76
|
Pokorná P, Schwarz J, Krejci R, Swietlicki E, Havránek V, Ždímal V. Comparison of PM 2.5 chemical composition and sources at a rural background site in Central Europe between 1993/1994/1995 and 2009/2010: Effect of legislative regulations and economic transformation on the air quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:841-851. [PMID: 29909310 DOI: 10.1016/j.envpol.2018.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
From December 1993 to January 1995 and from October 2009 to October 2010, a total of 320 and 365 daily samples of the PM2.5 were collected at a rural background site (National Atmospheric Observatory Košetice) in Central Europe. The PM2.5 samples were analyzed for 29 and 26 elements respectively by Particle-Induced X-ray Emission (PIXE) and water-soluble inorganic ions by Ion Chromatography (IC) in 2009/2010. The Positive Matrix Factorization (PMF) was applied to the chemical composition of PM2.5 to determine its sources. The decreasing trends of almost all elements concentrations, especially the metals regulated by the EU Directive (2004/107/EC) are evident. The annual median ratios indicate a decrease in concentrations of the PM2.5 elements. The slight increase of K concentrations and Spearman's rank correlation coefficient rs 0.09 K/Se points to a rise in residential wood combustion. The S concentrations are nearly comparable (higher mean in 2009/2010, while the annual median ratio is under 1). The five major source types in the mid-1990s were ascribed to brown coal combustion, oil combustion, sea salt and dust - long-range transport, re-suspended dust and black coal combustion. The industrial combustion of brown and/or black coal (rs 0.75 Se/As, rs 0.57 Ga/Ge and rs 0.20 As/Zn) and oil (rs 0.72 V/Ni) of the regional origin dominated. In the 1990s, the potential source regions were the border area of Czech Republic, German and Poland (brown coal), the Moravia-Silesia region at the Czech-Polish border (black coal), and Slovakia, Austria, Hungary, and the Balkans (oil). In 2009/2010, the apportioned sources were sulfate, residential heating, nitrate, industry, re-suspended dust, and sea salt and dust - long-range transport. The secondary sulfate from coal combustion and residential biomass burning (rs 0.96, K/K+) of local origin dominated. The declining trend of the elemental concentrations and change in the source pattern of the regional background PM2.5 in Central Europe between the mid-1990s and 2009/10 reflects the economic transformation and impact of stricter legislation in Central Europe.
Collapse
|
77
|
Tadros CV, Crawford J, Treble PC, Baker A, Cohen DD, Atanacio AJ, Hankin S, Roach R. Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:432-443. [PMID: 29486437 DOI: 10.1016/j.scitotenv.2018.02.231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Characterisation of atmospheric aerosols is of major importance for: climate, the hydrological cycle, human health and policymaking, biogeochemical and palaeo-climatological studies. In this study, the chemical composition and source apportionment of PM2.5 (particulate matter with aerodynamic diameters less than 2.5μm) at Yarrangobilly, in the Snowy Mountains, SE Australia are examined and quantified. A new aerosol monitoring network was deployed in June 2013 and aerosol samples collected during the period July 2013 to July 2017 were analysed for 22 trace elements and black carbon by ion beam analysis techniques. Positive matrix factorisation and back trajectory analysis and trajectory clustering methods were employed for source apportionment and to isolate source areas and air mass travel pathways, respectively. This study identified the mean atmospheric PM2.5 mass concentration for the study period was (3.3±2.5)μgm-3. It is shown that automobile (44.9±0.8)%, secondary sulfate (21.4±0.9)%, smoke (12.3±0.6)%, soil (11.3±0.5)% and aged sea salt (10.1±0.4)% were the five PM2.5 source types, each with its own distinctive trends. The automobile and smoke sources were ascribed to a significant local influence from the road network and bushfire and hazard reduction burns, respectively. Long-range transport are the dominant sources for secondary sulfate from coal-fired power stations, windblown soil from the inland saline regions of the Lake Eyre and Murray-Darling Basins, and aged sea salt from the Southern Ocean to the remote alpine study site. The impact of recent climate change was recognised, as elevated smoke and windblown soil events correlated with drought and El Niño periods. Finally, the overall implications including potential aerosol derived proxies for interpreting palaeo-archives are discussed. To our knowledge, this is the first long-term detailed temporal and spatial characterisation of PM2.5 aerosols for the region and provides a crucial dataset for a range of multidisciplinary research.
Collapse
|
78
|
Kalinchuk VV, Mishukov VF, Astakhov AS. Arctic source for elevated atmospheric mercury (Hg 0) in the western Bering Sea in the summer of 2013. J Environ Sci (China) 2018; 68:114-121. [PMID: 29908730 DOI: 10.1016/j.jes.2016.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/30/2016] [Accepted: 12/27/2016] [Indexed: 06/08/2023]
Abstract
Measurements of gaseous elemental mercury (Hg0) in the marine boundary layer of the western Bering Sea were performed using an automatic mercury analyzer RA 915+ (Ltd. "Lumex", St. Petersburg, Russia) aboard the Russian research vessel Academician M.A. Lavrentev from 3 to 20 August 2013. Hg0 concentrations varied from 0.3 to 2.1ng/m3 (n=4783); the average value (1.1±0.3ng/m3) was lower than both the background range of the Northern Hemisphere (1.5-1.7ng/m3) and average values previously observed in the Bering Sea, and corresponded to the background concentrations of the Southern Hemisphere (1.1-1.3ng/m3). Maximum Hg0 concentrations were observed within air masses that came from the lower troposphere of the central Arctic. Under these conditions, Hg0 ranged between 1.1 and 2.1ng/m3 with an average of 1.5±0.2ng/m3 (n=1183). Except for these periods, Hg0 concentrations during the rest of the study varied from 0.3 to 1.8ng/m3, with an average value of 1.0±0.2ng/m3 (n=3600). Our results support the hypothesis that, in the summer, air masses from the central Arctic Ocean can be an exporter of mercury to lower latitudes. Perhaps the atmospheric transport of elevated concentrations of Hg0 into lower latitudes may have implications for the biologic and economic health of important fisheries, such as the Bering Sea.
Collapse
|
79
|
Kalinchuk V, Lopatnikov E, Astakhov A. Gradient measurements of gaseous elemental mercury (Hg 0) in the marine boundary layer of the northwest Sea of Japan (East Sea). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:1124-1136. [PMID: 29223293 DOI: 10.1016/j.envpol.2017.11.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Gaseous elemental mercury (Hg0) is a prolific and persistent contaminant in the atmosphere. Atmospheric concentrations of Hg0 were determined from 17 September to 7 October 2015 in the northwest Sea of Japan aboard the Russian research vessel Professor Gagarinsky. Simultaneous measurements of Hg0 concentrations were performed 2 m and 20 m above the sea surface using automatic Hg0 analysers RA-915M and RA-915+, respectively. Concentrations ranged from 0.3 to 25.9 ng/m3 (n = 5207) and from 0.3 to 27.8 ng/m3 (n = 4415), with medians of 1.7 and 1.6 ng/m3, respectively. Elevated Hg0 was observed during three episodes from 19 to 22 September, likely caused by one or more of the following factors: 1) atmospheric transport of Hg0 from the west and south-west (from N. Korea, China, and the Yellow Sea region); 2) Hg0 emission from the sea due to pollution by water from the Tumannaya River; or 3) underwater geological activities. Increased Hg0 concentration was observed during periods when air masses flowed from the south, and low concentrations were observed when air masses came from the north. A daytime increase of Hg0 concentrations at a height of 2 m occurred simultaneously with decreasing Hg0 at a height of 20 m. These diurnal variations suggest that two contrasting processes occur during the daytime in the marine boundary layer (MBL): Hg0 emission from the sea surface and Hg0 oxidation in the MBL by active halogens formed by photolysis.
Collapse
|
80
|
Ni ZZ, Luo K, Zhang JX, Feng R, Zheng HX, Zhu HR, Wang JF, Fan JR, Gao X, Cen KF. Assessment of winter air pollution episodes using long-range transport modeling in Hangzhou, China, during World Internet Conference, 2015. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:550-561. [PMID: 29428709 DOI: 10.1016/j.envpol.2018.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/18/2017] [Accepted: 01/20/2018] [Indexed: 05/19/2023]
Abstract
A winter air pollution episode was observed in Hangzhou, South China, during the Second World Internet Conference, 2015. To study the pollution characteristics and underlying causes, the Weather Research and Forecasting with Chemistry model was used to simulate the spatial and temporal evolution of the pollution episode from December 8 to 19, 2015. In addition to scenario simulations, analysis of the atmospheric trajectory and synoptic weather conditions were also performed. The results demonstrated that control measures implemented during the week preceding the conference reduced the fine particulate matter (PM2.5) pollution level to some extent, with a decline in the total PM2.5 concentration in Hangzhou of 15% (7%-25% daily). Pollutant long-range transport, which occurred due to a southward intrusion of strong cold air driven by the Siberia High, led to severe pollution in Hangzhou on December 15, 2015, accounting for 85% of the PM2.5 concentration. This study provides new insights into the challenge of winter pollution prevention in Hangzhou. For adequate pollution prevention, more regional collaborations should be fostered when creating policies for northern China.
Collapse
|
81
|
Kim JT, Choi YJ, Barghi M, Yoon YJ, Kim JH, Kim JH, Chang YS. Occurrence and distribution of old and new halogenated flame retardants in mosses and lichens from the South Shetland Islands, Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:302-311. [PMID: 29294456 DOI: 10.1016/j.envpol.2017.12.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
The spatial distribution of old and new halogenated flame retardants (HFRs), including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), and Dechlorane Plus (DPs) and related compounds (Dechloranes), were investigated in the South Shetland Islands of Antarctica, employing mosses (Andreaea depressinervis and Sanionia uncinata) and lichens (Himantormia lugubris and Usnea antarctica) as bioindicators. The levels of PBDEs, HBCDs, and Dechloranes ranged from 3.2 to 71.5, 0.63-960, and 2.04-2400 pg/g dw (dry weight) in the mosses, and from 1.5 to 188, 0.1-21.1, and 1.0-83.8 pg/g dw in the lichens, respectively. HFRs were detected in all of the collected samples, even in those from the remote regions. The dominance of high brominated-BDE, anti-DP fraction, and HBCD diastereomeric ratio in the samples from remote regions suggested the long-range atmospheric transport (LRAT) of the HFRs. The relatively high HBCDs and Dechloranes contamination and their similar chemical profile with commercial products in the vicinity of Antarctic research stations indicated that human activities might act as local sources, while PBDEs appeared to be more influenced by LRAT and bioaccumulation rather than local emission. Lastly, the relatively high HFR levels and dominance of more brominated BDEs at the Narębski Point and in the wet lowlands suggested that penguin colonies and melting glacier water could be secondary HFR sources in Antarctica. The HFR levels differed by sample species, suggesting that further research on the factors associated with the HFR accumulation in the different species is necessary. This study firstly reports the alternative HFR levels in a wide area of the Antarctica, which could improve our understanding of the source, transport, and fate of the HFRs.
Collapse
|
82
|
Perrone MG, Vratolis S, Georgieva E, Török S, Šega K, Veleva B, Osán J, Bešlić I, Kertész Z, Pernigotti D, Eleftheriadis K, Belis CA. Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1515-1529. [PMID: 29734626 PMCID: PMC5821697 DOI: 10.1016/j.scitotenv.2017.11.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/22/2017] [Accepted: 11/08/2017] [Indexed: 05/26/2023]
Abstract
The contribution of main PM pollution sources and their geographic origin in three urban sites of the Danube macro-region (Zagreb, Budapest and Sofia) were determined by combining receptor and Lagrangian models. The source contribution estimates were obtained with the Positive Matrix Factorization (PMF) receptor model and the results were further examined using local wind data and backward trajectories obtained with FLEXPART. Potential Source Contribution Function (PSCF) analysis was applied to identify the geographical source areas for the PM sources subject to long-range transport. Gas-to-particle transformation processes and primary emissions from biomass burning are the most important contributors to PM in the studied sites followed by re-suspension of soil (crustal material) and traffic. These four sources can be considered typical of the Danube macro-region because they were identified in all the studied locations. Long-range transport was observed of: a) sulphate-enriched aged aerosols, deriving from SO2 emissions in combustion processes in the Balkans and Eastern Europe and b) dust from the Saharan and Karakum deserts. The study highlights that PM pollution in the studied urban areas of the Danube macro-region is the result of both local sources and long-range transport from both EU and no-EU areas.
Collapse
|
83
|
Pierce AM, Gustin MS, Christensen JN, Loría-Salazar SM. Use of multiple tools including lead isotopes to decipher sources of ozone and reactive mercury to urban and rural locations in Nevada, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1411-1427. [PMID: 29751446 DOI: 10.1016/j.scitotenv.2017.08.284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 06/08/2023]
Abstract
Ambient air particulate matter (<2.5μm in diameter) samples were collected on two different filter types in 2014 and 2015 over 24h periods and analyzed for reactive mercury (gaseous oxidized mercury+particulate bound mercury) concentrations and lead isotopes to determine sources of pollution to three sites in Nevada, USA. Two sites were located on the western edge of Nevada (Reno, urban, 1370m and Peavine Peak, rural, high elevation, 2515m); the third location was ~485km east in rural Great Basin National Park, NV (2061m). Reactive mercury samples were collected on cation exchange membranes simultaneously with lead samples, collected on Teflon membranes. Lead isotopic ratios have previously identified trans-Pacific lead sources based on the 206/207 and 208/207 lead ratios. Influence from trans-Pacific air masses was higher from March to June associated with long-range transport of pollutants. Spring months are well known for increased transport across the Pacific; however, fall months were also influenced by trans-Pacific air masses in this study. Western North American background ozone concentrations have been measured and modeled at 50 to 55ppbv. Median ozone concentrations at both rural sites in Nevada were within this range. Sources leading to enhancements in ozone of 2 to 18ppbv above monthly medians in Nevada included emissions from Eurasia, regional urban centers, and global and regional wildfires, resulting in concentrations close to the USA air quality standard. At the high elevation locations, ozone was derived from pollutants being transported in the free troposphere that originate around the globe; however, Eurasia and Asia were dominant sources to the Western USA. Negative correlations between reactive mercury and percent Asian lead, Northern Eurasia and East Asia trajectories indicated reactive mercury concentrations at the two high elevation sites were produced by oxidants from local, regional, and marine boundary layer sources.
Collapse
|
84
|
Reppas-Chrysovitsinos E, Sobek A, MacLeod M. In Silico Screening-Level Prioritization of 8468 Chemicals Produced in OECD Countries to Identify Potential Planetary Boundary Threats. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:134-146. [PMID: 29285590 PMCID: PMC5775374 DOI: 10.1007/s00128-017-2253-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/11/2017] [Indexed: 05/25/2023]
Abstract
Legislation such as the Stockholm Convention and REACH aim to identify and regulate the production and use of chemicals that qualify as persistent organic pollutants (POPs) and very persistent and very bioaccumulative (vPvB) chemicals, respectively. Recently, a series of studies on planetary boundary threats proposed seven chemical hazard profiles that are distinct from the POP and vPvB profiles. We previously defined two exposure-based hazard profiles; airborne persistent contaminants (APCs) and waterborne persistent contaminants (WPCs) that correspond to two profiles of chemicals that are planetary boundary threats. Here, we extend our method to screen a database of chemicals consisting of 8648 substances produced within the OECD countries. We propose a new scoring scheme to disentangle the POP, vPvB, APC and WPC profiles by focusing on the spatial range of exposure potential, discuss the relationship between high exposure hazard and elemental composition of chemicals, and identify chemicals with high exposure hazard potential.
Collapse
|
85
|
Chang CT, Wang CP, Huang JC, Wang LJ, Liu CP, Lin TC. Trends of two decadal precipitation chemistry in a subtropical rainforest in East Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:88-98. [PMID: 28662430 DOI: 10.1016/j.scitotenv.2017.06.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Long-term monitoring of precipitation chemistry provides a great opportunity to examine the evolution of air pollutant emissions and effectiveness of air pollution control measures. We evaluated the characteristics and trends of precipitation chemistry at both annual and seasonal scales based on the records of 1994-2013 at Fushan Experimental Forest (FEF) of northeastern Taiwan. The results showed that 77% of the weekly precipitation had pH<5.0. The two-decadal average annual pH was 4.62, without a significant inter-annual trend, possibly due to the concurrent declines of both acidic pollutants and base cations. There was a significant positive relationship between [SO42-+NO3-] and [Ca2++NH4+] indicating that their deposition was likely dominated by NH4NO3, (NH4)2SO4, Ca(NO3)2, and CaSO4. There was a significant negative relationship between precipitation pH and the difference between [SO42-+NO3-] and [Ca2++NH4+], not just [SO42-+NO3-], suggesting that precipitation acidity was not solely determined by acidic pollutants but by the balance between acidic pollutants and base cations. We also found temporal decreases of Ca2+ and NH4+ concentrations in precipitation which contributed to the low acid neutralization capacity of precipitation. Annual deposition of NO3- and SO42- was 23 and 55kgha-1yr-1, which is much higher than most forest sites in the industrialized countries suggesting that acid deposition is still a major environmental issue in Taiwan. Annual deposition of NH4+, Ca2+ and NO3- showed significant decreasing trends during the 20-year period, which was mostly due to the decreases in the summer deposition associated with air pollution mitigation strategies. Winter deposition showed no decreasing patterns for the same period. The high contribution to annual acid deposition from autumn-winter and spring rains (50%) associated with northeast monsoon implies that long-range transport of anthropogenic emissions from East Asia played a key role on acid depositions at FEF and possibly many areas in the region. Therefore, intergovernmental cooperation is urgently needed to effectively mitigate the threat of acid deposition in East Asia.
Collapse
|
86
|
Besis A, Lammel G, Kukučka P, Samara C, Sofuoglu A, Dumanoglu Y, Eleftheriadis K, Kouvarakis G, Sofuoglu SC, Vassilatou V, Voutsa D. Polybrominated diphenyl ethers (PBDEs) in background air around the Aegean: implications for phase partitioning and size distribution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28102-28120. [PMID: 28993999 DOI: 10.1007/s11356-017-0285-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
The occurrence and atmospheric behavior of tri- to deca-polybrominated diphenyl ethers (PBDEs) were investigated during a 2-week campaign concurrently conducted in July 2012 at four background sites around the Aegean Sea. The study focused on the gas/particle (G/P) partitioning at three sites (Ag. Paraskevi/central Greece/suburban, Finokalia/southern Greece/remote coastal, and Urla/Turkey/rural coastal) and on the size distribution at two sites (Neochorouda/northern Greece/rural inland and Finokalia/southern Greece/remote coastal). The lowest mean total (G + P) concentrations of ∑7PBDE (BDE-28, BDE-47, BDE-66, BDE-99, BDE-100, BDE-153, BDE-154) and BDE-209 (0.81 and 0.95 pg m-3, respectively) were found at the remote site Finokalia. Partitioning coefficients, K P, were calculated, and their linear relationships with ambient temperature and the physicochemical properties of the analyzed PBDE congeners, i.e., the subcooled liquid pressure (P L°) and the octanol-air partition coefficient (K OA), were investigated. The equilibrium adsorption (P L°-based) and absorption (K OA-based) models, as well as a steady-state absorption model including an equilibrium and a non-equilibrium term, both being functions of log K OA, were used to predict the fraction Φ of PBDEs associated with the particle phase. The steady-state model proved to be superior to predict G/P partitioning of BDE-209. The distribution of particle-bound PBDEs across size fractions < 0.95, 0.95-1.5, 1.5-3.0, 3.0-7.2, and > 7.2 μm indicated a positive correlation between the mass median aerodynamic diameter and log P L° for the less brominated congeners, whereas a negative correlation was observed for the high brominated congeners. The potential source regions of PBDEs were acknowledged as a combination of long-range transport with short-distance sources.
Collapse
|
87
|
Kylin H, Svensson T, Jensen S, Strachan WMJ, Franich R, Bouwman H. The trans-continental distributions of pentachlorophenol and pentachloroanisole in pine needles indicate separate origins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:688-695. [PMID: 28711567 DOI: 10.1016/j.envpol.2017.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/09/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
The production and use of pentachlorophenol (PCP) was recently prohibited/restricted by the Stockholm Convention on persistent organic pollutants (POPs), but environmental data are few and of varying quality. We here present the first extensive dataset of the continent-wide (Eurasia and Canada) occurrence of PCP and its methylation product pentachloroanisole (PCA) in the environment, specifically in pine needles. The highest concentrations of PCP were found close to expected point sources, while PCA chiefly shows a northern and/or coastal distribution not correlating with PCP distribution. Although long-range transport and environmental methylation of PCP or formation from other precursors cannot be excluded, the distribution patterns suggest that such processes may not be the only source of PCA to remote regions and unknown sources should be sought. We suggest that natural sources, e.g., chlorination of organic matter in Boreal forest soils enhanced by chloride deposition from marine sources, should be investigated as a possible partial explanation of the observed distributions. The results show that neither PCA nor total PCP (ΣPCP = PCP + PCA) should be used to approximate the concentrations of PCP; PCP and PCA must be determined and quantified separately to understand their occurrence and fate in the environment. The background work shows that the accumulation of airborne POPs in plants is a complex process. The variations in life cycles and physiological adaptations have to be taken into account when using plants to evaluate the concentrations of POPs in remote areas.
Collapse
|
88
|
Hung NT, Li CT, Wang SH, Ou-Yang CF, Lin CY, Lee CT, Lin NH, Chi KH. Long-term monitoring of atmospheric PCDD/Fs at Mount Lulin during spring season: PCDD/F source apportionment through a simultaneous measurement in Southeast Asia. CHEMOSPHERE 2017; 185:368-375. [PMID: 28709041 DOI: 10.1016/j.chemosphere.2017.06.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/20/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
A long term assessment of atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) at Mt. Lulin, located in center of Taiwan was carried out from 2008 to 2013 (n = 81) assuming Mt. Lulin to be background area. During monitoring processes, PCDD/F samples collected in the field occasionally reached high concentration. To investigate this situation, simultaneous sample collection was carried out in Southeast Asia countries (i.e., Vietnam and Thailand) and Taiwan in 2013. The average concentration of atmospheric PCDD/Fs in biomass-burning source regions, namely Son La and Doi Ang Khang were 19.8 ± 12.1 fg I-TEQ m-3 (n = 19) and 17.8 ± 12.4 fg I-TEQ m-3 (n = 20), respectively. In the downwind area of Mt. Lulin, the average concentration of PCDD/Fs was found to be 4.64 ± 3.77 fg I-TEQ m-3 (n = 18). PCDD/F concentration in the source region was much higher than that in the downwind region. On March 19, 2013, the atmospheric PCDD/F concentrations increased dramatically from 7.71 to 484 fg I-TEQ m-3 at Mt. Lulin, which many times exceeded that of assumed source region in Southeast Asia. Moreover, mainland Southeast Asia and the southeast coast of China was suspected to be the main contributors of atmospheric PCDD/Fs and biomass markers, such as nonsea-salt K+ and NH4+, during the spring. WRF-Chem and Potential Source Contribution Function (PSCF) simulations have confirmed this correlation. It can be concluded that atmospheric PCDD/Fs observed at Mt. Lulin during spring mostly derived from the air mass transport not only from Southeast Asia but also the southeast coast of China.
Collapse
|
89
|
Li H, Fu J, Pan W, Wang P, Li Y, Zhang Q, Wang Y, Zhang A, Liang Y, Jiang G. Environmental behaviour of short-chain chlorinated paraffins in aquatic and terrestrial ecosystems of Ny-Ålesund and London Island, Svalbard, in the Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:163-170. [PMID: 28259436 DOI: 10.1016/j.scitotenv.2017.02.192] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 05/22/2023]
Abstract
The environmental behaviour of short-chain chlorinated paraffins (SCCPs) was investigated in both aquatic and terrestrial ecosystems in the Arctic. The mean concentrations of SCCPs in the aquatic and terrestrial samples were 178.9ng/g dry weight (dw) and 157.2ng/g dw, respectively. Short carbon chain (C10) and less-chlorinated (Cl6) congener groups were predominant in the Arctic samples, accounting for 48.6% and 34.8% of the total SCCPs, respectively. The enrichment of lighter SCCP congener groups (i.e., fewer chlorine atoms with shorter carbon chain lengths) indicated that the fractionation process occurred during long-range transport. The biomagnification factor (BMF) was 0.46 from gammarid to cod, which indicated that the SCCPs did not biomagnify between these two species. The soil-vegetation bioaccumulation factor (BAF) of SCCPs was 29.9, and C13 and Cl7, 8 congener groups tended to accumulate in the terrestrial vegetation. Regression analysis (BAFs=10.9×#C+5.6×#Cl-125.2, R=0.53, P<0.01) showed that the number of carbon and chlorine atoms influenced the bioaccumulative behaviour of SCCPs and suggested that the number of carbon atoms had a greater influence on the BAFs of SCCPs in the terrestrial ecosystem than did the number of chlorine atoms.
Collapse
|
90
|
Ding X, Kong L, Du C, Zhanzakova A, Wang L, Fu H, Chen J, Yang X, Cheng T. Long-range and regional transported size-resolved atmospheric aerosols during summertime in urban Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:334-343. [PMID: 28100417 DOI: 10.1016/j.scitotenv.2017.01.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
In this study, the concentrations of water soluble ions (WSI), organic carbon (OC), and elemental carbon (EC) of size-resolved (0.056-18μm) atmospheric aerosols were measured in July and August 2015 in Shanghai, China. Backward trajectory model and potential source contribution function (PSCF) model were used to identify the potential source distributions of size-resolved particles and PM1.8-associated atmospheric inorganic and carbonaceous aerosols. The results showed that the average mass concentrations of PM0.1, PM1, and PM1.8 were 21.21, 82.90, and 100.1μgm-3 in July and 7.00, 29.21, and 35.10μgm-3 in August, respectively, indicating that the particulate matter pollution was more serious in July than in August in this study due to the strong dependence of the aerosol species on the air mass origins. The trajectory cluster analysis revealed that the air masses originated from heavily industrialized areas including the Pearl River Delta (PRD) region, the Yangtze River Delta (YRD) region and the Beijing-Tianjin region were characterised with high OC and SO42- loadings. The results of PSCF showed that the pollution in July was mainly influenced by long-range transport while it was mainly associated to local and intra-regional transport in August. Besides the contributions of anthropogenic sources from YRD and PRD region, ship emissions from the East China Sea also made a great contribution to the high loadings of PM1.8 and PM1.8-associated NO3-, NH4+, and EC in July. SO42- in Shanghai was dominantly ascribed to anthropogenic sources and the high PSCF values for PM1.8-associated SO42- observed in August was mainly due to the ship emissions of Shanghai port, such as Wusong port and Yangshan deep-water port. These results indicated that the particulate pollutants from long-range transported air masses and shipping made a significant contribution to Shanghai's air pollution.
Collapse
|
91
|
Turgut C, Mazmanci MA, Mazmanci B, Yalçın M, Karakuş PK, Atatanir L, Keski M, Henkelmann B, Pfister G, Schramm KW. Polycyclic aromatic hydrocarbons (PAHs) determined by pine needles and semipermeable membrane devices along an altitude profile in Taurus Mountains, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7077-7087. [PMID: 28092009 DOI: 10.1007/s11356-017-8363-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were analyzed at different altitudes of Taurus Mountains in semipermeable membrane devices (SPMD) and in half-, one-and-a-half-, and two-and-a-half-year-old pine needles. SPMDs were deployed for three different exposure periods: March to September (Summer), September to March (Winter), and March to March (whole year) at eight sites where needle samples were collected. The values of PAHs in needles were between 4.4 to 6066 pg g/fw in half-year-old, 7.2 to 111,115 pg g/fw in 1.5-year-old, and 9.7 to 85,335 pg g/fw in 2.5-year-old needles. Mass of PAHs collected by SPMDs varied from <MDL to 8060 ng/SPMD in winter, from 0.98 to 585 ng/SPMD in summer, and <MDL to 9360 ng/SPMD in whole year deployment, respectively. PAH profiles were dependent on the seasonal differences and locations. Roughly, clear decreasing trends with altitude were observed both with SPMD and needles for many individual and groups of PAHs except for the SPMD-summer short-time data. A cross-plot of Fluo/(Fluo+Pyr) vs Ant/(Ant+Phe) diagnostic ratios indicated grass/wood burning (possibly due to forest fires) in summer and petrogenic combustion in winter. Results of the study showed that SPMD and conifer needles are effective passive samplers to measure PAHs in the environment.
Collapse
|
92
|
Nguyen DL, Kim JY, Shim SG, Ghim YS, Zhang XS. Shipboard and ground measurements of atmospheric particulate mercury and total mercury in precipitation over the Yellow Sea region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:262-274. [PMID: 27814543 DOI: 10.1016/j.envpol.2016.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/15/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
The first ever shipboard measurements for atmospheric particulate mercury (Hg(p)) over the Yellow Sea and ground measurements for atmospheric Hg(p) and total mercury (THg) in precipitation at the remote sites (Deokjeok and Chengshantou) and the urban sites (Seoul and Ningbo) surrounding the Yellow Sea were carried out during 2007-2008. The Hg(p) regional background concentration of 56.3 ± 55.6 pg m-3 over the Yellow Sea region is much higher than the typical background concentrations of Hg(p) in terrestrial environments (<25 pg m-3) which implies significant impact of anthropogenic mercury emission sources from East Asia. The episodes of highly elevated Hg(p) concentrations at the Korean remote site were influenced through long-range transport from source regions in the Liaoning Province - one of China's most mercury-polluted regions and in the western region of North Korea. Interestingly, wet scavenging of atmospheric Hg(p) is the predominant mechanism regulating concentration of THg in precipitation at the Chinese sites; whereas, wet scavenging of gaseous oxidized mercury (GOM) might play the more important role than that of Hg(p) at the Korean sites. The highest annual wet and dry deposition fluxes of Hg were found at the Ningbo site. The comparison between wet and dry deposition fluxes suggested that dry deposition might play the more important role than wet deposition in Chinese urban areas (source regions); whereas, wet deposition is more important in Korean areas (downwind regions).
Collapse
|
93
|
Maskey S, Chae H, Lee K, Dan NP, Khoi TT, Park K. Morphological and elemental properties of urban aerosols among PM events and different traffic systems. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:108-118. [PMID: 27262278 DOI: 10.1016/j.jhazmat.2016.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
Morphology and elemental composition of individual fine ambient particles varied among types of PM events and between two different urban environments having different major transportation systems (gasoline/diesel vehicles versus motorcycles). Carbonaceous particles were the most dominant in PM events, whereas S-rich particles were the highest in non-events at urban Gwangju in Korea. The aged soot, semi-volatile organic (SVO), and non-volatile organic (NVO) particles were more abundant in the polluted-long range transport (LTP) event than those in the dust-LTP event and non-event. In the dust-LTP event, the aged mineral dust particles outnumbered the fresh ones, suggesting the mineral dust particles were aged during their long-range transport. At HoChiMinh (HCM) in Vietnam, the fraction of carbonaceous particles was much higher than Gwangju (66% versus 30%) possibly due to more abundant two-stroke motor vehicles at HCM. Of the carbonaceous particles, combustion soot (19%) was the highest, followed by NVO (18%), SVO (17%), and biological particles (11%) at HCM, whereas SVO (11%) and NVO (10%) particles were the highest, followed by combustion soot particles (8%) at Gwangju. The higher fraction of mineral dust particles was also observed at HCM, indicating the sampling site was influenced by dust from unpaved roads and construction sites.
Collapse
|
94
|
Liu M, Chen L, Xie D, Sun J, He Q, Cai L, Gao Z, Zhang Y. Monsoon-driven transport of atmospheric mercury to the South China Sea from the Chinese mainland and Southeast Asia-Observation of gaseous elemental mercury at a background station in South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21631-21640. [PMID: 27522199 DOI: 10.1007/s11356-016-7432-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Concentrations of gaseous elemental mercury (GEM) were continuously monitored from May 2011 to May 2012 at the Wuzhishan State Atmosphere Background Monitoring Station (109°29'30.2″ E, 18°50'11.0″ N) located in Hainan Island. This station is an ideal site for monitoring long-range transport of atmospheric pollutants from mainland China and Southeast Asia to South China Sea. Annual average GEM concentration was 1.58 ± 0.71 ng m-3 during the monitoring period, which was close to background values in the Northern Hemisphere. GEM concentrations showed a clear seasonal variation with relatively higher levels in autumn (1.86 ± 0.55 ng m-3) and winter (1.80 ± 0.62 ng m-3) and lower levels in spring (1.16 ± 0.45 ng m-3) and summer (1.43 ± 0.46 ng m-3). Long-range atmospheric transport dominated by monsoons was a dominant factor influencing the seasonal variations of GEM. The GEM diel trends were related to the wind speed and long-range atmospheric mercury transport. We observed 30 pollution episodes throughout the monitoring period. The analysis of wind direction and backward trajectory suggested that elevated GEM concentrations at the monitoring site were primarily related to the outflows of atmospheric Hg from mainland China and the Indochina peninsula. The △GEM/△CO values also suggested that GEM was significantly affected by the long-range transport from the anthropogenic sources and biomass burning in Asia and Indochina peninsula.
Collapse
|
95
|
Göktaş RK, MacLeod M. Remoteness from sources of persistent organic pollutants in the multi-media global environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 217:33-41. [PMID: 26775726 DOI: 10.1016/j.envpol.2015.12.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 06/05/2023]
Abstract
Quantifying the remoteness from sources of persistent organic pollutants (POPs) can inform the design of monitoring studies and the interpretation of measurement data. Previous work on quantifying remoteness has not explicitly considered partitioning between the gas phase and aerosols, and between the atmosphere and the Earth's surface. The objective of this study is to present a metric of remoteness for POPs transported through the atmosphere calculated with a global multimedia fate model, BETR-Research. We calculated the remoteness of regions covering the entire globe from emission sources distributed according to light emissions, and taking into account the multimedia partitioning properties of chemicals and using averaged global climate data. Remoteness for hypothetical chemicals with distinct partitioning properties (volatile, semi-volatile, hydrophilic, low-volatility) and having two different half-lives in air (60-day and 2-day) are presented. Differences in remoteness distribution among the hypothetical chemicals are most pronounced in scenarios assuming 60-day half-life in air. In scenarios with a 2-day half-life in air, degradation dominates over wet and dry deposition processes as a pathway for atmospheric removal of all chemicals except the low-volatility chemical. The remoteness distribution of the low-volatility chemical is strongly dependent on assumptions about degradability on atmospheric aerosols. Calculations that considered seasonal variability in temperature, hydroxyl radical concentrations in the atmosphere and global atmospheric and oceanic circulation patterns indicate that variability in hydroxyl radical concentrations largely determines the seasonal variability of remoteness. Concentrations of polybrominated diphenyl ethers (PBDEs) measured in tree bark from around the world are more highly correlated with remoteness calculated using our methods than with proximity to human population, and we see considerable potential to apply remoteness calculations for interpretation of monitoring data collected under programs such as the Stockholm Convention Global Monitoring Plan.
Collapse
|
96
|
Yang X, Wang X, Yang W, Xu J, Ren L, He Y, Liu B, Bai Z, Meng F, Hu M. Aircraft measurements of SO2, NOx, CO, and O3 over the coastal and offshore area of Yellow Sea of China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:527. [PMID: 27544762 DOI: 10.1007/s10661-016-5533-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
In order to investigate long-range transport of the air pollution in the East Asia, air pollutants, including SO2, NOx, CO, and O3, were observed by aircraft measurement over the coastal and offshore area of Yellow Sea of China in April 2011. NOx and SO2 seemed to become moderate in recent years, and the concentrations during the whole observations ranged from 0.49 to 9.57 ppb and from 0.10 to 16.02 ppb, respectively. The high concentrations of CO were measured with an average value of 0.98 ppm. The measured O3 average concentration was 76.25 ppb, which showed a higher level comparing with the results from some previous studies. Most of the results for the concentration values generally followed the typical characteristic of vertical and spatial distribution, which were "low altitude > high altitude" and "land/coastal > sea," respectively. Transport of polluted air mass from the continent to the aircraft measurement area was confirmed in some days during the observation by the meteorological analysis, while the measurement results supposed to represent the background level of the pollutants in rest days. Additionally, some small-scale air pollution plumes were observed. Significant positive correlations between NOx and SO2 indicated that these two species originated from the same region. On the other hand, good positive correlations between NOx and O3 found during 2-day flight suggested that the O3 formation was probably under "NOx-limited" regime in these days.
Collapse
|
97
|
Li H, Fu J, Zhang A, Zhang Q, Wang Y. Occurrence, bioaccumulation and long-range transport of short-chain chlorinated paraffins on the Fildes Peninsula at King George Island, Antarctica. ENVIRONMENT INTERNATIONAL 2016; 94:408-414. [PMID: 27453093 DOI: 10.1016/j.envint.2016.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 04/12/2016] [Accepted: 05/04/2016] [Indexed: 06/06/2023]
Abstract
As a candidate persistent organic pollutant of the Stockholm Convention, short-chain chlorinated paraffins (SCCPs) have recently received particular attention. In this study, we investigated, for the first time, the concentrations of SCCPs in biota samples collected from the Fildes Peninsula at King George Island and Ardley Island, Antarctica. The concentrations of SCCPs ranged from 3.5 to 256.6ng/g (dry weight, dw), with a mean of 76.6±61.8ng/g dw, which was lower than those detected in mid- and low-latitude regions. The long-range transport behaviour of SCCPs was confirmed by both the detection of SCCPs in Antarctic remote areas and their special congener profiles. Short carbon chain (C10) congeners predominated in the Antarctic samples, which accounted for 56.1% of the total SCCP contamination. Such enrichment of C10 congeners indicated the high potential for the long-range transport of shorter chain congeners. In addition, SCCPs tended to be enriched in the species with high lipid contents. The biomagnification potential of SCCPs was found between Archeogastropoda (Agas) and Neogastropoda (Ngas), and the biomagnification factors of shorter chain congeners of SCCPs were higher than that of the longer chain ones. Considering that the endemic species in polar regions may be sensitive and vulnerable to the adverse effects of environmental contaminants, more attention should be paid on the bioaccumulation and toxicological risks of SCCPs in polar environments.
Collapse
|
98
|
Cheng JO, Ko FC, Lee CL, Fang MD. Atmospheric polycyclic aromatic hydrocarbons (PAHs) of southern Taiwan in relation to monsoons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15675-15688. [PMID: 27137192 DOI: 10.1007/s11356-016-6751-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
The concentrations and gas-particle partitioning of atmospheric polycyclic aromatic hydrocarbons (PAHs) were intensively measured in the Hengchun Peninsula of southern Taiwan. The concentrations of total PAH (Σ38PAH), including gas and particle phases, ranged from 0.85 to 4.40 ng m(-3). No significant differences in the PAH levels and patterns were found between the samples taken at day and at night. The gas phase PAH concentrations were constant year-round, but the highest levels of particle-associated PAHs were found during the northeast monsoon season. Long-range transport and rainfall scavenging mechanisms contributed to the elevated levels in aerosols andΣ38PAH concentrations. Results from principal component analysis (PCA) indicated that the major sources of PAHs in this study were vehicular emissions. The back trajectories demonstrated that air mass movement driven by the monsoon system was the main influence on atmospheric PAH profiles and concentrations in the rural region of southern Taiwan. Gas-particle partition coefficients (K p ) of PAHs were well-correlated with sub-cooled liquid vapor pressures (P (o) L ) and demonstrated significant seasonal variation between the northeast (NE) and the southwest (SW) monsoon seasons. This study sheds light on the role of Asian monsoons regarding the atmospheric transport of PAHs.
Collapse
|
99
|
Roscales JL, González-Solís J, Zango L, Ryan PG, Jiménez B. Latitudinal exposure to DDTs, HCB, PCBs, PBDEs and DP in giant petrels (Macronectes spp.) across the Southern Ocean. ENVIRONMENTAL RESEARCH 2016; 148:285-294. [PMID: 27088732 DOI: 10.1016/j.envres.2016.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 05/28/2023]
Abstract
Studies on Persistent Organic Pollutants (POPs) in Antarctic wildlife are scarce, and usually limited to a single locality. As a result, wildlife exposure to POPs across the Southern Ocean is poorly understood. In this study, we report the differential exposure of the major southern ocean scavengers, the giant petrels, to POPs across a wide latitudinal gradient. Selected POPs (PCBs, HCB, DDTs, PBDEs) and related compounds, such as Dechlorane Plus (DP), were analyzed in plasma of southern giant petrels (Macronectes giganteus) breeding on Livingston (62°S 61°W, Antarctica), Marion (46°S 37°E, sub-Antarctic), and Gough (40°S 10°W, cool temperate) islands. Northern giant petrels (Macronectes halli) from Marion Island were also studied. Stable isotope ratios of C and N (δ(13)C and δ(15)N) were used as dietary tracers of the marine habitat and trophic level, respectively. Breeding locality was a major factor explaining petrel exposure to POPs compared with species and sex. Significant relationships between δ(13)C values and POP burdens, at both inter- and intra-population levels, support latitudinal variations in feeding grounds as a key factor in explaining petrel pollutant burdens. Overall, pollutant levels in giant petrels decreased significantly with latitude, but the relative abundance (%) of the more volatile POPs increased towards Antarctica. DP was found at negligible levels compared with legacy POPs in Antarctic seabirds. Spatial POP patterns found in giant petrels match those predicted by global distribution models, and reinforce the hypothesis of atmospheric long-range transport as the main source of POPs in Antarctica. Our results confirm that wildlife movements out of the polar region markedly increase their exposure to POPs. Therefore, strategies for Antarctic wildlife conservation should consider spatial heterogeneity in exposure to marine pollution. Of particular relevance is the need to clarify the exposure of Antarctic predators to emerging contaminants that are not yet globally regulated.
Collapse
|
100
|
Lai S, Song J, Song T, Huang Z, Zhang Y, Zhao Y, Liu G, Zheng J, Mi W, Tang J, Zou S, Ebinghaus R, Xie Z. Neutral polyfluoroalkyl substances in the atmosphere over the northern South China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:449-455. [PMID: 27112727 DOI: 10.1016/j.envpol.2016.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
Neutral Polyfluoroalkyl substances (PFASs) in the atmosphere were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. Four groups of PFASs, i.e., fluorotelomer alcohols (FTOHs), fluorotelomer acrylates (FTAs), fluorooctane sulfonamides (FOSAs) and fluorooctane sulfonamidoethanols (FASEs), were detected in gas samples. FTOHs was the predominant PFAS group, accounting for 95.2-99.3% of total PFASs (ΣPFASs), while the other PFASs accounted for a small fraction of ΣPFASs. The concentrations of ΣPFASs ranged from 18.0 to 109.9 pg m(-3) with an average of 54.5 pg m(-3). The concentrations are comparable to those reported in other marine atmosphere. Higher concentrations of ΣPFASs were observed in the continental-influenced samples than those in other samples, pointing to the substantial contribution of anthropogenic sources. Long-range transport is suggested to be a major pathway for introducing gaseous PFASs into the atmosphere over the northern SCS. In order to further understand the fate of gaseous PFASs during transport, the atmospheric decay of neutral PFASs under the influence of reaction with OH radicals and atmospheric physical processes were estimated. Concentrations of 8:2 FTOH, 6:2 FTOH and MeFBSE from selected source region to the atmosphere over the SCS after long-range transport were predicted and compared with the observed concentrations. It suggests that the reaction with OH radicals may play an important role in the atmospheric decay of PFAS during long-range transport, especially for shorted-lived species. Moreover, the influence of atmospheric physical processes on the decay of PFAS should be further considered.
Collapse
|