76
|
Stock AK, Werner A, Kuntke P, Petasch MS, Bensmann W, Zink N, Koyun AH, Quednow BB, Beste C. Gamma-Aminobutyric Acid and Glutamate Concentrations in the Striatum and Anterior Cingulate Cortex Not Found to Be Associated with Cognitive Flexibility. Brain Sci 2023; 13:1192. [PMID: 37626548 PMCID: PMC10452168 DOI: 10.3390/brainsci13081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Behavioral flexibility and goal-directed behavior heavily depend on fronto-striatal networks. Within these circuits, gamma-aminobutyric acid (GABA) and glutamate play an important role in (motor) response inhibition, but it has remained largely unclear whether they are also relevant for cognitive inhibition. We hence investigated the functional role of these transmitters for cognitive inhibition during cognitive flexibility. Healthy young adults performed two paradigms assessing different aspects of cognitive flexibility. Magnetic resonance spectroscopy (MRS) was used to quantify GABA+ and total glutamate/glutamine (Glx) levels in the striatum and anterior cingulate cortex (ACC) referenced to N-acetylaspartate (NAA). We observed typical task switching and backward inhibition effects, but striatal and ACC concentrations of GABA+/NAA and Glx/NAA were not associated with cognitive flexibility in a functionally relevant manner. The assumption of null effects was underpinned by Bayesian testing. These findings suggest that behavioral and cognitive inhibition are functionally distinct faculties, that depend on (at least partly) different brain structures and neurotransmitter systems. While previous studies consistently demonstrated that motor response inhibition is modulated by ACC and striatal GABA levels, our results suggest that the functionally distinct cognitive inhibition required for successful switching is not, or at least to a much lesser degree, modulated by these factors.
Collapse
|
77
|
Deelchand DK, Eberly LE, McCarten JR, Hemmy LS, Auerbach EJ, Marjańska M. Scyllo-inositol: Transverse relaxation time constant at 3 T and concentration changes associated with aging and alcohol use. NMR IN BIOMEDICINE 2023; 36:e4929. [PMID: 36940048 DOI: 10.1002/nbm.4929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/14/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The goals of this study were to measure the apparent transverse relaxation time constant, T2 , of scyllo-inositol (sIns) in young and older healthy adults' brains and to investigate the effect of alcohol usage on sIns in young and older healthy adults' brains, using proton magnetic resonance spectroscopy (MRS) at 3 T. Twenty-nine young adults (age 21 ± 1 years) and 24 older adults (age 74 ± 3 years) participated in this study. MRS data were acquired from two brain regions (the occipital cortex and posterior cingulate cortex) at 3 T. The T2 of sIns was measured using a localization by adiabatic selective refocusing (LASER) sequence at various echo times, while the sIns concentrations were measured using a short-echo-time stimulated echo acquisition mode (STEAM) sequence. A trend towards lower T2 relaxation values of sIns in older adults was observed, although these were not significant. sIns concentration was higher with age in both brain regions and was significantly higher in the young when considering alcohol consumption of more than two drinks per week. This study shows that differences in sIns can be found in two distinct regions of the brain across two age groups, potentially reflecting normal aging. In addition, it is important to take into account alcohol consumption when reporting the sIns level in the brain.
Collapse
|
78
|
Engel BJ, Paolillo V, Uddin MN, Gonzales KA, McGinnis KM, Sutton MN, Patnana M, Grindel BJ, Gores GJ, Piwnica-Worms D, Beretta L, Pisaneschi F, Gammon ST, Millward SW. Gender Differences in a Mouse Model of Hepatocellular Carcinoma Revealed Using Multi-Modal Imaging. Cancers (Basel) 2023; 15:3787. [PMID: 37568603 PMCID: PMC10417617 DOI: 10.3390/cancers15153787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
The worldwide incidence of hepatocellular carcinoma (HCC) continues to rise, in part due to poor diet, limited exercise, and alcohol abuse. Numerous studies have suggested that the loss or mutation of PTEN plays a critical role in HCC tumorigenesis through the activation of the PI3K/Akt signaling axis. The homozygous knockout of PTEN in the livers of mice results in the accumulation of fat (steatosis), inflammation, fibrosis, and eventually progression to HCC. This phenotype bears a striking similarity to non-alcoholic steatohepatitis (NASH) which is thought to occupy an intermediate stage between non-alcoholic fatty liver disease (NAFLD), fibrosis, and HCC. The molecular and physiological phenotypes that manifest during the transition to HCC suggest that molecular imaging could provide a non-invasive screening platform to identify the hallmarks of HCC initiation prior to the presentation of clinical disease. We have carried out longitudinal imaging studies on the liver-specific PTEN knockout mouse model using CT, MRI, and multi-tracer PET to interrogate liver size, steatosis, inflammation, and apoptosis. In male PTEN knockout mice, significant steatosis was observed as early as 3 months using both magnetic resonance spectroscopy (MRS) and computed tomography (CT). Enhanced uptake of the apoptosis tracer 18F-TBD was also observed in the livers of male PTEN homozygous knockout mice between 3 and 4 months of age relative to heterozygous knockout controls. Liver uptake of the inflammation tracer [18F]4FN remained relatively low and constant over 7 months in male PTEN homozygous knockout mice, suggesting the suppression of high-energy ROS/RNS with PTEN deletion relative to heterozygous males where the [18F]4FN liver uptake was elevated at early and late time points. All male PTEN homozygous mice developed HCC lesions by month 10. In contrast to the male cohort, only 20% (2 out of 10) of female PTEN homozygous knockout mice developed HCC lesions by month 10. Steatosis was significantly less pronounced in the female PTEN homozygous knockout mice relative to males and could not accurately predict the eventual occurrence of HCC. As with the males, the [18F]4FN uptake in female PTEN homozygous knockout mice was low and constant throughout the time course. The liver uptake of 18F-TBD at 3 and 4.5 months was higher in the two female PTEN knockout mice that would eventually develop HCC and was the most predictive imaging biomarker for HCC in the female cohort. These studies demonstrate the diagnostic and prognostic role of multi-modal imaging in HCC mouse models and provide compelling evidence that disease progression in the PTEN knockout model is highly dependent on gender.
Collapse
|
79
|
Hyppönen J, Paanila V, Äikiä M, Koskenkorva P, Könönen M, Vanninen R, Mervaala E, Kälviäinen R, Hakumäki J. Progressive myoclonic epilepsy type 1 (EPM1) patients present with abnormal 1H MRS brain metabolic profiles associated with cognitive function. Neuroimage Clin 2023; 39:103459. [PMID: 37541097 PMCID: PMC10412857 DOI: 10.1016/j.nicl.2023.103459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE Progressive myoclonic epilepsy, type 1A (EPM1, Unverricht-Lundborg disease), is a rare neurodegenerative autosomal recessive disorder characterized by stimulus-sensitive and action myoclonus and tonic-clonic epileptic seizures. Patients develop neurological symptoms, including ataxia, intention tremor, and dysarthria, over time, with relatively limited and nonspecific MRI atrophy findings. The effects of the disease on brain metabolism are largely unknown. METHOD Eighteen EPM1 patients (9 M, 9F) underwent clinical evaluation and neuropsychological testing, which included the assessment of intellectual ability, verbal memory, and psychomotor and executive functions. Magnetic resonance spectroscopy (MRS) and imaging (MRI) were performed on a 1.5 T MRI system. 2D MRS chemical shift imaging (CSI) maps (TE = 270) were obtained from the following regions of the brain: basal ganglia, thalamus, insula, splenium, and occipital white and gray matter, and N-acetyl-aspartate (NAA)-, choline (Cho)-, and lactate (Lac)-to-creatine (Cr) ratios were analyzed. Ten healthy age-and sex-matched subjects (5M, 5F) were used as controls for MRS. RESULTS We found significant brain metabolic changes involving lactate, NAA, and choline, which are widespread in the basal ganglia, thalamic nuclei, insula, and occipital areas of EPM1 patients. Changes, especially in the right insula, basal ganglia, and thalamus, were associated with intellectual abilities and impairment of the psychomotor and executive functions of EPM1 patients. CONCLUSION Multiple brain metabolic alterations suggest the presence of neurodegeneration associated with EPM1 progression. The changes in metabolite ratios are associated with the neurocognitive dysfunction caused by the disease. However, the role of MRS findings in understanding pathophysiology of EPM1 warrants further studies.
Collapse
|
80
|
McKiernan E, Su L, O'Brien J. MRS in neurodegenerative dementias, prodromal syndromes and at-risk states: A systematic review of the literature. NMR IN BIOMEDICINE 2023; 36:e4896. [PMID: 36624067 DOI: 10.1002/nbm.4896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND In recent years, MRS has benefited from increased MRI field strengths, new acquisition protocols and new processing techniques. This review aims to determine how this has altered our understanding of MRS neurometabolic markers in neurodegenerative dementias. METHODS Our systematic review of human in vivo MRS literature since 2002 pertains to Alzheimer's disease (AD), dementia with Lewy bodies (DLB), Parkinson's disease dementia, frontotemporal dementia (FTD), prodromal and 'at-risk' states. Studies using field strengths of 3 T or more were included. RESULTS Of 85 studies, AD and/or mild cognitive impairment (MCI) were the most common conditions of interest (58 papers, 68%). Only 14 (16%) studies included other dementia syndromes and 13 (15%) investigated 'at-risk' cohorts. Earlier findings of lower N-acetylaspartate and higher myo-inositol were confirmed. Additionally, lower choline and creatine in AD and MCI were reported, though inconsistently. Previously challenging-to-measure metabolites (glutathione, glutamate and gamma-aminobutyric acid) were reportedly lower in AD, FTD and DLB compared with controls. DISCUSSION Increasing field strength alongside targeted acquisition protocols has revealed additional metabolite changes. Most studies were small and regional metabolite differences between dementia types may not have been captured due to the predominant placement of voxels in the posterior cingulate cortex. The standard of data collection, quality control and analysis is improving due to greater consensus regarding acquisition and processing techniques. Ongoing harmonization of techniques, creation of larger and longitudinal cohorts, and placement of MRS voxels in more diverse regions will strengthen future research.
Collapse
|
81
|
Smucny J, Maddock RJ. Spectroscopic meta-analyses reveal novel metabolite profiles across methamphetamine and cocaine substance use disorder. Drug Alcohol Depend 2023; 248:109900. [PMID: 37148676 PMCID: PMC11187716 DOI: 10.1016/j.drugalcdep.2023.109900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although proton magnetic resonance spectroscopy (MRS) has been used to study metabolite alterations in stimulant (methamphetamine and cocaine) substance use disorders (SUDs) for over 25 years, data-driven consensus regarding the nature and magnitude of these alterations is lacking. METHOD In this meta-analysis, we examined associations between SUD and regional metabolites (N-acetyl aspartate (NAA), choline, myo-inositol, creatine, glutamate, and glutamate+glutamine (glx)) in the medial prefrontal cortex (mPFC), frontal white matter (FWM), occipital cortex, and basal ganglia as measured by 1 H-MRS. We also examined moderating effects of MRS acquisition parameters (echo time (TE), field strength), data quality (coefficient of variation (COV)), and demographic/clinical variables. RESULTS A MEDLINE search revealed 28 articles that met meta-analytic criteria. Significant effects included lower mPFC NAA, higher mPFC myo-inositol, and lower mPFC creatine in SUD relative to people without SUD. mPFC NAA effects were moderated by TE, with larger effects at longer TEs. For choline, although no group effects were observed, effect sizes in the mPFC were related to MRS technical indicators (field strength, COV). No effects of age, sex, primary drug of use (methamphetamine vs. cocaine), duration of use, or duration of abstinence were observed. Evidence for moderating effects of TE and COV may have implications for future MRS studies in SUDs. CONCLUSIONS The observed metabolite profile in methamphetamine and cocaine SUD (lower NAA and creatine with higher myo-inositol) parallels that observed in Alzheimer's disease and mild cognitive impairment, suggesting these drugs are associated with neurometabolic differences similar to those characterizing these neurodegenerative conditions.
Collapse
|
82
|
Mui AW, Lee AW, Ng WT, Lee VH, Vardhanabhuti V, Man SY, Chua DT, Guan XY. Optimal time for early therapeutic response prediction in nasopharyngeal carcinoma with functional magnetic resonance imaging. Phys Imaging Radiat Oncol 2023; 27:100458. [PMID: 37457666 PMCID: PMC10339040 DOI: 10.1016/j.phro.2023.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background and Purpose Physiological changes in tumour occur much earlier than morphological changes. They can potentially be used as biomarkers for therapeutic response prediction. This study aimed to investigate the optimal time for early therapeutic response prediction with multi-parametric magnetic resonance imaging (MRI) in patients with nasopharyngeal carcinoma (NPC) receiving concurrent chemo-radiotherapy (CCRT). Material and Methods Twenty-seven NPC patients were divided into the responder (N = 23) and the poor-responder (N = 4) groups by their primary tumour post-treatment shrinkages. Single-voxel proton MR spectroscopy (1H-MRS), diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI were scanned at baseline, weekly during CCRT and post-CCRT. The median choline peak in 1H-MRS, the median apparent diffusion coefficient (ADC) in DW-MRI, the median influx rate constant (Ktrans), reflux rate constant (Kep), volume of extravascular-extracellular space per unit volume (Ve), and initial area under the time-intensity curve for the first 60 s (iAUC60) in DCE-MRI were compared between the two groups with the Mann-Whitney tests for any significant difference at different time points. Results In DW-MRI, the percentage increase in ADC from baseline to week-1 for the responders (median = 11.39%, IQR = 18.13%) was higher than the poor-responders (median = 4.91%, IQR = 7.86%) (p = 0.027). In DCE-MRI, the iAUC60 on week-2 was found significantly higher in the poor-responders (median = 0.398, IQR = 0.051) than the responders (median = 0.192, IQR = 0.111) (p = 0.012). No significant difference was found in median choline peaks in 1H-MRS at all time points. Conclusion Early perfusion and diffusion changes occurred in primary tumours of NPC patients treated with CCRT. The DW-MRI on week-1 and the DCE-MRI on week-2 were the optimal time points for early therapeutic response prediction.
Collapse
|
83
|
Yang YS, Smucny J, Zhang H, Maddock RJ. Meta-analytic evidence of elevated choline, reduced N-acetylaspartate, and normal creatine in schizophrenia and their moderation by measurement quality, echo time, and medication status. Neuroimage Clin 2023; 39:103461. [PMID: 37406595 PMCID: PMC10509531 DOI: 10.1016/j.nicl.2023.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Brain metabolite abnormalities measured with magnetic resonance spectroscopy (MRS) provide insight into pathological processes in schizophrenia. Prior meta-analyses have not yet answered important questions about the influence of clinical and technical factors on neurometabolite abnormalities and brain region differences. To address these gaps, we performed an updated meta-analysis of N-acetylaspartate (NAA), choline, and creatine levels in patients with schizophrenia and assessed the moderating effects of medication status, echo time, measurement quality, and other factors. METHODS We searched citations from three earlier meta-analyses and the PubMed database after the most recent meta-analysis to identify studies for screening. In total, 113 publications reporting 366 regional metabolite datasets met our inclusion criteria and reported findings in medial prefrontal cortex (MPFC), dorsolateral prefrontal cortex, frontal white matter, hippocampus, thalamus, and basal ganglia from a total of 4445 patient and 3944 control observations. RESULTS Patients with schizophrenia had reduced NAA in five of the six brain regions, with a statistically significant sparing of the basal ganglia. Patients had elevated choline in the basal ganglia and both prefrontal cortical regions. Patient creatine levels were normal in all six regions. In some regions, the NAA and choline differences were greater in studies enrolling predominantly medicated patients compared to studies enrolling predominantly unmedicated patients. Patient NAA levels were more reduced in hippocampus and frontal white matter in studies using longer echo times than those using shorter echo times. MPFC choline and NAA abnormalities were greater in studies reporting better metabolite measurement quality. CONCLUSIONS Choline is elevated in the basal ganglia and prefrontal cortical regions, suggesting regionally increased membrane turnover or glial activation in schizophrenia. The basal ganglia are significantly spared from the well-established widespread reduction of NAA in schizophrenia suggesting a regional difference in disease-associated factors affecting NAA. The echo time findings agree with prior reports and suggest microstructural changes cause faster NAA T2 relaxation in hippocampus and frontal white matter in schizophrenia. Separating the effects of medication status and illness chronicity on NAA and choline abnormalities will require further patient-level studies. Metabolite measurement quality was shown to be a critical factor in MRS studies of schizophrenia.
Collapse
|
84
|
Paparella I, Vanderwalle G, Stagg CJ, Maquet P. An integrated measure of GABA to characterize post-stroke plasticity. Neuroimage Clin 2023; 39:103463. [PMID: 37406594 PMCID: PMC10339061 DOI: 10.1016/j.nicl.2023.103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Stroke is a major cause of death and chronic neurological disability. Despite the improvements in stroke care, the number of patients affected by stroke keeps increasing and many stroke survivors are left permanently disabled. Current therapies are limited in efficacy. Understanding the neurobiological mechanisms underlying post-stroke recovery is therefore crucial to find new therapeutic options to address this medical burden. Long-lasting and widespread alterations of γ-aminobutyric acid (GABA) neurotransmission seem to play a key role in stroke recovery. In this review we first discuss a possible model of GABAergic modulation of post-stroke plasticity. We then overview the techniques currently available to non-invasively assess GABA in patients and the conclusions drawn from this limited body of work. Finally, we address the remaining open questions to clarify GABAergic changes underlying post-stroke recovery, we briefly review possible ways to modulate GABA post stroke and propose a novel approach to thoroughly quantify GABA in stroke patients, by integrating its concentration, the activity of its receptors and its link with microstructural changes.
Collapse
|
85
|
Zimmermann J, Zölch N, Coray R, Bavato F, Friedli N, Baumgartner MR, Steuer AE, Opitz A, Werner A, Oeltzschner G, Seifritz E, Stock AK, Beste C, Cole DM, Quednow BB. Chronic 3,4-Methylenedioxymethamphetamine (MDMA) Use Is Related to Glutamate and GABA Concentrations in the Striatum But Not the Anterior Cingulate Cortex. Int J Neuropsychopharmacol 2023; 26:438-450. [PMID: 37235749 PMCID: PMC10289146 DOI: 10.1093/ijnp/pyad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND 3,4-Methylenedioxymethamphetamine (MDMA) is a widely used recreational substance inducing acute release of serotonin. Previous studies in chronic MDMA users demonstrated selective adaptations in the serotonin system, which were assumed to be associated with cognitive deficits. However, serotonin functions are strongly entangled with glutamate as well as γ-aminobutyric acid (GABA) neurotransmission, and studies in MDMA-exposed rats show long-term adaptations in glutamatergic and GABAergic signaling. METHODS We used proton magnetic resonance spectroscopy (MRS) to measure the glutamate-glutamine complex (GLX) and GABA concentrations in the left striatum and medial anterior cingulate cortex (ACC) of 44 chronic but recently abstinent MDMA users and 42 MDMA-naïve healthy controls. While the Mescher-Garwood point-resolved-spectroscopy sequence (MEGA-PRESS) is best suited to quantify GABA, recent studies reported poor agreement between conventional short-echo-time PRESS and MEGA-PRESS for GLX measures. Here, we applied both sequences to assess their agreement and potential confounders underlying the diverging results. RESULTS Chronic MDMA users showed elevated GLX levels in the striatum but not the ACC. Regarding GABA, we found no group difference in either region, although a negative association with MDMA use frequency was observed in the striatum. Overall, GLX measures from MEGA-PRESS, with its longer echo time, appeared to be less confounded by macromolecule signal than the short-echo-time PRESS and thus provided more robust results. CONCLUSION Our findings suggest that MDMA use affects not only serotonin but also striatal GLX and GABA concentrations. These insights may offer new mechanistic explanations for cognitive deficits (e.g., impaired impulse control) observed in MDMA users.
Collapse
|
86
|
Wang J, Lin L, Gong T, Wei Z, Zhang Y. Editorial: Brain metabolic imaging by magnetic resonance imaging and spectroscopy: methods and clinical applications. Front Neurosci 2023; 17:1239243. [PMID: 37425018 PMCID: PMC10327584 DOI: 10.3389/fnins.2023.1239243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
|
87
|
Chen CS, Lin FC, Lin CJ. The Energy Efficiency Multi-Robot System and Disinfection Service Robot Development in Large-Scale Complex Environment. SENSORS (BASEL, SWITZERLAND) 2023; 23:5724. [PMID: 37420889 PMCID: PMC10304910 DOI: 10.3390/s23125724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023]
Abstract
In recent years, multi-robot control systems and service robots equipped with graphical computing have been introduced in various application scenarios. However, the long-term operation of VSLAM calculation leads to reduced energy efficiency of the robot, and accidental localization failure still persists in large-scale fields with dynamic crowds and obstacles. This study proposes an EnergyWise multi-robot system based on ROS that actively determines the activation of VSLAM using real-time fused localization poses by an innovative energy-saving selector algorithm. The service robot is equipped with multiple sensors and utilizes the novel 2-level EKF method and incorporates the UWB global localization mechanism to adapt to complex environments. During the COVID-19 pandemic, three disinfection service robots were deployed to disinfect a large, open, and complex experimental site for 10 days. The results demonstrated that the proposed EnergyWise multi-robot control system successfully achieved a 54% reduction in computing energy consumption during long-term operations while maintaining a localization accuracy of 3 cm.
Collapse
|
88
|
Vella O, Bagshaw AP, Wilson M. SLIPMAT: a pipeline for extracting tissue-specific spectral profiles from 1H MR spectroscopic imaging data. Neuroimage 2023:120235. [PMID: 37331644 DOI: 10.1016/j.neuroimage.2023.120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023] Open
Abstract
1H Magnetic Resonance Spectroscopy (MRS) is an important non-invasive tool for measuring brain metabolism, with numerous applications in the neuroscientific and clinical domains. In this work we present a new analysis pipeline (SLIPMAT), designed to extract high-quality, tissue-specific, spectral profiles from MR spectroscopic imaging data (MRSI). Spectral decomposition is combined with spatially dependant frequency and phase correction to yield high SNR white and grey matter spectra without partial-volume contamination. A subsequent series of spectral processing steps are applied to reduce unwanted spectral variation, such as baseline correction and linewidth matching, before direct spectral analysis with machine learning and traditional statistical methods. The method is validated using a 2D semi-LASER MRSI sequence, with a 5-minute duration, from data acquired in triplicate across 8 healthy participants. Reliable spectral profiles are confirmed with principal component analysis, revealing the importance of total-choline and scyllo-inositol levels in distinguishing between individuals - in good agreement with our previous work. Furthermore, since the method allows the simultaneous measurement of metabolites in grey and white matter, we show the strong discriminative value of these metabolites in both tissue types for the first time. In conclusion, we present a novel and time efficient MRSI acquisition and processing pipeline, capable of detecting reliable neuro-metabolic differences between healthy individuals, and suitable for the sensitive neurometabolic profiling of in-vivo brain tissue.
Collapse
|
89
|
Peek AL, Rebbeck TJ, Leaver AM, Foster SL, Refshauge KM, Puts NA, Oeltzschner G. A comprehensive guide to MEGA-PRESS for GABA measurement. Anal Biochem 2023; 669:115113. [PMID: 36958511 PMCID: PMC10805000 DOI: 10.1016/j.ab.2023.115113] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
The aim of this guideline is to provide a series of evidence-based recommendations that allow those new to using MEGA-PRESS to produce high-quality data for the measurement of GABA levels using edited magnetic resonance spectroscopy with the MEGA-PRESS sequence at 3T. GABA is the main inhibitory neurotransmitter of the central nervous system and has been increasingly studied due to its relevance in many clinical disorders of the central nervous system. MEGA-PRESS is the most widely used method for quantification of GABA at 3T, but is technically challenging and operates at a low signal-to-noise ratio. Therefore, the acquisition of high-quality MRS data relies on avoiding numerous pitfalls and observing important caveats. The guideline was developed by a working party that consisted of experts in MRS and experts in guideline development and implementation, together with key stakeholders. Strictly following a translational framework, we first identified evidence using a systematically conducted scoping literature review, then synthesized and graded the quality of evidence that formed recommendations. These recommendations were then sent to a panel of 21 world leaders in MRS for feedback and approval using a modified-Delphi process across two rounds. The final guideline consists of 23 recommendations across six domains essential for GABA MRS acquisition (Parameters, Practicalities, Data acquisition, Confounders, Quality/reporting, Post-processing). Overall, 78% of recommendations were formed from high-quality evidence, and 91% received agreement from over 80% of the expert panel. These 23 expert-reviewed recommendations and accompanying extended documentation form a readily useable guideline to allow those new to using MEGA-PRESS to design appropriate MEGA-PRESS study protocols and generate high-quality data.
Collapse
|
90
|
Pushpa BT, Rajasekaran S, Easwaran M, Murugan C, Algeri R, Sri Vijay Anand KS, Mugesh Kanna R, Shetty AP. ISSLS PRIZE in basic science 2023: Lactate in lumbar discs-metabolic waste or energy biofuel? Insights from in vivo MRS and T2r analysis following exercise and nimodipine in healthy volunteers. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1491-1503. [PMID: 36790504 DOI: 10.1007/s00586-023-07540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/19/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE To quantitatively assess the dynamic changes of Lactate in lumbar discs under different physiological conditions using MRS and T2r. METHODS In step1, MRS and T2r sequences were standardized in 10 volunteers. Step2, analysed effects of high cellular demand. 66 discs of 20 volunteers with no back pain were evaluated pre-exercise (EX-0), immediately after targeted short-time low back exercises (EX-1) and 60 min after (EX-2). In Step 3, to study effects of high glucose and oxygen concentration, 50 lumbar discs in 10 volunteers were analysed before (D0) and after 10 days intake of the calcium channel blocker, nimodipine (D1). RESULTS Lactate showed a distinctly different response to exercise in that Grade 1 discs with a significant decrease in EX-1 and a trend for normalization in Ex-2. In contrast, Pfirrmann grade 2 and 3 and discs above 40 years showed a higher lactate relative to proteoglycan in EX-0, an increase in lactate EX-1 and mild dip in Ex-2. Similarly, following nimodipine, grade 1 discs showed an increase in lactate which was absent in grade 2 and 3 discs. In contrast, exercise and Nimodipine had no significant change in T2r values and MRS spectrum of proteoglycan, N-acetyl aspartate, carbohydrate, choline, creatine, and glutathione across age groups and Pfirrmann grades. CONCLUSION MRS documented changes in lactate response to cellular demand which suggested a 'Lactate Symbiotic metabolic Pathway'. The differences in lactate response preceded changes in Proteoglycan/hydration and thus could be a dynamic radiological biomarker of early degeneration.
Collapse
|
91
|
Reiter DA, Bellissimo MP, Zhou L, Boebinger S, Wells GD, Jones DP, Ziegler TR, Alvarez JA, Fleischer CC. Increased adiposity is associated with altered skeletal muscle energetics. J Appl Physiol (1985) 2023; 134:1083-1092. [PMID: 36759162 PMCID: PMC10125027 DOI: 10.1152/japplphysiol.00387.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
The objective of this pilot study was to characterize relationships between skeletal muscle energy metabolism and body composition in healthy adults with varied amounts and distribution of adipose tissue. In vivo muscle energetics were quantified using dynamic 31P magnetic resonance spectroscopy with knee extension exercise standardized to subject lean body mass. Spearman's correlation analysis examined relationships between muscle metabolism indices and measures of adiposity including body mass index (BMI), total body fat, and quadriceps intermuscular adipose tissue (IMAT). Post hoc partial correlations were examined controlling for additional body composition measures. Kruskal-Wallis tests with Dunn-Sidak post hoc comparisons evaluated group differences in energy metabolism based on body composition profiles (i.e., lean, normal-weight obese, and overweight-obese) and IMAT tertiles. BMI negatively correlated with end-exercise muscle pH after correcting for IMAT and total body fat (r = -0.46, P = 0.034). Total adiposity negatively correlated with maximum oxidative capacity after correcting for IMAT (r = -0.54, P = 0.013). IMAT positively correlated with muscle proton buffering capacity after correcting for total body fat (r = 0.53, P = 0.023). Body composition groups showed differences in end-exercise fall in [PCr] with normalized workload (P = 0.036; post hoc: overweight-obese < lean, P = 0.029) and maximum oxidative capacity (P = 0.021; post hoc: normal-weight obese < lean, P = 0.016). IMAT tertiles showed differences in end-exercise fall in [PCr] with normalized workload (P = 0.035; post hoc: 3rd < 1st, P = 0.047). Taken together, these results support increased adiposity is associated with reduced muscle energetic efficiency with more reliance on glycolysis, and when accompanied with reduced lean mass, is associated with reduced maximum oxidative capacity.NEW & NOTEWORTHY Skeletal muscle energy production is influenced by both lean body mass and adipose tissue but the effect of their distribution on energy metabolism is unclear. This study examined variations in quadriceps muscle energy metabolism in healthy adults with varied relative amounts of lean and adipose tissue. Results suggest increased adiposity is associated with reduced muscle energetic efficiency with more reliance on glycolysis, and when accompanied with reduced lean mass, is associated with reduced maximum oxidative capacity.
Collapse
|
92
|
Veeraiah P, Jansen JFA. Multinuclear Magnetic Resonance Spectroscopy at Ultra-High-Field: Assessing Human Cerebral Metabolism in Healthy and Diseased States. Metabolites 2023; 13:metabo13040577. [PMID: 37110235 PMCID: PMC10143499 DOI: 10.3390/metabo13040577] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a highly energetic organ. Although the brain can consume metabolic substrates, such as lactate, glycogen, and ketone bodies, the energy metabolism in a healthy adult brain mainly relies on glucose provided via blood. The cerebral metabolism of glucose produces energy and a wide variety of intermediate metabolites. Since cerebral metabolic alterations have been repeatedly implicated in several brain disorders, understanding changes in metabolite levels and corresponding cell-specific neurotransmitter fluxes through different substrate utilization may highlight the underlying mechanisms that can be exploited to diagnose or treat various brain disorders. Magnetic resonance spectroscopy (MRS) is a noninvasive tool to measure tissue metabolism in vivo. 1H-MRS is widely applied in research at clinical field strengths (≤3T) to measure mostly high abundant metabolites. In addition, X-nuclei MRS including, 13C, 2H, 17O, and 31P, are also very promising. Exploiting the higher sensitivity at ultra-high-field (>4T; UHF) strengths enables obtaining unique insights into different aspects of the substrate metabolism towards measuring cell-specific metabolic fluxes in vivo. This review provides an overview about the potential role of multinuclear MRS (1H, 13C, 2H, 17O, and 31P) at UHF to assess the cerebral metabolism and the metabolic insights obtained by applying these techniques in both healthy and diseased states.
Collapse
|
93
|
Spurny-Dworak B, Reed MB, Handschuh P, Vanicek T, Spies M, Bogner W, Lanzenberger R. The influence of season on glutamate and GABA levels in the healthy human brain investigated by magnetic resonance spectroscopy imaging. Hum Brain Mapp 2023; 44:2654-2663. [PMID: 36840505 PMCID: PMC10028653 DOI: 10.1002/hbm.26236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Seasonal changes in neurotransmitter systems have been demonstrated in imaging studies and are especially noticeable in diseased states such as seasonal affective disorder (SAD). These modulatory neurotransmitters, such as serotonin, are influencing glutamatergic and GABAergic neurotransmission. Furthermore, central components of the circadian pacemaker are regulated by GABA (the suprachiasmatic nucleus) or glutamate (e.g., the retinohypothalamic tract). Therefore, we explored seasonal differences in the GABAergic and glutamatergic system in 159 healthy individuals using magnetic resonance spectroscopy imaging with a GABA-edited 3D-MEGA-LASER sequence at 3T. We quantified GABA+/tCr, GABA+/Glx, and Glx/tCr ratios (GABA+, GABA+ macromolecules; Glx, glutamate + glutamine; tCr, total creatine) in five different subcortical brain regions. Differences between time periods throughout the year, seasonal patterns, and stationarity were tested using ANCOVA models, curve fitting approaches, and unit root and stationarity tests, respectively. Finally, Spearman correlation analyses between neurotransmitter ratios within each brain region and cumulated daylight and global radiation were performed. No seasonal or monthly differences, seasonal patterns, nor significant correlations could be shown in any region or ratio. Unit root and stationarity tests showed stable patterns of GABA+/tCr, GABA+/Glx, and Glx/tCr levels throughout the year, except for hippocampal Glx/tCr. Our results indicate that neurotransmitter levels of glutamate and GABA in healthy individuals are stable throughout the year. Hence, despite the important correction for age and gender in the analyses of MRS derived GABA and glutamate, a correction for seasonality in future studies does not seem necessary. Future investigations in SAD and other psychiatric patients will be of high interest.
Collapse
|
94
|
Satrom KM, Rao RB, Tkáč I. Neonatal hyperbilirubinemia differentially alters the neurochemical profiles of the developing cerebellum and hippocampus in a preterm Gunn rat model. NMR IN BIOMEDICINE 2023:e4946. [PMID: 37009906 DOI: 10.1002/nbm.4946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Neonatal hyperbilirubinemia (NHB) can lead to brain injury in newborn infants by affecting specific regions including the cerebellum and hippocampus. Extremely preterm infants are more vulnerable to bilirubin neurotoxicity, but the mechanism and extent of injury is not well understood. A preterm version of the Gunn rat model was utilized to investigate severe preterm NHB. Homozygous/jaundiced Gunn rat pups were injected (i.p.) on postnatal day (P) 5 with sulfadimethoxine, which increases serum free bilirubin capable of crossing the blood-brain barrier and causing brain injury. The neurochemical profiles of the cerebellum and hippocampus were determined using in vivo 1 H MRS at 9.4 T on P30 and compared with those of heterozygous/non-jaundiced control rats. Transcript expression of related genes was determined by real-time quantitative PCR. MRI revealed significant morphological changes in the cerebellum of jaundiced rats. The concentrations of myo-inositol (+54%), glucose (+51%), N-acetylaspartylglutamate (+21%), and the sum of glycerophosphocholine and phosphocholine (+17%) were significantly higher in the cerebellum of the jaundiced group compared with the control group. Despite the lack of morphologic changes in the hippocampus, the concentration of myo-inositol (+9%) was higher and the concentrations of creatine (-8%) and of total creatine (-3%) were lower in the jaundiced group. In the hippocampus, expression of calcium/calmodulin dependent protein kinase II alpha (Camk2a), glucose transporter 1 (Glut1), and Glut3 transcripts were downregulated in the jaundiced group. In the cerebellum, glial fibrillary acidic protein (Gfap), myelin basic protein (Mbp), and Glut1 transcript expression was upregulated in the jaundiced group. These results indicate osmotic imbalance, gliosis, and changes in energy utilization and myelination, and demonstrate that preterm NHB critically affects brain development in a region-specific manner, with the cerebellum more severely impacted than the hippocampus.
Collapse
|
95
|
Belhout C, Boyen F, Vereecke N, Theuns S, Taibi N, Stegger M, de la Fé-Rodríguez PY, Bouayad L, Elgroud R, Butaye P. Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococci ( MRS) and Mammaliicocci (MRM) in Dromedary Camels from Algeria: First Detection of SCC mec- mecC Hybrid in Methicillin-Resistant Mammaliicoccus lentus. Antibiotics (Basel) 2023; 12:674. [PMID: 37107036 PMCID: PMC10134997 DOI: 10.3390/antibiotics12040674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Dromedary camels are an important source of food and income in many countries. However, it has been largely overlooked that they can also transmit antibiotic-resistant bacteria. The aim of this study was to identify the Staphylococcaceae bacteria composition of the nasal flora in dromedary camels and evaluate the presence of methicillin-resistant Mammaliicoccus (MRM) and methicillin-resistant Staphylococcus (MRS) in dromedary camels in Algeria. Nasal swabs were collected from 46 camels from seven farms located in two different regions of Algeria (M'sila and Ouargla). We used non-selective media to determine the nasal flora, and antibiotic-supplemented media to isolate MRS and MRM. The staphylococcal isolates were identified using an Autoflex Biotyper Mass Spectrometer (MALDI-TOF MS). The mecA and mecC genes were detected by PCR. Methicillin-resistant strains were further analysed by long-read whole genome sequencing (WGS). Thirteen known Staphylococcus and Mammaliicoccus species were identified in the nasal flora, of which half (49.2%) were coagulase-positive staphylococci. The results showed that four out of seven farms were positive for MRS and/or MRM, with a total of 16 isolates from 13 dromedary camels. The predominant species were M. lentus, S. epidermidis, and S. aureus. Three methicillin-resistant S. aureus (MRSA) were found to be ST6 and spa type t304. Among methicillin-resistant S. epidermidis (MRSE), ST61 was the predominant ST identified. Phylogenetic analysis showed clonal relatedness among M. lentus strains, while S. epidermidis strains were not closely related. Resistance genes were detected, including mecA, mecC, ermB, tet(K), and blaZ. An SCCmec type VIII element was found in a methicillin-resistant S. hominis (MRSH) belonging to the ST1 strain. An SCCmec-mecC hybrid element was detected in M. lentus, similar to what was previously detected in M. sciuri. This study highlights that dromedary camels may be a reservoir for MRS and MRM, and that they contain a specific set of SCCmec elements. This emphasizes the need for further research in this ecological niche from a One Health perspective.
Collapse
|
96
|
An L, Shen J. In Vivo Magnetic Resonance Spectroscopy by J-Locked Chemical Shift Encoding for Determination of Neurochemical Concentration and Transverse Relaxation Time. ARXIV 2023:arXiv:2303.14230v1. [PMID: 37064530 PMCID: PMC10104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Cell pathology in neuropsychiatric disorders has mainly been accessible by analyzing postmortem tissue samples. Although molecular transverse relaxation informs local cellular microenvironment via molecule-environment interactions, precise determination of the transverse relaxation times of molecules with scalar couplings (J), such as glutamate and glutamine, is difficult using current in vivo magnetic resonance spectroscopy (MRS) technologies, whose approach to measuring transverse relaxation has not changed for decades. We introduce an in vivo MRS technique that achieves chemical shift encoding with selectively locked J-couplings in each column of the acquired two-dimensional dataset, freeing up the entire row dimension for transverse relaxation encoding. This results in increased spectral resolution, minimized background signals, and markedly broadened dynamic range for transverse relaxation encoding. This technique enables determination of the transverse relaxation times of glutamate and glutamine in vivo with unprecedented high precision. Since glutamate predominantly resides in glutamatergic neurons and glutamine in glia in the brain, this noninvasive technique provides a way to probe cellular pathophysiology in neuropsychiatric disorders for characterizing disease progression and monitoring treatment response in a cell type-specific manner in vivo.
Collapse
|
97
|
Dey A, Luk CC, Ishaque A, Ta D, Srivastava O, Krebs D, Seres P, Hanstock C, Beaulieu C, Korngut L, Frayne R, Zinman L, Graham S, Genge A, Briemberg H, Kalra S. Motor cortex functional connectivity is associated with underlying neurochemistry in ALS. J Neurol Neurosurg Psychiatry 2023; 94:193-200. [PMID: 36379713 PMCID: PMC9985743 DOI: 10.1136/jnnp-2022-329993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To identify structural and neurochemical properties that underlie functional connectivity impairments of the primary motor cortex (PMC) and how these relate to clinical findings in amyotrophic lateral sclerosis (ALS). METHODS 52 patients with ALS and 52 healthy controls, matched for age and sex, were enrolled from 5 centres across Canada for the Canadian ALS Neuroimaging Consortium study. Resting-state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy data were acquired. Functional connectivity maps, diffusion metrics and neurometabolite ratios were obtained from the analyses of the acquired multimodal data. A clinical assessment of foot tapping (frequency) was performed to examine upper motor neuron function in all participants. RESULTS Compared with healthy controls, the primary motor cortex in ALS showed reduced functional connectivity with sensory (T=5.21), frontal (T=3.70), temporal (T=3.80), putaminal (T=4.03) and adjacent motor (T=4.60) regions. In the primary motor cortex, N-acetyl aspartate (NAA, a neuronal marker) ratios and diffusion metrics (mean, axial and radial diffusivity, fractional anisotropy (FA)) were altered. Within the ALS cohort, foot tapping frequency correlated with NAA (r=0.347) and white matter FA (r=0.537). NAA levels showed associations with disturbed functional connectivity of the motor cortex. CONCLUSION In vivo neurochemistry may represent an effective imaging marker of impaired motor cortex functional connectivity in ALS.
Collapse
|
98
|
Genovese G, Deelchand DK, Terpstra M, Marjańska M. Quantification of GABA concentration measured noninvasively in the human posterior cingulate cortex with 7 T ultra-short-TE MR spectroscopy. Magn Reson Med 2023; 89:886-897. [PMID: 36372932 PMCID: PMC9792442 DOI: 10.1002/mrm.29514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE The increased spectral dispersion achieved at ultra-high field permits quantification of γ-aminobutyric acid (GABA) concentrations at ultra-short-TE without editing. This work investigated the influence of spectral quality and different LCModel fitting approaches on quantification of GABA. Additionally, the sensitivity with which cross-sectional and longitudinal variations in GABA concentrations can be observed was characterized. METHODS In - vivo spectra were acquired in the posterior cingulate cortex of 10 volunteers at 7 T using a STEAM sequence. Synthetically altered spectra with different levels of GABA signals were used to investigate the reliability of GABA quantification with different LCModel fitting approaches and different realizations of SNR. The synthetically altered spectra were also used to characterize the sensitivity of GABA quantification. RESULTS The best LCModel fitting approach used stiff spline baseline, no soft constraints, and measured macromolecules in the basis set. With lower SNR, coefficients of variation increased dramatically. Longitudinal and cross-sectional variations in GABA of 10% could be detected with 79 and 48 participants per group, respectively. However, the small cohort may bias the calculation of the coefficients of variation and of the sample size that would be needed to detect variations in GABA. CONCLUSION Reliable quantification of normal and abnormal GABA concentrations was achieved for high quality 7 T spectra using LCModel fitting.
Collapse
|
99
|
Zhang P, Duan Y, Gu G, Qu L, Xiao D, Xi T, Pan C, Liu Y, Zhang L. Clinical, pathological, and radiological features of 80 pediatric diffuse intrinsic pontine gliomas: A single-institute study. Front Oncol 2023; 13:1007393. [PMID: 36824137 PMCID: PMC9941347 DOI: 10.3389/fonc.2023.1007393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Objective Diffuse intrinsic pontine gliomas (DIPGs) are rare but devastating diseases. This retrospective cross-sectional study aimed to investigate the clinical, radiological, and pathological features of DIPGs. Materials and methods The clinical data of 80 pediatric DIPGs under clinical treatment in Beijing Tiantan Hospital from July 2013 to July 2019 were retrospectively collected and studied. A follow-up evaluation was performed. Results This study included 48 men and 32 women. The most common symptoms were cranial nerve palsy (50.0%, 40/80 patients) and limb weakness (41.2%, 33/80 patients). Among the 80 patients, 24 cases were clinically diagnosed, 56 cases were pathologically verified, and 45 cases were tested for H3K27 alteration status, with 34 H3K27 alteration cases confirmed. Radiological results indicated that enhancement was common (65.0%, 52/80 patients). Cho/Cr was of predictive value for H3K27 alteration status (P = 0.012, cutoff value = 2.38, AUC = 0.801). Open cranial surgery followed by further chemotherapy and radiotherapy was beneficial for patients' overall survival. Cox regression analysis indicated H3K27 alteration to be the independent prognostic influencing factor for DIPGs in this series (P = 0.002). Conclusion DIPGs displayed a wide spectrum of clinical and imaging features. Surgery-suitable patients could benefit from postoperative comprehensive therapy for a better overall survival. H3K27 alteration was the independent prognostic influencing factor for DIPGs.
Collapse
|
100
|
Sun P, Wu Z, Lin L, Hu G, Zhang X, Wang J. MR-Nucleomics: The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo. NMR IN BIOMEDICINE 2023; 36:e4845. [PMID: 36259659 DOI: 10.1002/nbm.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.
Collapse
|