76
|
Walsh SR, Wilck MB, Dominguez DJ, Zablowsky E, Bajimaya S, Gagne LS, Verrill KA, Kleinjan JA, Patel A, Zhang Y, Hill H, Acharyya A, Fisher DC, Antin JH, Seaman MS, Dolin R, Baden LR. Safety and immunogenicity of modified vaccinia Ankara in hematopoietic stem cell transplant recipients: a randomized, controlled trial. J Infect Dis 2013; 207:1888-97. [PMID: 23482644 PMCID: PMC3654753 DOI: 10.1093/infdis/jit105] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/03/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Modified vaccinia Ankara (MVA-BN, IMVAMUNE) is emerging as a primary immunogen and as a delivery system to treat or prevent a wide range of diseases. Defining the safety and immunogenicity of MVA-BN in key populations is therefore important. METHODS We performed a dose-escalation study of MVA-BN administered subcutaneously in 2 doses, one on day 0 and another on day 28. Twenty-four hematopoietic stem cell transplant recipients were enrolled sequentially into the study, and vaccine or placebo was administered under a randomized, double-blind allocation. Ten subjects received vaccine containing 10(7) median tissue culture infective doses (TCID50) of MVA-BN, 10 subjects received vaccine containing 10(8) TCID50 of MVA-BN, and 4 subjects received placebo. RESULTS MVA-BN was generally well tolerated at both doses. No vaccine-related serious adverse events were identified. Transient local reactogenicity was more frequently seen at the higher dose. Neutralizing antibodies (NAb) to Vaccinia virus (VACV) were elicited by both doses of MVA-BN and were greater for the higher dose. Median peak anti-VACV NAb titers were 1:49 in the lower-dose group and 1:118 in the higher-dose group. T-cell immune responses to VACV were detected by an interferon γ enzyme-linked immunosorbent spot assay and were higher in the higher-dose group. CONCLUSIONS MVA-BN is safe, well tolerated, and immunogenic in HSCT recipients. These data support the use of 10(8) TCID50 of MVA-BN in this population. CLINICAL TRIALS REGISTRATION NCT00565929.
Collapse
|
77
|
Meseda CA, Campbell J, Kumar A, Garcia AD, Merchlinsky M, Weir JP. Effect of the deletion of genes encoding proteins of the extracellular virion form of vaccinia virus on vaccine immunogenicity and protective effectiveness in the mouse model. PLoS One 2013; 8:e67984. [PMID: 23785523 PMCID: PMC3681963 DOI: 10.1371/journal.pone.0067984] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/23/2013] [Indexed: 11/18/2022] Open
Abstract
Antibodies to both infectious forms of vaccinia virus, the mature virion (MV) and the enveloped virion (EV), as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model.
Collapse
|
78
|
Lin LCW, Flesch IEA, Tscharke DC. Immunodomination during peripheral vaccinia virus infection. PLoS Pathog 2013; 9:e1003329. [PMID: 23633956 PMCID: PMC3635974 DOI: 10.1371/journal.ppat.1003329] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/14/2013] [Indexed: 11/20/2022] Open
Abstract
Immunodominance is a fundamental property of CD8(+) T cell responses to viruses and vaccines. It had been observed that route of administration alters immunodominance after vaccinia virus (VACV) infection, but only a few epitopes were examined and no mechanism was provided. We re-visited this issue, examining a panel of 15 VACV epitopes and four routes, namely intradermal (i.d.), subcutaneous (s.c.), intraperitoneal (i.p.) and intravenous (i.v.) injection. We found that immunodominance is sharpened following peripheral routes of infection (i.d. and s.c.) compared with those that allow systemic virus dissemination (i.p. and i.v.). This increased immunodominance was demonstrated with native epitopes of VACV and with herpes simplex virus glycoprotein B when expressed from VACV. Responses to some subdominant epitopes were altered by as much as fourfold. Tracking of virus, examination of priming sites, and experiments restricting virus spread showed that priming of CD8(+) T cells in the spleen was necessary, but not sufficient to broaden responses. Further, we directly demonstrated that immunodomination occurs more readily when priming is mainly in lymph nodes. Finally, we were able to reduce immunodominance after i.d., but not i.p. infection, using a VACV expressing the costimulators CD80 (B7-1) and CD86 (B7-2), which is notable because VACV-based vaccines incorporating these molecules are in clinical trials. Taken together, our data indicate that resources for CD8(+) T cell priming are limiting in local draining lymph nodes, leading to greater immunodomination. Further, we provide evidence that costimulation can be a limiting factor that contributes to immunodomination. These results shed light on a possible mechanism of immunodomination and highlight the need to consider multiple epitopes across the spectrum of immunogenicities in studies aimed at understanding CD8(+) T cell immunity to viruses.
Collapse
|
79
|
Zhang Q, Tian M, Feng Y, Zhao K, Xu J, Liu Y, Shao Y. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain. PLoS One 2013; 8:e60557. [PMID: 23593246 PMCID: PMC3625194 DOI: 10.1371/journal.pone.0060557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.
Collapse
|
80
|
Benhnia MREI, Maybeno M, Blum D, Aguilar-Sino R, Matho M, Meng X, Head S, Felgner PL, Zajonc DM, Koriazova L, Kato S, Burton DR, Xiang Y, Crowe JE, Peters B, Crotty S. Unusual features of vaccinia virus extracellular virion form neutralization resistance revealed in human antibody responses to the smallpox vaccine. J Virol 2013; 87:1569-85. [PMID: 23152530 PMCID: PMC3554146 DOI: 10.1128/jvi.02152-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/07/2012] [Indexed: 11/20/2022] Open
Abstract
The extracellular virion form (EV) of vaccinia virus (VACV) is essential for viral pathogenesis and is difficult to neutralize with antibodies. Why this is the case and how the smallpox vaccine overcomes this challenge remain incompletely understood. We previously showed that high concentrations of anti-B5 antibodies are insufficient to directly neutralize EV (M. R. Benhnia, et al., J. Virol. 83:1201-1215, 2009). This allowed for at least two possible interpretations: covering the EV surface is insufficient for neutralization, or there are insufficient copies of B5 to allow anti-B5 IgG to cover the whole surface of EV and another viral receptor protein remains active. We endeavored to test these possibilities, focusing on the antibody responses elicited by immunization against smallpox. We tested whether human monoclonal antibodies (MAbs) against the three major EV antigens, B5, A33, and A56, could individually or together neutralize EV. While anti-B5 or anti-A33 (but not anti-A56) MAbs of appropriate isotypes were capable of neutralizing EV in the presence of complement, a mixture of anti-B5, anti-A33, and anti-A56 MAbs was incapable of directly neutralizing EV, even at high concentrations. This remained true when neutralizing the IHD-J strain, which lacks a functional version of the fourth and final known EV surface protein, A34. These immunological data are consistent with the possibility that viral proteins may not be the active component of the EV surface for target cell binding and infectivity. We conclude that the protection afforded by the smallpox vaccine anti-EV response is predominantly mediated not by direct neutralization but by isotype-dependent effector functions, such as complement recruitment for antibodies targeting B5 and A33.
Collapse
|
81
|
Townsend MB, Keckler MS, Patel N, Davies DH, Felgner P, Damon IK, Karem KL. Humoral immunity to smallpox vaccines and monkeypox virus challenge: proteomic assessment and clinical correlations. J Virol 2013; 87:900-11. [PMID: 23135728 PMCID: PMC3554095 DOI: 10.1128/jvi.02089-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/25/2012] [Indexed: 11/20/2022] Open
Abstract
Despite the eradication of smallpox, orthopoxviruses (OPV) remain public health concerns. Efforts to develop new therapeutics and vaccines for smallpox continue through their evaluation in animal models despite limited understanding of the specific correlates of protective immunity. Recent monkeypox virus challenge studies have established the black-tailed prairie dog (Cynomys ludovicianus) as a model of human systemic OPV infections. In this study, we assess the induction of humoral immunity in humans and prairie dogs receiving Dryvax, Acam2000, or Imvamune vaccine and characterize the proteomic profile of immune recognition using enzyme-linked immunosorbent assays (ELISA), neutralization assays, and protein microarrays. We confirm anticipated similarities of antigenic protein targets of smallpox vaccine-induced responses in humans and prairie dogs and identify several differences. Subsequent monkeypox virus intranasal infection of vaccinated prairie dogs resulted in a significant boost in humoral immunity characterized by a shift in reactivity of increased intensity to a broader range of OPV proteins. This work provides evidence of similarities between the vaccine responses in prairie dogs and humans that enhance the value of the prairie dog model system as an OPV vaccination model and offers novel findings that form a framework for examining the humoral immune response induced by systemic orthopoxvirus infection.
Collapse
|
82
|
Kennedy RB, Ovsyannikova IG, Pankratz VS, Haralambieva IH, Vierkant RA, Jacobson RM, Poland GA. Genome-wide genetic associations with IFNγ response to smallpox vaccine. Hum Genet 2012; 131:1433-51. [PMID: 22661280 DOI: 10.1007/s00439-012-1179-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 05/08/2012] [Indexed: 11/26/2022]
Abstract
Smallpox is a deadly and debilitating disease that killed hundreds of millions of people in the past century alone. The use of Vaccinia virus-based smallpox vaccines led to the eradication of smallpox. These vaccines are remarkably effective, inducing the characteristic pustule or "take" at the vaccine site in >97 % of recipients, and inducing a wide spectrum of long-lasting humoral and cellular immune responses. The mechanisms behind inter-individual vaccine-response variability are likely to involve host genetic variation, but have not been fully characterized. We report here the first smallpox vaccine response genome-wide association study of over 1,000 recent recipients of Dryvax(®). The data presented here focus on cellular immune responses as measured by both production of secreted IFNγ and quantitation of IFNγ secreting cells by ELISPOT assay. We identified multiple significant SNP associations in genes (RASA1, ADRA1D, TCF7L1, FAS) that are critical components of signaling pathways that directly control lymphocyte IFNγ production or cytotoxic T cell function. Similarly, we found many associations with SNPs located in genes integral to nerve cell function; findings that, given the complex interplay between the nervous and immune systems, deserve closer examination in follow-up studies.
Collapse
|
83
|
Kennedy RB, Ovsyannikova IG, Pankratz VS, Haralambieva IH, Vierkant RA, Poland GA. Genome-wide analysis of polymorphisms associated with cytokine responses in smallpox vaccine recipients. Hum Genet 2012; 131:1403-21. [PMID: 22610502 DOI: 10.1007/s00439-012-1174-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 04/23/2012] [Indexed: 01/08/2023]
Abstract
The role that genetics play in response to infection or disease is becoming increasingly clear as we learn more about immunogenetics and host-pathogen interactions. Here we report a genome-wide analysis of the effects of host genetic variation on cytokine responses to vaccinia virus stimulation in smallpox vaccine recipients. Our data show that vaccinia stimulation of immune individuals results in secretion of inflammatory and Th1 cytokines. We identified multiple SNPs significantly associated with variations in cytokine secretion. These SNPs are found in genes with known immune function, as well as in genes encoding for proteins involved in signal transduction, cytoskeleton, membrane channels and ion transport, as well as others with no previously identified connection to immune responses. The large number of significant SNP associations implies that cytokine secretion in response to vaccinia virus is a complex process controlled by multiple genes and gene families. Follow-up studies to replicate these findings and then pursue mechanistic studies will provide a greater understanding of how genetic variation influences vaccine responses.
Collapse
|
84
|
Liu Q, Huang W, Nie J, Zhu R, Gao D, Song A, Meng S, Xu X, Wang Y. A novel high-throughput vaccinia virus neutralization assay and preexisting immunity in populations from different geographic regions in China. PLoS One 2012; 7:e33392. [PMID: 22438922 PMCID: PMC3306400 DOI: 10.1371/journal.pone.0033392] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/08/2012] [Indexed: 11/25/2022] Open
Abstract
Background Pre-existing immunity to Vaccinia Tian Tan virus (VTT) resulting from a large vaccination campaign against smallpox prior to the early 1980s in China, has been a major issue for application of VTT-vector based vaccines. It is essential to establish a sensitive and high-throughput neutralization assay to understand the epidemiology of Vaccinia-specific immunity in current populations in China. Methodology/Principal Findings A new anti-Vaccinia virus (VACV) neutralization assay that used the attenuated replication-competent VTT carrying the firefly luciferase gene of Photinus pyralis (rTV-Fluc) was established and standardized for critical parameters that included the choice of cell line, viral infection dose, and the infection time. The current study evaluated the maintenance of virus-specific immunity after smallpox vaccination by conducting a non-randomized, cross-sectional analysis of antiviral antibody-mediated immune responses in volunteers examined 30–55 years after vaccination. The rTV-Fluc neutralization assay was able to detect neutralizing antibodies (NAbs) against Vaccinia virus without the ability to differentiate strains of Vaccinia virus. We showed that the neutralizing titers measured by our assay were similar to those obtained by the traditional plaque reduction neutralization test (PRNT). Using this assay, we found a low prevalence of NAb to VTT (7.6%) in individuals born before 1980 from Beijing and Anhui provinces in China, and when present, anti-VTT NAb titers were low. No NAbs were detected in all 222 samples from individuals born after 1980. There was no significant difference observed for titer or prevalence by gender, age range and geographic origin. Conclusion A simplified, sensitive, standardized, reproducible, and high-throughput assay was developed for the quantitation of NAbs against different Vaccinia strains. The current study provides useful insights for the future development of VTT-based vaccination in Beijing and Anhui provinces of China.
Collapse
|
85
|
Kremer M, Suezer Y, Volz A, Frenz T, Majzoub M, Hanschmann KM, Lehmann MH, Kalinke U, Sutter G. Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox. PLoS Pathog 2012; 8:e1002557. [PMID: 22396645 PMCID: PMC3291617 DOI: 10.1371/journal.ppat.1002557] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 01/15/2012] [Indexed: 11/30/2022] Open
Abstract
Vaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s) of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox. We found that fast protection against lethal systemic poxvirus disease solely depended on CD4 and CD8 T cell responses induced by vaccination with highly attenuated modified vaccinia virus Ankara (MVA) or conventional vaccinia virus. Of note, CD4 T cells were critically required to allow for MVA induced CD8 T cell expansion and perforin-mediated cytotoxicity was a key mechanism of MVA induced protection. In contrast, selected components of the innate immune system and B cell-mediated responses were fully dispensable for prevention of fatal disease by immunization given two days before challenge. In conclusion, our data clearly demonstrate that perforin-dependent CD8 T cell immunity plays a key role in MVA conferred short term protection against lethal mousepox. Rapid induction of T cell immunity might serve as a new paradigm for treatments that need to fit into a scenario of protective emergency vaccination. Prophylactic use of vaccinia virus allowed eradication of human smallpox, one of the greatest successes in medicine. However there are concerns that variola virus, the infectious agent of smallpox, may be used as bioterroristic weapon and zoonotic monkeypox or cowpox remain threatening infections in humans. Thus, new developments of safe and rapidly protecting orthopoxvirus-specific vaccines have been initiated. The candidate vaccine modified vaccinia virus Ankara (MVA) was recently shown to protect against lethal systemic poxvirus disease even when applied shortly before or after infection of mice with ectromelia virus, the probably best animal model for human smallpox. Surprisingly, little is known about the protective mechanism of early immune responses elicited against orthopoxvirus infections. Here, we used the mousepox model to analyze the immunological basis of rapidly protective MVA vaccination. In contrast to common understanding of orthopoxvirus vaccine efficacy relying mainly on antibody mediated immunity, we observed unimpaired protection also in absence of B cells. Surprisingly, rapid protection by vaccination with MVA or conventional vaccinia virus was solely dependent on T cells, irrespective of the route of injection. Thus, our study suggests a key role for T cell immunity in rapidly protective immunization against orthopoxviruses and potentially other infectious agents.
Collapse
|
86
|
MMA warns against "pox parties". MINNESOTA MEDICINE 2012; 95:28. [PMID: 22474890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
87
|
Denzler KL, Babas T, Rippeon A, Huynh T, Fukushima N, Rhodes L, Silvera PM, Jacobs BL. Attenuated NYCBH vaccinia virus deleted for the E3L gene confers partial protection against lethal monkeypox virus disease in cynomolgus macaques. Vaccine 2011; 29:9684-90. [PMID: 22001879 PMCID: PMC5001690 DOI: 10.1016/j.vaccine.2011.09.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 09/09/2011] [Accepted: 09/30/2011] [Indexed: 11/16/2022]
Abstract
The New York City Board of Health (NYCBH) vaccinia virus is the currently licensed vaccine for use in the US against smallpox. The vaccine under investigation in this study has been attenuated by deletion of the innate immune evasion gene, E3L, and shown to be protective in homologous virus mouse challenge and heterologous virus mouse and rabbit challenge models. In this study we compared NYCBH deleted for the E3L gene (NYCBHΔE3L) to NYCBH for the ability to induce phosphorylation of proinflammatory signaling proteins and the ability to protect cynomolgus macaques from heterologous challenge with monkeypox virus (MPXV). NYCBHΔE3L induced phosphorylation of PKR and eIF2α as well as p38, SAPK/JNK, and IRF3 which can lead to induction of proinflammatory gene transcription. Vaccination of macaques with two doses of NYCBHΔE3L resulted in negligible pock formation at the site of scarification in comparison to vaccination using a single dose of NYCBH, but still elicited neutralizing antibodies and protected 75% of the animals from mortality after challenge with MPXV. However, NYCBHΔE3L-vaccinated animals developed a high number of secondary skin lesions and blood viral load similar to that seen in unvaccinated controls. The NYCBHΔE3L-vaccinated animals that survived MPXV challenge were able to show resolution of blood viral load, a decrease in number of skin lesions, and an improved clinical score by three weeks post challenge. These results suggest that although the highly attenuated NYCBHΔE3L allows proinflammatory signal transduction to occur, it does not provide full protection against monkeypox challenge.
Collapse
|
88
|
Vliegen I, Yang G, Hruby D, Jordan R, Neyts J. Deletion of the vaccinia virus F13L gene results in a highly attenuated virus that mounts a protective immune response against subsequent vaccinia virus challenge. Antiviral Res 2011; 93:160-6. [PMID: 22138484 DOI: 10.1016/j.antiviral.2011.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022]
Abstract
Vaccinia virus F13L encodes the envelope protein p37, which is the target of the anti-pox virus drug ST-246 (Yang et al., 2005) and that is required for production of extracellular vaccinia virus. The F13L (p37)-deleted (and ST-246 resistant) vaccinia virus recombinant (Vac-ΔF13L) produced smaller plaques than the wild-type vaccinia (Western Reserve vaccinia). In addition, Vac-ΔF13L proved, when inoculated either intravenously or intracutaneously in both immunocompetent and immunodeficient (athymic nude or SCID) mice, to be severely attenuated. Intravenous or intracutaneous inoculation of immunocompetent mice with the ΔF13L virus efficiently protected against a subsequent intravenous, intracutaneous or intranasal challenge with vaccinia WR (Western Reserve). This was corroborated by the observation that Vac-ΔF13L induced a humoral immune response against vaccinia following either intravenous or intracutaneous challenge. In conclusion, F13L-deleted vaccinia virus may have the potential to be developed as a smallpox vaccine.
Collapse
|
89
|
Kennedy JS, Gurwith M, Dekker CL, Frey SE, Edwards KM, Kenner J, Lock M, Empig C, Morikawa S, Saijo M, Yokote H, Karem K, Damon I, Perlroth M, Greenberg RN. Safety and immunogenicity of LC16m8, an attenuated smallpox vaccine in vaccinia-naive adults. J Infect Dis 2011; 204:1395-402. [PMID: 21921208 PMCID: PMC3218648 DOI: 10.1093/infdis/jir527] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/07/2011] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION LC16m8 is an attenuated cell culture-adapted Lister vaccinia smallpox vaccine missing the B5R protein and licensed for use in Japan. METHODS We conducted a phase I/II clinical trial that compared the safety and immunogenicity of LC16m8 with Dryvax in vaccinia-naive participants. Adverse events were assessed, as were electrocardiography and laboratory testing for cardiotoxicity and viral culturing of the vaccination sites. Neutralization titers to vaccinia, monkeypox, and variola major were assessed and cell-mediated immune responses were measured by interferon (IFN)-γ enzyme-linked immunosorbent spot and lymphoproliferation assays. RESULTS Local and systemic reactions after vaccination with LC16m8 were similar to those reported after Dryvax. No clinically significant abnormalities consistent with cardiac toxicity were seen for either vaccine. Both vaccines achieved antivaccinia, antivariola, and antimonkeypox neutralizing antibody titers >1:40, although the mean plaque reduction neutralization titer of LC16m8 at day 30 after vaccination was significantly lower than Dryvax for anti-NYCBH vaccinia (P < .01), antimonkeypox (P < .001), and antivariola (P < .001). LC16m8 produced robust cellular immune responses that trended higher than Dryvax for lymphoproliferation (P = .06), but lower for IFN-γ ELISPOT (P = .02). CONCLUSIONS LC16m8 generates neutralizing antibody titers to multiple poxviruses, including vaccinia, monkeypox, and variola major, and broad T-cell responses, indicating that LC16m8 may have efficacy in protecting individuals from smallpox. Clinical Trials Registration. NCT00103584.
Collapse
|
90
|
Judkowski V, Bunying A, Ge F, Appel JR, Law K, Sharma A, Raja- Gabaglia C, Norori P, Santos RG, Giulianotti MA, Slifka MK, Douek DC, Graham BS, Pinilla C. GM-CSF production allows the identification of immunoprevalent antigens recognized by human CD4+ T cells following smallpox vaccination. PLoS One 2011; 6:e24091. [PMID: 21931646 PMCID: PMC3170313 DOI: 10.1371/journal.pone.0024091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/29/2011] [Indexed: 12/25/2022] Open
Abstract
The threat of bioterrorism with smallpox and the broad use of vaccinia vectors for other vaccines have led to the resurgence in the study of vaccinia immunological memory. The importance of the role of CD4+ T cells in the control of vaccinia infection is well known. However, more CD8+ than CD4+ T cell epitopes recognized by human subjects immunized with vaccinia virus have been reported. This could be, in part, due to the fact that most of the studies that have identified human CD4+ specific protein-derived fragments or peptides have used IFN-γ production to evaluate vaccinia specific T cell responses. Based on these findings, we reasoned that analyzing a large panel of cytokines would permit us to generate a more complete analysis of the CD4 T cell responses. The results presented provide clear evidence that TNF-α is an excellent readout of vaccinia specificity and that other cytokines such as GM-CSF can be used to evaluate the reactivity of CD4+ T cells in response to vaccinia antigens. Furthermore, using these cytokines as readout of vaccinia specificity, we present the identification of novel peptides from immunoprevalent vaccinia proteins recognized by CD4+ T cells derived from smallpox vaccinated human subjects. In conclusion, we describe a “T cell–driven” methodology that can be implemented to determine the specificity of the T cell response upon vaccination or infection. Together, the single pathogen in vitro stimulation, the selection of CD4+ T cells specific to the pathogen by limiting dilution, the evaluation of pathogen specificity by detecting multiple cytokines, and the screening of the clones with synthetic combinatorial libraries, constitutes a novel and valuable approach for the elucidation of human CD4+ T cell specificity in response to large pathogens.
Collapse
|
91
|
Oyoshi MK, Wang JYT, Geha RS. Immunization with modified vaccinia virus Ankara prevents eczema vaccinatum in a murine model of atopic dermatitis. J Allergy Clin Immunol 2011; 128:890-892.e3. [PMID: 21820712 DOI: 10.1016/j.jaci.2011.06.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 01/05/2023]
|
92
|
Lu B, Yu W, Huang X, Wang H, Liu L, Chen Z. Mucosal immunization induces a higher level of lasting neutralizing antibody response in mice by a replication-competent smallpox vaccine: vaccinia Tiantan strain. J Biomed Biotechnol 2011; 2011:970424. [PMID: 21765641 PMCID: PMC3134386 DOI: 10.1155/2011/970424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 11/18/2022] Open
Abstract
The possible bioterrorism threat using the variola virus, the causative agent of smallpox, has promoted us to further investigate the immunogenicity profiles of existing vaccines. Here, we study for the first time the immunogenicity profile of a replication-competent smallpox vaccine (vaccinia Tiantan, VTT strain) for inducing neutralizing antibodies (Nabs) through mucosal vaccination, which is noninvasive and has a critical implication for massive vaccination programs. Four different routes of vaccination were tested in parallel including intramuscular (i.m.), intranasal (i.n.), oral (i.o.), and subcutaneous (s.c.) inoculations in mice. We found that one time vaccination with an optimal dose of VTT was able to induce anti-VTT Nabs via each of the four routes. Higher levels of antiviral Nabs, however, were induced via the i.n. and i.o. inoculations when compared with the i.m. and s.c. routes. Moreover, the i.n. and i.o. vaccinations also induced higher sustained levels of Nabs overtime, which conferred better protections against homologous or alternating mucosal routes of viral challenges six months post vaccination. The VTT-induced immunity via all four routes, however, was partially effective against the intramuscular viral challenge. Our data have implications for understanding the potential application of mucosal smallpox vaccination and for developing VTT-based vaccines to overcome preexisting antivaccinia immunity.
Collapse
MESH Headings
- Administration, Intranasal
- Administration, Oral
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Female
- Immunity, Mucosal/immunology
- Immunization
- Injections, Intramuscular
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Smallpox/immunology
- Smallpox/prevention & control
- Smallpox Vaccine/administration & dosage
- Smallpox Vaccine/immunology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccinia/immunology
- Vaccinia/prevention & control
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Variola virus/immunology
Collapse
|
93
|
|
94
|
Ovsyannikova IG, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA. Human leukocyte antigen genotypes in the genetic control of adaptive immune responses to smallpox vaccine. J Infect Dis 2011; 203:1546-55. [PMID: 21592983 PMCID: PMC3096794 DOI: 10.1093/infdis/jir167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 01/24/2011] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The role of human leukocyte antigen (HLA) genes in mediating adaptive immune responses to smallpox vaccine remains unknown. METHODS We determined genotypes for a group of individuals (n = 1071) who received a single dose of smallpox vaccine (Dryvax, Wyeth Laboratories) and examined associations between HLA alleles and 15 immune outcomes to smallpox vaccine on a per-locus and a per-allele level. RESULTS We found significant associations between the HLA-B and HLA - DQB1 loci and vaccinia-induced antibodies (P = .04 for each locus), with the HLA-B*1302 (P = .036), B*3802 (P = .011), DQB1*0302 (P = .015), and DQB1*0604 (P = .017) alleles being associated with higher levels. Significant global associations were identified between vaccinia-specific interferon (IFN)-γ and DQA1 (P = .003), interleukin (IL)-1β and HLA-B (P = .004), tumor necrosis factor (TNF)-α and HLA-B (P = .006), and IL-6 and HLA-B locus (P = .016) for secreted cytokines, as well as between CD8α(+) IFN-γ Elispot responses and DQB1 (P = .027). Subjects carrying B*3906 (P = .006) and B*5701 (P < .001) secreted higher levels of IL-1β than did subjects who did not carry these alleles. Subjects carrying the B*5301 (P = .047) and B*5601 (P = .008) alleles secreted less IL-1β, compared with subjects who did not carry these alleles. The B*3502 (P = .009), B*5601 (P = .004), and B*5701 (P < .001) alleles were significantly associated with variations in TNF-α secretion. CONCLUSIONS These data suggest that variations in antibody and cellular IFN-γ, IL-1β, TNF-α, and IL-6 immune responses after receipt of smallpox vaccine are genetically controlled by HLA genes or genes in close linkage disequilibrium to these alleles.
Collapse
|
95
|
Gordon SN, Cecchinato V, Andresen V, Heraud JM, Hryniewicz A, Parks RW, Venzon D, Chung HK, Karpova T, McNally J, Silvera P, Reimann KA, Matsui H, Kanehara T, Shinmura Y, Yokote H, Franchini G. Smallpox vaccine safety is dependent on T cells and not B cells. J Infect Dis 2011; 203:1043-53. [PMID: 21450994 PMCID: PMC3068024 DOI: 10.1093/infdis/jiq162] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/03/2010] [Indexed: 11/13/2022] Open
Abstract
The licensed smallpox vaccine, ACAM2000, is a cell culture derivative of Dryvax. Both ACAM2000 and Dryvax are administered by skin scarification and can cause progressive vaccinia, with skin lesions that disseminate to distal sites. We have investigated the immunologic basis of the containment of vaccinia in the skin with the goal to identify safer vaccines for smallpox. Macaques were depleted systemically of T or B cells and vaccinated with either Dryvax or an attenuated vaccinia vaccine, LC16m8. B cell depletion did not affect the size of skin lesions induced by either vaccine. However, while depletion of both CD4(+) and CD8(+) T cells had no adverse effects on LC16m8-vaccinated animals, it caused progressive vaccinia in macaques immunized with Dryvax. As both Dryvax and LC16m8 vaccines protect healthy macaques from a lethal monkeypox intravenous challenge, our data identify LC16m8 as a safer and effective alternative to ACAM2000 and Dryvax vaccines for immunocompromised individuals.
Collapse
|
96
|
Hirao LA, Draghia-Akli R, Prigge JT, Yang M, Satishchandran A, Wu L, Hammarlund E, Khan AS, Babas T, Rhodes L, Silvera P, Slifka M, Sardesai NY, Weiner DB. Multivalent smallpox DNA vaccine delivered by intradermal electroporation drives protective immunity in nonhuman primates against lethal monkeypox challenge. J Infect Dis 2011; 203:95-102. [PMID: 21148501 PMCID: PMC3086429 DOI: 10.1093/infdis/jiq017] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/22/2010] [Indexed: 01/01/2023] Open
Abstract
The threat of a smallpox-based bioterrorist event or a human monkeypox outbreak has heightened the importance of new, safe vaccine approaches for these pathogens to complement older poxviral vaccine platforms. As poxviruses are large, complex viruses, they present technological challenges for simple recombinant vaccine development where a multicomponent mixtures of vaccine antigens are likely important in protection. We report that a synthetic, multivalent, highly concentrated, DNA vaccine delivered by a minimally invasive, novel skin electroporation microarray can drive polyvalent immunity in macaques, and offers protection from a highly pathogenic monkeypox challenge. Such a diverse, high-titer antibody response produced against 8 different DNA-encoded antigens delivered simultaneously in microvolumes has not been previously described. These studies represent a significant improvement in the efficiency of the DNA vaccine platform, resulting in immune responses that mimic live viral infections, and would likely have relevance for vaccine design against complex human and animal pathogens.
Collapse
|
97
|
Abstract
The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines.
Collapse
|
98
|
Chernikova NK, Bondareva TA, Borisevich SV, Dorokhina TV, Khmelev AL, Shagarova NV. [Estimation of possible use of interferon inductors for prevention of postvaccional reactions to TEOVac in animal models]. ANTIBIOTIKI I KHIMIOTERAPIIA = ANTIBIOTICS AND CHEMOTERAPY [SIC] 2011; 56:19-22. [PMID: 22586899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The experiments on guinea pigs showed that arbidol administered orally in a single dose 24 hours prior vaccination with TEOVAC and ridostin administered in a single dose intranasally on the 4th day after the vaccination lowered the vaccine virus accumulation in the animal organs and tissue without any effect on the vaccine immunogeneity. The results are someway indicative of the possible use of the interferon inductors for prevention of postvaccinal reactions to TEOVAC.
Collapse
|
99
|
Bondarev VP, Mel'nikov SA, Shagarov EE, Chernikova NK, Gutorova VI, Dorokhina TV, Bondareva TA. [Experience with use of immunomodulators in treatment of tonsillitis developed at the background of preimmunization by TEOVac]. ANTIBIOTIKI I KHIMIOTERAPIIA = ANTIBIOTICS AND CHEMOTERAPY [SIC] 2011; 56:32-34. [PMID: 21913406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The use of immunomodulators in the treatment of subjects with postvaccinal reactions to TEOVac was investigated. The most effective schemes were shown to be those with the use of viferon or combination of arbidol and licopide. The terms of the response signs cupping off were much shorter vs. the cases treated with polyoxidonium. The immunomodulating factors did not affect the intensity of the immunity to the vaccine virus.
Collapse
|
100
|
Maksiutov RA, Shchelkunov SN. [Comparison of protective properties of the smallpox DNA-vaccine based on the variola virus A30L gene and its variant with modified codon usage]. MOLEKULIARNAIA GENETIKA, MIKROBIOLOGIIA I VIRUSOLOGIIA 2011:30-34. [PMID: 21786633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.
Collapse
|