76
|
Zelenaia O, Schlag BD, Gochenauer GE, Ganel R, Song W, Beesley JS, Grinspan JB, Rothstein JD, Robinson MB. Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol Pharmacol 2000; 57:667-78. [PMID: 10727511 DOI: 10.1124/mol.57.4.667] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The glial glutamate transporter GLT-1 may be the predominant Na(+)-dependent glutamate transporter in forebrain. Expression of GLT-1 correlates with astrocyte maturation in vivo and increases during synaptogenesis. In astrocyte cultures, GLT-1 expression parallels differentiation induced by cAMP analogs or by coculturing with neurons. Molecule(s) secreted by neuronal cultures contribute to this induction of GLT-1, but little is known about the signaling pathways mediating this regulation. In the present study, we determined whether growth factors previously implicated in astrocyte differentiation regulate GLT-1 expression. Of the six growth factors tested, two [epidermal growth factor (EGF) and transforming growth factor-alpha] induced expression of GLT-1 protein in cultured astrocytes. Induction of GLT-1 protein was accompanied by an increase in mRNA and in the V(max) for Na(+)-dependent glutamate transport activity. The effects of dibutyryl-cAMP and EGF were additive but were independently blocked by inhibitors of protein kinase A or protein tyrosine kinases, respectively. The induction of GLT-1 in both EGF- and dibutyryl-cAMP-treated astrocytes was blocked by inhibitors targeting phosphatidylinositol 3-kinase (PI3K) or the nuclear transcription factor-kappaB. Furthermore, transient transfection of astrocyte cultures with a constitutively active PI3K construct was sufficient to induce expression of GLT-1. These data suggest that independent but converging pathways mediate expression of GLT-1. Although an EGF receptor-specific antagonist did not block the effects of neuron-conditioned medium, the induction of GLT-1 by neuron-conditioned medium was completely abolished by inhibition of PI3K or nuclear factor-kappaB. EGF also increased expression of GLT-1 in spinal cord organotypic cultures. Together, these data suggest that activation of specific signaling pathways with EGF-like molecules may provide a novel approach for limiting excitotoxic brain injury.
Collapse
|
77
|
Campos BG, Ferreira RR, Gomes JC. The potentiation of the histamine release induced by adenosine in mast cells from guinea pig lung and heart: sharp dependence on the time of preincubation. Pharmacol Res 2000; 41:291-7. [PMID: 10675280 DOI: 10.1006/phrs.1999.0589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied here the effect of a wide range of adenosine concentration and time of preincubation, on the histamine release induced in the guinea pig mast cells by different stimulus. Adenosine (10(-5)-10(-3)m) potentiated the histamine release induced by antigen in the guinea pig heart (isolated and dispersed tissue) and lung mast cells but not induced by ionophore A23197. The potentiation caused by adenosine (10(-4)m) was maximum after 1-3 min of preincubation and is probably an extracellular effect since it was not avoided by dipyridamol (3x10(-7)-10(-6)m) that inhibit the uptake of adenosine. Similar potentiation was also produced by the adenosine mimetic 2-chloroadenosine (10(-5)m) and both effects were inhibited by 8-phenyltheophylline indicating an effect on the type A receptors. It is suggested that the adenosine potentiation may not be related to changes on the cyclic AMP levels. 2000 Academic Press@p$hr
Collapse
|
78
|
Krasznai Z, Marian T, Izumi H, Damjanovich S, Balkay L, Tron L, Morisawa M. Membrane hyperpolarization removes inactivation of Ca2+ channels, leading to Ca2+ influx and subsequent initiation of sperm motility in the common carp. Proc Natl Acad Sci U S A 2000; 97:2052-7. [PMID: 10688893 PMCID: PMC15752 DOI: 10.1073/pnas.040558097] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/1999] [Accepted: 12/20/1999] [Indexed: 11/18/2022] Open
Abstract
Change of osmolality surrounding spawned sperm from isotonic to hypotonic causes the initiation of sperm motility in the common carp. Here we show that membrane-permeable cAMP does not initiate motility of carp sperm that is quiescent in isotonic solution, and that motility of the demembranated sperm can be reactivated without cAMP. Furthermore, the cAMP level does not change during the initiation of sperm motility, and inhibitors of protein kinase do not affect sperm motility, suggesting that no cAMP-dependent system is necessary for the regulation of sperm motility. Sperm motility could not be initiated in Ca(2+)-free hypoosmotic solutions, and significant increase in the intracellular Ca(2+) level was observed by a Ca-sensitive fluorescence dye during hypoosmolality-induced active motion period. The demembranated sperm cells were fully reactivated in the solutions containing 10(-7) to 10(-5) M Ca(2+). Ca(2+) channel blockers such as verapamil and omega-conotoxin reversibly inhibited the initiation of sperm motility, suggesting that Ca(2+) influx is the prerequisite for the initiation of carp sperm motility. Motility of intact sperm was completely blocked; however, that of the demembranated sperm was not inhibited by the calmodulin inhibitor W7, suggesting that the calmodulin bound close to the plasma membrane participated in the initiation of sperm motility. Flow cytometric membrane potential measurements and spectrophotometric measurements by using fluorescence dyes showed transient membrane hyperpolarization on hypoosmolality-induced motility. This article discusses the role of membrane hyperpolarization on removal of inactivation of Ca(2+) channels, leading to Ca(2+) influx at the initiation of carp sperm motility.
Collapse
|
79
|
Nakamura Y, Si QS, Kataoka K. Lipopolysaccharide-induced microglial activation in culture: temporal profiles of morphological change and release of cytokines and nitric oxide. Neurosci Res 1999; 35:95-100. [PMID: 10616913 DOI: 10.1016/s0168-0102(99)00071-1] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Microglial activation has been considered as a result of neuronal damage, however, recently it becomes to recognize as a possible cause of the damage in various neurodegenerative diseases. To elucidate the mechanism of the microglial activation, we examined the time course of lipopolysaccharide (LPS)-induced change in morphology and the release of cytokines and nitric oxide (NO) in cultured microglia from neonatal rat brains. With addition of 1 microg/ml LPS, the cell morphology was drastically changed within 3 h from amoeboid shape to bipolar rod shape. The peak time of such morphological change was at 6 h and then returned to small round shape gradually. This transient change in morphology was completely inhibited by 0.1 mM dibutyryl-cAMP. On the other hand, the release of cytokines and NO showed different time courses after stimulation by LPS; at first tumor necrosis factor (TNF)-alpha was released within 1 h lag time, secondly interleukin (IL)-1beta within 3 h, thirdly IL-6, and at last NO was released with about 6 h lag time. The addition of dibutyryl cAMP markedly inhibited the release of TNF-alpha and IL-1beta, but not IL-6 and NO at all. These results suggest that there are at least two different intracellular signaling pathways of LPS-induced microglial activation; one for early release of TNF-alpha and IL-1beta sensitive to dibutyryl-cAMP and the other for late release of IL-6 and NO insensitive to dibutyryl-cAMP. The transient morphological change seems to be associated with the early release based on the sensitivity to dibutyryl-cAMP.
Collapse
|
80
|
Shea TB, Beermann ML. Neuronal intermediate filament protein alpha-internexin facilitates axonal neurite elongation in neuroblastoma cells. CELL MOTILITY AND THE CYTOSKELETON 1999; 43:322-33. [PMID: 10423273 DOI: 10.1002/(sici)1097-0169(1999)43:4<322::aid-cm5>3.0.co;2-b] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined the localization and role of alpha-IN vs. other neuronal intermediate filaments before and during differentiation. Vimentin but not alpha-IN localized within filopodia-like neurites of undifferentiated cells. During differentiation, alpha-IN immunoreactivity accumulated within axonal neurites following vimentin but, as previously describe in neurons in situ, before the appearance of NF-L. We therefore manipulated alpha-IN synthesis, accumulation, and function in attempts to determine whether or not this intermediate filament species played a role in axonal development. Intracellular delivery of anti-alpha-IN antisense oligonucleotides and antibodies was permissive for neuritogenesis, yet compromised neurite elongation; this effect was further reflected in diminished levels of stabilized axonal microtubules. These data suggest that alpha-IN plays a role in the development of neuronal polarity. Relatively more alpha-IN than NF-L accumulated within the plastic axonal neurites induced following serum-deprivation, while stable, dbcAMP-induced neurites treatment contained equivalent levels of each. Protease inhibition increased NF-L and NF-H but not alpha-IN immunoreactivity within serum-deprived neurites, suggesting that proteolysis restricts NF-L accumulation pending neurite stabilization. To test the possibility that NF-H accumulation is dependent upon NF-L and cannot be mediated by alpha-IN, we examined levels of NF-H co-precipitated from cells with alpha-IN and NF-L. Virtually all newly synthesized NF-H co-precipitated with NF-L, while only a small percentage co-precipitated with alpha-IN. Finally, NF-H or NF-M were absent from the axon hillock or perikaryal area at the base of neurites, where alpha-IN immunoreactivity is prominent. These data extend earlier cell-free demonstrations that NF-H preferentially associates with NF-L rather than alpha-IN.
Collapse
|
81
|
Burke JR, Davern LB, Gregor KR, Owczarczak LM. Differentiation of U937 cells enables a phospholipase D-dependent pathway of cytosolic phospholipase A2 activation. Biochem Biophys Res Commun 1999; 260:232-9. [PMID: 10381372 DOI: 10.1006/bbrc.1999.0887] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment with dibutyryl cyclic AMP (dBcAMP) of the human, premonocytic U937 cell line results in differentiation toward a monocyte/granulocyte-like cell. This differentiation enables the cell to activate cytosolic phospholipase A2 (cPLA2) to release arachidonate upon stimulation. In contrast, undifferentiated cells are unable to release arachidonate even when stimulated with calcium ionophores. In the present research, a role for phospholipase D (PLD) in the regulation of cPLA2 was shown based on a number of observations. First, the ionomycin- and fMLP-stimulated production of arachidonate in differentiated cells was sensitive to ethanol (2% (v/v)). Ethanol acts as an alternate substrate in place of water for PLD producing phosphatidylethanol (PEt) instead of phosphatidic acid. Indeed, ionomycin stimulation of differentiated cells produced a 14-fold increase in PEt levels. Further evidence for the involvement of PLD in the regulation of cPLA2 came from the observation that the stimulated production of diacylglycerol (for which phosphatidic acid is a major source) was greatly diminished in undifferentiated cells as compared to differentiated cells. Moreover, the normally deficient activation of cPLA2 in undifferentiated cells could be stimulated to release arachidonate if the cells were electroporated in the presence of GTP[gamma]S and MgATP. This treatment stimulates phosphatidylinositol-4,5-bisphosphate (PIP2) production which appears to activate PLD and cPLA2 in subsequent steps. The phosphatidic acid (and diacylglycerol derived from phosphatidic acid) appears to greatly regulate the action of cPLA2 by an unknown mechanism, and undifferentiated cells lack the ability to stimulate PLD activity due to a dysfunction of PIP2 production.
Collapse
|
82
|
Murphy BD, Dobias M. Homologous and heterologous ligands downregulate follicle-stimulating hormone receptor mRNA in porcine granulosa cells. Mol Reprod Dev 1999; 53:198-207. [PMID: 10331458 DOI: 10.1002/(sici)1098-2795(199906)53:2<198::aid-mrd9>3.0.co;2-k] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated homologous and heterologous downregulation of FSH receptor mRNA in porcine granulosa cells from ovaries of immature pigs. Cultures were treated with 0, 40, or 200 ng/ml porcine FSH or medium and terminated at 24 hr intervals for Northern analysis of FSH receptor and cytochrome P450 side chain cleavage (P450scc) mRNA, and for radioimmunoassay of progesterone. Cells luteinized over 96 hr, and control cultures displayed increases in P450scc (8-10 fold) and FSH receptor (2 fold) mRNA and progesterone (100 fold). FSH reduced FSH receptor mRNA by 50-90%, increased P450scc mRNA 8 fold within 48 hr, and elevated progesterone logarithmically over 96 hr. Luteinized cells, (after 96 hr) received FSH or LH (1-200 ng/ml) or prostaglandin E2 (0.01-1.0 mg/ml) for 6 hr resulting in increased P450scc mRNA (2-8 fold), and progesterone (2-5 fold), and reduced FSH receptor mRNA. FSH (200 ng/ml) or the cAMP analog, dbcAMP (1 mM) for 0-24 hr reduced FSH receptor mRNA to 15% of control from 4-24 hr and elevated P450scc mRNA at 4 and 6 hr, respectively, to maxima at 12-24 hr. Forskolin (1-10 mM) increased P450scc mRNA (2-3 fold) and downregulated FSH receptor mRNA, effects reversed by the inhibitor of cAMP, rpcAMPs. Both epidermal growth factor, and the activator of the protein kinase C pathway, phorbol 12-myristate, 13-acetate (PMA) at 10 nM reduced FSH receptor mRNA. We conclude that downregulation of FSH receptor mRNA in luteinized granulosa cells is mediated by both homologous and heterologous ligands which employ cAMP, and that growth factors that activate the PKC pathway reduce FSH receptor and P450scc mRNA abundance.
Collapse
|
83
|
Kräling BM, Wiederschain DG, Boehm T, Rehn M, Mulliken JB, Moses MA. The role of matrix metalloproteinase activity in the maturation of human capillary endothelial cells in vitro. J Cell Sci 1999; 112 ( Pt 10):1599-609. [PMID: 10212153 DOI: 10.1242/jcs.112.10.1599] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vessel maturation during angiogenesis (the formation of new blood vessels) is characterized by the deposition of new basement membrane and the downregulation of endothelial cell proliferation in the new vessels. Matrix remodeling plays a crucial, but still poorly understood role, in angiogenesis regulation. We present here a novel assay system with which to study the maturation of human capillary endothelial cells in vitro. When human dermal microvascular endothelial cells (HDMEC) were cultured in the presence of dibutyryl cAMP (Bt2) and hydrocortisone (HC), the deposition of a fibrous lattice of matrix molecules consisting of collagens type IV, type XVIII, laminin and thrombospondin was induced. In basal medium (without Bt2 and HC), HDMEC released active matrix metalloproteinases (MMPs) into the culture medium. However, MMP protein levels were significantly reduced by treatment with Bt2 and HC, while protein levels and activity of endogenous tissue inhibitor of MMPs (TIMP) increased. This shift in the proteolytic balance and matrix deposition was inhibited by the specific protein kinase A inhibitors RpcAMP and KT5720 or by substituting analogues without reported glucocorticoid activity for HC. The addition of MMP inhibitors human recombinant TIMP-1 or 1,10-phenanthroline to cultures under basal conditions induced matrix deposition in a dose-dependent manner, which was not observed with the serine protease inhibitor epsilon-amino-n-caproic acid (ACA). The deposited basement membrane-type of matrix reproducibly suppressed HDMEC proliferation and increased HDMEC adhesion to the substratum. These processes of matrix deposition and downregulation of endothelial cell proliferation, hallmarks of differentiating new capillaries in the end of angiogenesis, were recapitulated in our cell culture system by decreasing the matrix-degrading activity. These data suggest that our cell culture assay provides a simple and feasible model system for the study of capillary endothelial cell differentiation and vessel maturation in vitro.
Collapse
|
84
|
Sho K, Narita T, Okajima F, Kondo Y. An adenosine receptor agonist-induced modulation of TSH-dependent cell growth in FRTL-5 thyroid cells mediated by inhibitory G protein, Gi. Biochimie 1999; 81:341-6. [PMID: 10401667 DOI: 10.1016/s0300-9084(99)80079-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Adenosine has been shown to modulate the TSH-induced DNA synthesis in FRTL-5 thyroid cells. The mechanism of this adenosine action has been somewhat controversial because both A1 adenosine receptor-mediated and non-receptor-mediated mechanisms have been proposed. We have now reexamined our preliminary finding of the inhibitory action of a non-metabolizable adenosine derivative, N6-(L-2-phenylisopropyl)adenosine (PIA), on the TSH-induced DNA synthesis to clarify the adenosine-dependent mechanism of cell growth modulation. PIA dose-dependently inhibited the TSH-induced DNA synthesis expressed by [3H]thymidine incorporation into DNA. This adenosine derivative also prevented the TSH-induced entry of the cell cycle to the S phase at 24 h of culture and the increase in cell number at 48 h. These PIA actions on different aspects of TSH-dependent cell growth were abolished by the treatment of the cells with pertussis toxin, suggesting the involvement of Gi in the PIA action mechanism. Dibutyryl cAMP-induced DNA synthesis was not influenced by PIA. In concert with our previous finding that PIA in a similar concentration range inhibited TSH-induced cAMP production through the adenosine A1 receptor, the present results strongly support the idea that the major pathway of adenosine signaling for the inhibition of the TSH-induced cell proliferation is through the A1 adenosine receptor-Gi system.
Collapse
|
85
|
Andres-Barquin PJ, Hernandez MC, Israel MA. Id4 expression induces apoptosis in astrocytic cultures and is down-regulated by activation of the cAMP-dependent signal transduction pathway. Exp Cell Res 1999; 247:347-55. [PMID: 10066362 DOI: 10.1006/excr.1998.4360] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Id family of helix-loop-helix transcription factors has been implicated in the regulation of cellular differentiation in several different lineages. We have explored the potential regulatory role of the cyclic AMP-dependent signaling pathway on Id gene expression in astroglial primary cultures. We found that primary cultures of mouse forebrain astrocytes constitutively expressed the four known members of the Id gene family, Id1, Id2, Id3, and Id4. During culture in presence of serum for 4 weeks, the expression of Id4 was up-regulated. In these same cultures, treatment with dibutyryl-cyclic AMP, a cyclic AMP analogue known to promote astrocyte differentiation, dramatically and selectively decreased Id4 gene expression. This effect was detectable after short-term treatment and was maintained during long-term treatment. Forskolin and pentoxifylline, two other agents known to elevate intracellular cyclic AMP through different mechanisms, also potently decreased Id4 gene expression. Furthermore, overexpression of Id4 in an astrocyte-derived cell line induced cells to round up and die by apoptosis. These results indicate that the cyclic AMP pathway acts as an inhibitor of Id4 gene expression in astrocytes, identify a new function for Id4, and suggest that Id4 is strategically positioned in the chain of molecular events regulating astrocyte differentiation and apoptosis.
Collapse
|
86
|
Giordano D, Giorgi M, Sette C, Biagioni S, Augusti-Tocco G. cAMP-dependent induction of PDE5 expression in murine neuroblastoma cell differentiation. FEBS Lett 1999; 446:218-22. [PMID: 10100844 DOI: 10.1016/s0014-5793(99)00227-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study demonstrates, in both hybrid NG108-15 and mouse neuroblastoma N18TG2 cells, the presence and regulation of PDE5 mRNA during cell differentiation. PDE5 cDNA probes in Northern blot analysis recognize a approximately 9 kb transcript in bovine lung as well as in mouse neuroblastoma cells. Hybridization on total RNA extracted from dibutyryl-cAMP-treated NG108-15 cells shows a 5-fold increase of PDE5 9 kb mRNA: such an increase is not observed in N18TG2 although we observed a similar increase in the enzymatic activity of both cell lines. Our data demonstrate that PDE5 gene expression can be regulated by cAMP and suggest the existence of a complex regulatory system for PDE5 activity.
Collapse
|
87
|
Seternes OM, Sørensen R, Johansen B, Moens U. Activation of protein kinase A by dibutyryl cAMP treatment of NIH 3T3 cells inhibits proliferation but fails to induce Ser-133 phosphorylation and transcriptional activation of CREB. Cell Signal 1999; 11:211-9. [PMID: 10353696 DOI: 10.1016/s0898-6568(98)00069-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cAMP analogue dibutyryl cAMP (dbcAMP) is often used to activate the protein kinase A pathway and to study the expression of cAMP-responsive genes. Here we show that in NIH 3T3 cells dbcAMP is able to activate PKA, but fails to stimulate expression of the cAMP-inducible c-fos gene. Co-expression of A-kinase anchoring protein 75, previously shown to amplify cAMP signalling and to stimulate c-fos expression, could not restore cAMP responsiveness of the c-fos promoter. DbcAMP-induced activation of PKA may result in poor translocation of the catalytic sub-units of PKA to the nucleus, indicated by the lack of both Ser-133 phosphorylation of the cAMP-response element binding factor CREB and stimulation of the transcriptional activity of this factor. DbcAMP treatment, however, inhibited cell proliferation. These results suggest that cAMP-mediated inhibition of proliferation may be independent of translocation of the catalytic sub-units into the nucleus.
Collapse
|
88
|
Si Q, Nakamura Y, Ogata T, Kataoka K, Schubert P. Differential regulation of microglial activation by propentofylline via cAMP signaling. Brain Res 1998; 812:97-104. [PMID: 9813261 DOI: 10.1016/s0006-8993(98)00954-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A pathological microglial activation is believed to contribute to progressive neuronal damage in neurodegenerative diseases by the release of potentially toxic agents and by triggering reactive astrocytic changes. Using cultured microglia from neonatal rat brains, we investigated the mode of propentofylline action in strengthening cAMP-dependent intracellular signaling. We compared this action with the effects of dibutyryl-cAMP, a cell-permeable cAMP analog. Propentofylline inhibited lipopolysaccharide (LPS)-induced release of both tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta in a dose-dependent manner within the therapeutic low micromolar range. However, LPS-induced release of IL-6 and NO were not affected by propentofylline. All these differential effects of propentofylline on LPS-induced microglial release were mimicked by the addition of dibutyryl-cAMP. Microglial proliferation and phorbol myristate acetate (PMA)-induced O2- release were also dose-dependently inhibited by propentofylline as well as dibutyryl-cAMP. These results suggest that propentofylline, probably via reinforcement of cAMP intracellular signaling, alters the profile of the newly adopted immune properties in a way that it inhibits potentially neurotoxic functions while maintaining beneficial functions. This differential regulation of microglial activation may explain the neuroprotective mechanism exerted by propentofylline.
Collapse
|
89
|
Laamarti MA, Bell PD, Lapointe JY. Transport and regulatory properties of the apical Na-K-2Cl cotransporter of macula densa cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F703-9. [PMID: 9815128 DOI: 10.1152/ajprenal.1998.275.5.f703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NH+4/NH3 fluxes were used to probe apical Na-K-2Cl transport activity of macula densa (MD) cells from rabbit kidney. In the presence of 25 mM NaCl and 5 mM Ba2+, addition of 20 mM NH+4 to the lumen produced a profound intracellular acidification, and approximately 80% of the initial acidification rate was bumetanide sensitive. The NH+4-induced acidification rate was dependent on luminal Cl- and Na+ with apparent affinities of 17 +/- 4 mM (Hill number 1.45) and 1.0 +/- 0.3 mM, respectively. In the presence of saturating luminal NaCl concentration ([NaCl]L), blockade of basolateral Cl- efflux with 10 microM 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) reduced the NH+4-induced acidification rate by 51 +/- 6% (P > 0.01, n = 5). Under similar conditions, dibutyryl-cAMP (DBcAMP) + forskolin increased the NH+4-induced acidification rate by 27%, whereas it produced no detectable effect at low luminal NaCl concentration. Most of the observed DBcAMP + forskolin effect was probably due to the stimulation of the basolateral Cl- conductance, since, in the presence of basolateral NPPB, this activation was changed to a 17.1% and 16.6% inhibition of the NH+4-induced acidification rate observed at high or low [NaCl]L, respectively. We conclude that the cotransporter found in MD cells displays, with respect to other Na-K-2Cl cotransporters, a relatively high affinity for luminal Na+ and luminal Cl- and can be specifically inhibited by increases in intracellular Cl- and cAMP concentrations.
Collapse
|
90
|
Maric K, Oksche A, Rosenthal W. Aquaporin-2 expression in primary cultured rat inner medullary collecting duct cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F796-801. [PMID: 9815137 DOI: 10.1152/ajprenal.1998.275.5.f796] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cultured renal epithelial cells rapidly downregulate expression of the vasopressin-regulated water channel aquaporin-2 (AQP-2). Our aim was to define conditions that favor maintenance of AQP-2 expression in vitro without genetic manipulation. We show here that primary cultures of rat inner medullary collecting duct (IMCD) cells retain AQP-2 expression for at least 6 days when grown with dibutyryl cAMP (DBcAMP) supplementation. We also found that coating the culture dishes with type IV collagen, rather than rat-tail collagen, retards AQP-2 downregulation. Immunofluorescence and biochemical studies indicate a shuttling of AQP-2-bearing vesicles after stimulation with vasopressin or forskolin. Rab3 proteins, known to be involved in regulated exocytosis, were detected only in cells grown in the presence of DBcAMP. Using the adenylyl cyclase assay, we confirmed the functional integrity of the vasopressin V2 receptor in a broken cell preparation. Our data show that cAMP supplementation is sufficient for the maintenance of AQP-2 expression in primary cultured cells. The model system established here allows the study of the regulation of genes encoding the antidiuretic machinery at the cellular level.
Collapse
|
91
|
Myslivecek J, Lisá V, Trojan S, Tucek S. Heterologous regulation of muscarinic and beta-adrenergic receptors in rat cardiomyocytes in culture. Life Sci 1998; 63:1169-82. [PMID: 9763212 DOI: 10.1016/s0024-3205(98)00378-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous work indicated that hyperstimulation of muscarinic receptors brings about profound changes not only in the density of the muscarinic receptors, but also of the beta-adrenoceptors in rat heart atria in vivo. We have now investigated whether a similar receptor cross-regulation occurs in cardiomyocytes in vitro. Cardiomyocytes from 3-4 day old rats were exposed to chemical agents on days 5-6 in culture. Densities of muscarinic and beta-adrenergic receptors were measured according to the binding of N-[3H]methylscopolamine and [ H]CGP 12177, respectively, to cell surface membranes and cell homogenates. Exposure of cells to the muscarinic agonist carbachol (1 mmol/l) brought about a profound decrease in the number of muscarinic receptors. The number of beta-adrenoceptors displayed biphasic changes, being augmented after 24 h (by 20-45% on the cell surface and by 29% in the homogenate) and diminished after 48 h and 72 h (after 48 h, decrease by 44-75% on the cell surface and by 36% in the homogenate). These effects of carbachol were not prevented by dimethylaminopropyl-bis-indolylmaleimide, the inhibitor of protein kinase C. Exposure of cells to the beta-adrenoceptor agonist isoprenaline (0.1 mmol/l) strongly diminished the number of beta-adrenoceptors on the cell surface and in the homogenate. The density of muscarinic receptors on the cell surface was diminished by 24-43% after 24 h exposure to isoprenaline and unchanged after 48 h, whereas the concentration of muscarinic receptors in the homogenate was unchanged after 24 h and increased by 20% after 48 h. The isoprenaline-induced decrease in the density of cell surface muscarinic receptors could not be simulated by forskolin and was not abolished by the protein kinase A inhibitors Rp-cAMPS and HA-1004. Dibutyryl cyclic AMP diminished the density of cell surface muscarinic receptors more than that of the beta-adrenergic receptors. Our data reveal a novel phenomenon of a biphasic change (an increase followed by a loss) in the density of beta-adrenoceptors during exposure of cardiocytes to carbachol. Activation of beta-adrenoceptors brings about less conspicuous changes in the density of muscarinic receptors. The observed phenomena of receptor cross-regulation cannot be explained by simple activations of protein kinases A and C.
Collapse
|
92
|
Gupta RC, Neumann J, Watanabe AM, Sabbah HN. Muscarinic-cholinoceptor mediated attenuation of phospholamban phosphorylation induced by inhibition of phosphodiesterase in ventricular cardiomyocytes: evidence against a cAMP-dependent effect. Mol Cell Biochem 1998; 187:155-61. [PMID: 9788753 DOI: 10.1023/a:1006899931151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In intact guinea pig ventricles, acetylcholine (ACH) has been shown to attenuate the positive inotropic effects of isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor, by reducing protein phosphorylation without altering cAMP levels. In the present study, we tested the hypothesis that the cAMP-independent inhibitory action of ACH is also evident in isolated cardiomyocytes. cAMP-dependent protein kinase (PKA) activity ratio (-cAMP/+cAMP) and phosphorylation of phospholamban (PLB) were determined in unlabeled and 32P-labeled guinea pig ventricular cardiomyocytes, respectively. IBMX increased PKA activity ratio and phosphorylation of PLB in a dose-dependent manner. When cardiomyocytes were incubated simultaneously with IBMX (0-1 mM) and ACH (2 microM), ACH attenuated PLB phosphorylation stimulated by low concentration (1O-100 microM) but not by high concentrations (> 200 microM) of IBMX. EC50 value for IBMX-induced phosphorylation of PLB was 32 +/- 6 microM and increased nearly 3-fold after addition of ACH while PKA activity ratio remained unchanged. The rank order of cyclic nucleotide derivatives to phosphorylate PLB was 8 bromo-cAMP > dibutyryl cAMP > 8 bromo-cGMP > dibutyryl cGMP. ACH reduced phosphorylation of PLB stimulated by 8 bromo-cAMP. We conclude that in isolated cardiomyocytes (1) ACH inhibits phosphorylation of PLB stimulated by either IBMX or 8 bromo-cAMP and (2) ACH does not lower IBMX-stimulated PKA activity ratio. These effects of ACH on PLB phosphorylation cannot be explained by a reduction in IBMX-stimulated cAMP levels but may involve the activation of protein phosphatases.
Collapse
|
93
|
McGoldrick C, Sheetz M. Organelle motility and membrane network formation from cultured mammalian cells. Methods Enzymol 1998; 298:353-60. [PMID: 9751894 DOI: 10.1016/s0076-6879(98)98031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
94
|
Stroev EA, Bulaeva NN, Kochukov MI. [Calcium-independent induction of thyroid gland calpains]. DOKLADY AKADEMII NAUK 1998; 361:126-7. [PMID: 9777296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
95
|
Slegtenhorst-Eegdeman KE, Verhoef-Post M, Parvinen M, Grootegoed JA, Themmen AP. Differential regulation of leucine-rich primary response gene 1 (LRPR1) mRNA expression in rat testis and ovary. Mol Hum Reprod 1998; 4:649-56. [PMID: 9701787 DOI: 10.1093/molehr/4.7.649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In immature rat Sertoli cells, leucine-rich primary response gene 1 (LRPR1) represents a follicle stimulating hormone (FSH)-responsive gene; the function of the encoded protein is not yet known. LRPR1 mRNA expression is up-regulated very rapidly and specifically by FSH, both in cultured Sertoli cells and in vivo in regulation in more detail, in testis and ovary of fetal, immature, and adult rats. In addition, we have studied the expression of FSH receptor (FSHR) mRNA in relation to LRPR1 mRNA expression. In rat testis, LRPR1 mRNA and FSHR mRNA followed a similar expression pattern, during postnatal development and also at different stages of the spermatogenic cycle in the adult rat. Furthermore, after short-term challenge of the FSH signal transduction pathway in intact immature rats by injection with a relatively high dose of FSH, an inverse relationship between LRPR1 mRNA (up-regulation) and FSHR mRNA expression (down-regulation) was observed. Similar studies in the ovary provided completely different results. LRPR1 mRNA in the postnatal ovary is present well before expression of FSHR mRNA can be first detected. In addition, incubation of ovaries of immature rats with FSH or dibutyryl cyclic AMP (dbcAMP) did not result in up-regulation of LRPR1 mRNA expression. During fetal development, the LRPR1 mRNA expression pattern involved many more tissues, in contrast to the relatively tissue-specific expression of LRPR1 mRNA in gonads of 21 day old and adult rats. Moreover, LRPR1 mRNA expression could be detected as early as 12.5 days post-coitum, whereas FSHR mRNA is absent at this stage of fetal development. We concluded that the pronounced regulation of LRPR1 by FSH observed in the immature rat testis does not occur in the ovary. Furthermore, in the ovary LRPR1 mRNA expression does not appear to be dependent on FSH action. Finally, the LRPR1 gene product may play a general role during fetal development.
Collapse
|
96
|
Tortorella C, Piazzolla G, Spaccavento F, Antonaci S. Effects of granulocyte-macrophage colony-stimulating factor and cyclic AMP interaction on human neutrophil apoptosis. Mediators Inflamm 1998; 7:391-6. [PMID: 9927231 PMCID: PMC1781870 DOI: 10.1080/09629359890767] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The current study was undertaken to evaluate the effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) and cyclic AMP (cAMP) signaling interaction on human neutrophil apoptosis, either occurring spontaneously or induced by Fas antigen activation. Results show that GM-CSF, dibutyryl cAMP (a cAMP analog) and forskolin (an adenylate cyclase activator) are all able to suppress spontaneous neutrophil cell death. Of note however, when GM-CSF is used in combination with cAMP-elevating agents, an additive effect on neutrophil survival is observed with dibutyryl cAMP only, whereas supplementation of cell cultures with GM-CSF and forskolin results in a progressive reduction of antiapoptotic effects exerted by the single compounds. Moreover, although dibutyryl cAMP and forskolin do not affect Fas-triggered apoptotic events, they are still able to modulate the GM-CSF capacity to prolong neutrophil survival following anti-Fas IgM cell challenge, with effects similar to those respectively exerted on spontaneous neutrophil apoptosis. The data indicate that GM-CSF may negatively modulate the cAMP-mediated antiapoptotic pathway in human neutrophils, likely via the inhibition of adenylate cyclase activity. This would prevent an abnormal neutrophil survival as a result of cAMP signaling stimulation, which provides a novel insight into the role of GM-CSF as a physiological regulator of myeloid cell turnover.
Collapse
|
97
|
Gradisnik-Grapulin M, Legisa M. A spontaneous change in the intracellular cyclic AMP level in Aspergillus niger is influenced by the sucrose concentration in the medium and by light. Appl Environ Microbiol 1997; 63:2844-9. [PMID: 9212431 PMCID: PMC168580 DOI: 10.1128/aem.63.7.2844-2849.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A spontaneous rise in intracellular cyclic AMP (cAMP) levels was observed in the early stages of Aspergillus niger growth under conditions yielding large amounts of citric acid. The amount of cAMP formed was found to depend on the initial concentration of sucrose in the medium. Under higher-sucrose conditions, the cAMP peak appeared earlier and was higher, while in lower-sucrose media a flattened peak was observed later in fermentation. Since in media with higher concentrations of sucrose intracellular citric acid starts to accumulate earlier and more rapidly, cAMP synthesis may be triggered by intracellular acidification, which is caused by the dissociation of citric acid. No spontaneous increase in cAMP concentrations could be detected when the cells were grown in continuously illuminated cultures, suggesting that A. niger phosphodiesterase (PDE) is photoregulated. More evidence for the activation of PDE by light was obtained from morphological studies under light and dark conditions in the presence of cAMP or N6,O2'-dibutyryl cAMP, and this idea was additionally supported by experiments in which PDE inhibitors were tested.
Collapse
|
98
|
Dagher PC, Chawla H, Michael J, Egnor RW, Charney AN. Modulation of chloride secretion in the rat ileum by intracellular bicarbonate. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 117:89-97. [PMID: 9185338 DOI: 10.1016/s0300-9629(96)00281-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increasing intracellular bicarbonate concentration ([HCO3-]i) inhibits calcium-mediated Cl- secretion in rat distal colon and T84 cells. We investigated the effect of [HCO3-]i on Cl- secretion in rat ileum. Segments of intact ileum from Sprague-Dawley rats were studied in Ussing chambers and villus and crypt intracellular pH and [HCO3-]i were determined using BCECF. A range of crypt and villus [HCO3-]i from 0 to 31 mM was obtained by varying Ringer's composition. Basal serosal-to-mucosal Cl- flux (JsmCl) averaged 8.5 +/- 0.2 mu eq.h-1.cm-2 and was unaffected by changing [HCO3-]i or serosal bumetanide. Carbachol increased JsmCl by 3.9 +/- 0.5 mu eq.h-1.cm-2 at [HCO3-]i = 0 mM but only by 1.0 +/- 0.3 mu eq.h-1.cm-2 at high crypt and villus [HCO3-]i. Dibutyryl-cAMP increased JsmCl by 2.5 +/- 0.2 mu eq.h-1.cm-2 at all [HCO3-]i. Carbachol and db-cAMP showed mutual antagonism at low [HCO3-]i and near-additivity at high [HCO3-]i. We conclude that like rat colon and T84 cells, calcium-mediated but not cAMP-mediated Cl- secretion in the ileum is inhibited by increasing [HCO3-]i. Mutual antagonism between carbachol and db-cAMP at low [HCO3-]i was present in ileum and distal colon but not in T84 cells.
Collapse
|
99
|
Brubaker PL, Efendic S, Greenberg GR. Truncated and full-length glucagon-like peptide-1 (GLP-1) differentially stimulate intestinal somatostatin release. Endocrine 1997; 6:91-5. [PMID: 9225122 DOI: 10.1007/bf02738808] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucagon-like peptide-1(7-36NH2) is a potent stimulator of insulin secretion, as well as of somatostatin-14 (SS-14) release from the pancreatic and gastric D-cells. To investigate the possible effects of this peptide on release of intestinal somatostatin (SS-28 and SS-14, rat intestinal cultures were treated with 10(-12)-10(-6) M GLP-1(7-36NH2), as well as with the structurally related peptides, GLP-1(1-36NH2) and GLP-2. Both forms of GLP-1 stimulated does-dependent increases in intestinal somatostatin; secretion reached 643 +/- 126% of controls (p < 0.001) after treatment with 10(-6) M GLP-1(7-36NH2), and 398 +/-76% of controls (p < 0.001) after 10(-6) M GLP-1(1-36NH2). Thus, GLP-1(7-36NH2) was more effective than GLP-1(1-36NH2) in stimulating secretion of intestinal somatostatin-like immunoreactivity (SLI) (p < 0.05). GLP-2 did not affect intestinal somatostatin release. Gel permeation analysis demonstrated that 10(-6) M GLP-1(7-36NH2) stimulated SS-28 by 2.9 +/- 0.4-fold and SS-14 by 9.1 +/- 3.7-fold, whereas GLP-1(1-36NH2) exerted equivalent effects (2.8 +/- 0.9-fold) on both forms of somatostatin. These findings define a novel biological role for GLP-1(7-36NH2) in the regulation of intestinal somatostatin secretion, and demonstrate that GLP-1(1-36NH2) exerts unique biological activities in this system.
Collapse
|
100
|
Ji JJ, Inomata H. Enhancement by dibutyryl cyclic AMP of voltage-dependent Ca2+ and K+ currents in the guinea-pig vas deferens. TOHOKU J EXP MED 1996; 180:347-58. [PMID: 9130373 DOI: 10.1620/tjem.180.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study was designed to investigate a possible role for intracellular cyclic AMP involved in agonist-induced changes in electrical activity of smooth muscle of the guinea-pig vas deferens. The action of dibutyryl adenosine 3', 5'-phosphate (dibutyryl cyclic AMP) (up to 30 microM) was examined in current- and voltage-clamp, using the double sucrose gap method. Under current-clamp, dibutyryl cyclic AMP clearly shortens the duration of action potential by hastening the rates of depolarization and of repolarization and increases the peak amplitude. Under voltage-clamp, dibutyryl cyclic AMP enhances the maximum ICa by increasing the conductance (ga), but without affecting its reversal potential (Ea) and kinetics in preparations in normal Krebs solution as well as in preparations in tetraethylammonium chloride loading solution. In normal Krebs solution, dibutyryl cyclic AMP also enhances the peak (Ib') and late outward K+ currents (Ib) by increasing the conductances (gb') and (gb), respectively. These results indicate that in vas deferens smooth muscle intracellular cyclic AMP may be of functional significance for activation of voltage-dependent peak and late IK channels as well as activation of voltage-dependent ICa channel.
Collapse
|