor family. Recently, we documented that estrogen receptor alpha, like other transcription factors, is modified by O-linked N-acetylglucosamine (O-GlcNAc), a ubiquitous transitory posttranslational modification on nuclear and cytoplasmic proteins. Here, we report that estrogen receptor beta is alternatively modified by either O-GlcNAc or O-phosphate. Lectin chromatography of in vitro translated protein first suggested that murine estrogen receptor beta (mER-beta) is O-GlcNAcylated. Structural characterization of the carbohydrate moieties on mER-beta, overexpressed in insect Sf9 cells, confirmed the presence of O-GlcNAc. mER-beta, overexpressed in mammalian cells, is also O-GlcNAcylated. The major site of O-GlcNAc on mER-beta from Sf9 cells is Ser(16) near the N-terminus. Concomitant analyses also documented the O-phosphorylation of mER-beta at Ser(16). MALDI-TOF mass spectrometry showed alternative occupancy of this locus by these two abundant and dynamic posttranslational modifications. The localization of a major O-GlcNAc/O-phosphate site in proximity of the transactivation domain and as part of a PEST region (target sequences for rapid protein degradation) on mER-beta suggests that these modifications may play a role in regulating estrogen receptor beta transactivation and turnover.
Collapse
|
|
25 |
137 |