1126
|
Genther DJ, Betz J, Pratt S, Kritchevsky SB, Martin KR, Harris TB, Helzner E, Satterfield S, Xue QL, Yaffe K, Simonsick EM, Lin FR. Association of hearing impairment and mortality in older adults. J Gerontol A Biol Sci Med Sci 2014; 70:85-90. [PMID: 25024235 DOI: 10.1093/gerona/glu094] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Hearing impairment (HI) is highly prevalent in older adults and is associated with social isolation, depression, and risk of dementia. Whether HI is associated with broader downstream outcomes is unclear. We undertook this study to determine whether audiometric HI is associated with mortality in older adults. METHODS Prospective observational data from 1,958 adults ≥70 years of age from the Health, Aging, and Body Composition Study were analyzed using Cox proportional hazards regression. Participants were followed for 8 years after audiometric examination. Mortality was adjudicated by obtaining death certificates. Hearing was defined as the pure-tone average of hearing thresholds in decibels re: hearing level (dB HL) at frequencies from 0.5 to 4kHz. HI was defined as pure-tone average >25 dB HL in the better ear. RESULTS Of the 1,146 participants with HI, 492 (42.9%) died compared with 255 (31.4%) of the 812 with normal hearing (odds ratio = 1.64, 95% CI: 1.36-1.98). After adjustment for demographics and cardiovascular risk factors, HI was associated with a 20% increased mortality risk compared with normal hearing (hazard ratio = 1.20, 95% CI: 1.03-1.41). Confirmatory analyses treating HI as a continuous predictor yielded similar results, demonstrating a nonlinear increase in mortality risk with increasing HI (hazard ratio = 1.14, 95% CI: 1.00-1.29 per 10 dB of threshold elevation up to 35 dB HL). CONCLUSIONS HI in older adults is associated with increased mortality, independent of demographics and cardiovascular risk factors. Further research is necessary to understand the basis of this association and whether these pathways might be amenable to hearing rehabilitation.
Collapse
|
1127
|
Law J, Richmond RL, Kay-Lambkin F. The contribution of personality to longevity: findings from the Australian Centenarian Study. Arch Gerontol Geriatr 2014; 59:528-35. [PMID: 25108617 DOI: 10.1016/j.archger.2014.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 06/19/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To examine whether centenarians have a unique set of personality traits, which may in part explain their longevity. METHODS 79 Australian centenarians completed the NEO Five Factory Inventory (NEO-FFI), Connor-Davidson Resilience Scale (CD-RISC) and Life Orientation Test Revised (LOT-R) to assess different dimensions of their personalities. Centenarians were asked to answer items of the NEO-FFI, CD-RISC and LOT-R based on current views, and were then asked to recall in the presence of an informant (e.g. carers, offspring) on past personality (i.e. at mid-adult-life). Both sets of answers were recorded and analysed. RESULTS Centenarians were currently low in Openness and Extraversion and high in Neuroticism, but were low in Openness and high in Neuroticism, Conscientiousness and Extraversion when reflecting on past traits. Currently, centenarians in high care facilities reported higher levels of Neuroticism, as did centenarians who did not socialize. Cognitively intact centenarians reported higher levels of Agreeableness; and males reported lower Neuroticism compared to females when reflecting on past experiences. DISCUSSION Centenarians were characterized by several personality traits, which facilitated positive health behaviors and thus contributed to their longevity. It is possible that personality may not be static across the lifespan, but instead, reflect advancing age, psychosocial factors and changes in life circumstances.
Collapse
|
1128
|
Lichtenberg FR, Tatar M, Çalışkan Z. The effect of pharmaceutical innovation on longevity, hospitalization and medical expenditure in Turkey, 1999-2010. Health Policy 2014; 117:361-73. [PMID: 24996837 DOI: 10.1016/j.healthpol.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/15/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
We investigate the impact of pharmaceutical innovation on longevity, hospitalization and medical expenditure in Turkey during the period 1999-2010 using longitudinal, disease-level data. From 1999 to 2008, mean age at death increased by 3.6 years, from 63.0 to 66.6 years. We estimate that in the absence of any pharmaceutical innovation, mean age at death would have increased by only 0.6 years. Hence, pharmaceutical innovation is estimated to have increased mean age at death in Turkey by 3.0 years during the period 1999-2008. We also examine the effect of pharmaceutical innovation on hospital utilization. We estimate that pharmaceutical innovation has reduced the number of hospital days by approximately 1% per year. We use our estimates of the effect of pharmaceutical innovation on age at death, hospital utilization and pharmaceutical expenditure to assess the incremental cost-effectiveness of pharmaceutical innovation, i.e., the cost per life-year gained from the introduction of new drugs. The baseline estimate of the cost per life-year gained from pharmaceutical innovation is $2776. Even the latter figure is a very small fraction of leading economists' estimates of the value of (or consumers' willingness to pay for) a one-year increase in life expectancy.
Collapse
|
1129
|
Peterson NM, Martin P. Tracing the origins of success: implications for successful aging. THE GERONTOLOGIST 2014; 55:5-13. [PMID: 24997595 DOI: 10.1093/geront/gnu054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/29/2014] [Indexed: 11/14/2022] Open
Abstract
PURPOSE OF THE STUDY This paper addresses the debate about the use of the term "successful aging" from a humanistic, rather than behavioral, perspective. It attempts to uncover what success, a term frequently associated with aging, is: how can it be defined and when did it first come into use? In this paper, we draw from a number of humanistic perspectives, including the historical and linguistic, in order to explore the evolution of the term "success." We believe that words and concepts have deep implications for how concepts (such as aging) are culturally and historically perceived. DESIGN AND METHODS We take a comparative approach, turning to the etymological roots of this term in British, French, and German literature. According to the earliest entries of the term in the Oxford English Dictionary, events can have good or bad success. Another definition marks success as outcome oriented. RESULTS Often used in the context of war, religion, and medicine, the neutral, but often negative, use of "success" in literature of the Renaissance demonstrates the tensions that surround the word, and suggests that success is something to be approached carefully. IMPLICATIONS Ignoring the ambiguous origins of success erases the fact that aging in earlier centuries echoes much of the same ambivalence with which many people discuss it today. Attending to the origins of success can help gerontologists understand the humanistic tradition behind their inquiry into what successful aging means today.
Collapse
|
1130
|
Tedone E, Arosio B, Gussago C, Casati M, Ferri E, Ogliari G, Ronchetti F, Porta A, Massariello F, Nicolini P, Mari D. Leukocyte telomere length and prevalence of age-related diseases in semisupercentenarians, centenarians and centenarians' offspring. Exp Gerontol 2014; 58:90-5. [PMID: 24975295 DOI: 10.1016/j.exger.2014.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 02/03/2023]
Abstract
Centenarians and their offspring are increasingly considered a useful model to study and characterize the mechanisms underlying healthy aging and longevity. The aim of this project is to compare the prevalence of age-related diseases and telomere length (TL), a marker of biological age and mortality, across five groups of subjects: semisupercentenarians (SSCENT) (105-109years old), centenarians (CENT) (100-104years old), centenarians' offspring (CO), age- and gender-matched offspring of parents who both died at an age in line with life expectancy (CT) and age- and gender-matched offspring of both non-long-lived parents (NLO). Information was collected on lifestyle, past and current diseases, medical history and medication use. SSCENT displayed a lower prevalence of acute myocardial infarction (p=0.027), angina (p=0.016) and depression (p=0.021) relative to CENT. CO appeared to be healthier compared to CT who, in turn, displayed a lower prevalence of both arrhythmia (p=0.034) and hypertension (p=0.046) than NLO, characterized by the lowest parental longevity. Interestingly, CO and SSCENT exhibited the longest (p<0.001) and the shortest (p<0.001) telomeres respectively while CENT showed no difference in TL compared to the younger CT and NLO. Our results strengthen the hypothesis that the longevity of parents may influence the health status of their offspring. Moreover, our data also suggest that both CENT and their offspring may be characterized by a better TL maintenance which, in turn, may contribute to their longevity and healthy aging. The observation that SSCENT showed considerable shorter telomeres compared to CENT may suggest a progressive impairment of TL maintenance mechanisms over the transition from centenarian to semisupercentenarian age.
Collapse
|
1131
|
Grymula K, Piotrowska K, Słuczanowska-Głąbowska S, Mierzejewska K, Tarnowski M, Tkacz M, Poniewierska-Baran A, Pędziwiatr D, Suszyńska E, Laszczyńska M, Ratajczak MZ. Positive effects of prolonged caloric restriction on the population of very small embryonic-like stem cells - hematopoietic and ovarian implications. J Ovarian Res 2014; 7:68. [PMID: 24987461 PMCID: PMC4076763 DOI: 10.1186/1757-2215-7-68] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/16/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low calorie intake, or calorie restriction (CR) without malnutrition, has been demonstrated in several animal species, including mice, to increase both median and maximum lifespan as well as delay reproductive senescence. Our previous work demonstrated a positive correlation between life span and the number of very small embryonic-like stem cells (VSELs) in long living Laron dwarf mice. These animals have very low levels of circulating insulin-like growth factor 1 (IGF-1) in peripheral blood (PB), maintain higher numbers of hematopoietic stem cells (HSPCs) in bone marrow (BM), and display prolonged fecundity compared with wild type littermates. Since CR lowers the level of IGF-1 in PB, we become interested in the effect of CR on the number of VSELs and HSPCs in BM as well as on the morphology of ovaries and testes. METHODS In our studies four-week-old female and male mice were subjected to CR by employing an alternate-day ad libitum feeding diet for a period of 9 months. RESULTS We observed that mice on CR had a higher number of BM-residing VSELs than control mice fed ad libitum. These changes correlated with higher numbers of HSPCs in BM, spleen, and peripheral blood (PB) as well as with an increase in the number of primordial and primary follicles in ovaries. At the same time, however, no changes were observed in the testes of mice under CR. CONCLUSION We conclude that CR positively affects the pool of VSELs in adult tissues and explains the positive effect of CR on longevity.
Collapse
|
1132
|
Mulvey L, Sinclair A, Selman C. Lifespan modulation in mice and the confounding effects of genetic background. J Genet Genomics 2014; 41:497-503. [PMID: 25269675 PMCID: PMC4257991 DOI: 10.1016/j.jgg.2014.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 02/04/2023]
Abstract
We are currently in the midst of a revolution in ageing research, with several dietary, genetic and pharmacological interventions now known to modulate ageing in model organisms. Excitingly, these interventions also appear to have beneficial effects on late-life health. For example, dietary restriction (DR) has been shown to slow the incidence of age-associated cardiovascular disease, metabolic disease, cancer and brain ageing in non-human primates and has been shown to improve a range of health indices in humans. While the idea that DR's ability to extend lifespan is often thought of as being universal, studies in a range of organisms, including yeast, mice and monkeys, suggest that this may not actually be the case. The precise reasons underlying these differential effects of DR on lifespan are currently unclear, but genetic background may be an important factor in how an individual responds to DR. Similarly, recent findings also suggest that the responsiveness of mice to specific genetic or pharmacological interventions that modulate ageing may again be influenced by genetic background. Consequently, while there is a clear driver to develop interventions to improve late-life health and vitality, understanding precisely how these act in response to particular genotypes is critical if we are to translate these findings to humans. We will consider of the role of genetic background in the efficacy of various lifespan interventions and discuss potential routes of utilising genetic heterogeneity to further understand how particular interventions modulate lifespan and healthspan.
Collapse
|
1133
|
Abstract
Catholic social thought calls for persons to be treated as subjects, not only as objects, and for a society in which basic health care is available to all. Treating the body as an object, isolated from other bodies and composed of many parts or systems, has led to great success in treating disease but has also degraded human dignity in patient care. Healthcare costs in the U.S. impede ready access to care, leading to financial collapse for millions each year; this is largely a generational result of rising expectations of long life for the elderly and widespread abortion of the very young (unborn); which practices follow in turn from the presumption that health results from human ingenuity and management. Catholic social thought affirms that love is essential to true health care and acknowledges that God is the source of healing. Such a perspective could point the way to humanizing the hospital experience and redressing the socioeconomic inequalities of modern health care.
Collapse
|
1134
|
Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med 2014; 71:368-378. [PMID: 24704971 PMCID: PMC4049226 DOI: 10.1016/j.freeradbiomed.2014.03.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Significant advances in maintaining health throughout life can be made through a clear understanding of the fundamental mechanisms that regulate aging. The Oxidative Stress Theory of Aging (OSTA) is probably the most well studied mechanistic theory of aging and suggests that the rate of aging is controlled by accumulation of oxidative damage. To directly test the OSTA, aging has been measured in several lines of mice with genetic alterations in the expression of enzymatic antioxidants. Under its strictest interpretation, these studies do not support the OSTA, as modulation of antioxidant expression does not generally affect mouse life span. However, the incidence of many age-related diseases and pathologies is altered in these models, suggesting that oxidative stress does significantly influence some aspects of the aging process. Further, oxidative stress may affect aging in disparate patterns among tissues or under various environmental conditions. In this review, we summarize the current literature regarding aging in antioxidant mutant mice and offer several interpretations of their support of the OSTA.
Collapse
|
1135
|
Kerekes É, Kókai E, Páldy FS, Dombrádi V. Functional analysis of the glycogen binding subunit CG9238/Gbs-70E of protein phosphatase 1 in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 49:70-79. [PMID: 24727027 DOI: 10.1016/j.ibmb.2014.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/07/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
The product of the CG9238 gene that we termed glycogen binding subunit 70E (Gbs-70E) was characterized by biochemical and molecular genetics methods. The interaction between Gbs-70E and all catalytic subunits of protein phosphatase 1 (Pp1-87B, Pp1-9C, Pp1-96A and Pp1-13C) of Drosophila melanogaster was confirmed by pairwise yeast two-hybrid tests, co-immunoprecipitation and pull down experiments. The binding of Gbs-70E to glycogen was demonstrated by sedimentation analysis. With RT-PCR we found that the mRNAs coding for the longer Gbs-70E PB/PC protein were expressed in all developmental stages of the fruit flies while the mRNA for the shorter Gbs-70E PA was restricted to the eggs and the ovaries of the adult females. The development specific expression of the shorter splice variant was not conserved in different Drosophila species. The expression level of the gene was manipulated by P-element insertions and gene deletion to analyze the functions of the gene product. A small or moderate reduction in the gene expression resulted in no significant changes, however, a deletion mutant expressing very low level of the transcript lived shorter and exhibited reduced glycogen content in the imagos. In addition, the gene deletion decreased the fertility of the fruit flies. Our results prove that Gbs-70E functions as the glycogen binding subunit of protein phosphatase 1 that regulates glycogen content and plays a role in the development of eggs in D. melanogaster.
Collapse
|
1136
|
Kim DH, Grodstein F, Newman AB, Chaves PHM, Odden MC, Klein R, Sarnak MJ, Patel KV, Lipsitz LA. Prognostic implications of microvascular and macrovascular abnormalities in older adults: cardiovascular health study. J Gerontol A Biol Sci Med Sci 2014; 69:1495-502. [PMID: 24864308 DOI: 10.1093/gerona/glu074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Microvascular and macrovascular abnormalities are frequently found on noninvasive tests performed in older adults. Their prognostic implications on disability and life expectancy have not been collectively assessed. METHODS This prospective study included 2,452 adults (mean age: 79.5 years) with available measures of microvascular (brain, retina, kidney) and macrovascular abnormalities (brain, carotid, coronary, peripheral artery) in the Cardiovascular Health Study. The burden of microvascular and macrovascular abnormalities was examined in relation to total, activity-of-daily-living disability-free, and severe disability-free life expectancies in the next 10 years (1999-2009). RESULTS At 75 years, individuals with low burden of both abnormalities lived, on average, 8.71 years (95% confidence interval: 8.29, 9.12) of which 7.67 years (7.16, 8.17) were without disability. In comparison, individuals with high burden of both abnormalities had shortest total life expectancy (6.95 years [6.52, 7.37]; p < .001) and disability-free life expectancy (5.60 years [5.10, 6.11]; p < .001). Although total life expectancy was similarly reduced for those with high burden of either type of abnormalities (microvascular: 7.96 years [7.50, 8.42] vs macrovascular: 8.25 years [7.80, 8.70]; p = .10), microvascular abnormalities seemed to have larger impact than macrovascular abnormalities on disability-free life expectancy (6.45 years [5.90, 6.99] vs 6.96 years [6.43, 7.48]; p = .016). These results were consistent for severe disability-free life expectancy and in individuals without clinical cardiovascular disease. CONCLUSIONS Considering both microvascular and macrovascular abnormalities from multiple noninvasive tests may provide additional prognostic information on how older adults spend their remaining life. Optimal clinical use of this information remains to be determined.
Collapse
|
1137
|
Snell TW, Johnston RK. Glycerol extends lifespan of Brachionus manjavacas (Rotifera) and protects against stressors. Exp Gerontol 2014; 57:47-56. [PMID: 24835191 DOI: 10.1016/j.exger.2014.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 01/18/2023]
Abstract
Diet has profound effects on animal longevity and manipulation of nutrient sensing pathways is one of the primary interventions capable of lifespan extension. This often is done through caloric restriction (CR) and a variety of CR mimics have been identified that produce life extending effects without adhering to the rigorous CR dietary regimen. Glycerol is a dietary supplement capable mimicking CR by shifting metabolism away from glycolysis and towards oxidative phosphorylation. Glycerol supplementation has a number of beneficial effects, including lifespan extension, improved stress resistance, and enhanced locomotory and mitochondria activity in older age classes. Using rotifers as a model, we show that supplements of 150-300mM glycerol produced 40-50% extension of mean lifespan. This effect was produced by raising glycerol concentration only three times higher than its baseline concentration in rotifer tissues. Glycerol supplementation decreased rotifer reliance on glycolysis and reduced the pro-aging effects of glucose. Glycerol also acted as a chemical chaperone, mitigating damage by protein aggregation. Glycerol treatment improved rotifer swimming performance in older age classes and maintained more mitochondrial activity. Glycerol treatment provided increased resistance to starvation, heat, oxidation, and osmotic stress, but not UV stress. When glycerol was co-administered with the hexokinase inhibitor 2-deoxyglucose, the lifespan extending effect of glycerol was enhanced. Co-administration of glycerol with inhibitors like 2-deoxyglucose can lower their efficacious doses, thereby reducing their toxic side effects.
Collapse
|
1138
|
Schumpert C, Handy I, Dudycha JL, Patel RC. Relationship between heat shock protein 70 expression and life span in Daphnia. Mech Ageing Dev 2014; 139:1-10. [PMID: 24814302 DOI: 10.1016/j.mad.2014.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
The longevity of an organism is directly related to its ability to effectively cope with cellular stress. Heat shock response (HSR) protects the cells against accumulation of damaged proteins after exposure to elevated temperatures and also in aging cells. To understand the role of Hsp70 in regulating life span of Daphnia, we examined the expression of Hsp70 in two ecotypes that exhibit strikingly different life spans. Daphnia pulicaria, the long lived ecotype, showed a robust Hsp70 induction as compared to the shorter lived Daphnia pulex. Interestingly, the short-lived D. pulex isolates showed no induction of Hsp70 at the mid point in their life span. In contrast to this, the long-lived D. pulicaria continued to induce Hsp70 expression at an equivalent age. We further show that the Hsp70 expression was induced at transcriptional level in response to heat shock. The transcription factor responsible for Hsp70 induction, heat shock factor-1 (HSF-1), although present in aged organisms did not exhibit DNA-binding capability. Thus, the decline of Hsp70 induction in old organisms could be attributed to a decline in HSF-1's DNA-binding activity. These results for the first time, present a molecular analysis of the relationship between HSR and life span in Daphnia.
Collapse
|
1139
|
Boccardi V, Paolisso G. Telomerase activation: a potential key modulator for human healthspan and longevity. Ageing Res Rev 2014; 15:1-5. [PMID: 24561251 DOI: 10.1016/j.arr.2013.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
Abstract
The elderly population is increasing progressively. Along with this increase the number of age related diseases, such as cardiovascular, neurodegenerative diseases, metabolic impairment and cancer, is also on the rise thereby negatively impacting the burden on health care systems. Telomere shortening and dysfunction results in cellular senescence, an irreversible proliferative arrest that has been suggested to promote organismal aging and disabling age-related diseases. Given that telomerase, the enzyme responsible for maintaining telomere lengths, is not expressed at levels sufficient to prevent telomere shortening in most of our cells, telomeres progressively erode with advancing age. Telomerase activation, therefore, might serve as a viable therapeutic strategy to delay the onset of cellular senescence, tissue dysfunction and organismal decline. Here we analyze the more recent findings in telomerase activation as a potential key modulator for human healthspan and longevity.
Collapse
|
1140
|
Bansal A, Kwon ES, Conte D, Liu H, Gilchrist MJ, MacNeil LT, Tissenbaum HA. Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan. LONGEVITY & HEALTHSPAN 2014; 3:5. [PMID: 24834345 PMCID: PMC4022319 DOI: 10.1186/2046-2395-3-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/04/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 have focused on post-translational regulation with little focus on transcriptional regulation. In C. elegans, we have previously shown that DAF-16d/f cooperates with DAF-16a to promote longevity. In this study, we generated transgenic strains expressing near-endogenous levels of either daf-16a or daf-16d/f, and examined temporal expression of the isoforms to further define how these isoforms contribute to lifespan regulation. RESULTS Here, we show that DAF-16a is sensitive both to changes in gene dosage and to alterations in the level of insulin/IGF-1 signaling. Interestingly, we find that as worms age, the intestinal expression of daf-16d/f but not daf-16a is dramatically upregulated at the level of transcription. Preventing this transcriptional upregulation shortens lifespan, indicating that transcriptional regulation of daf-16d/f promotes longevity. In an RNAi screen of transcriptional regulators, we identify elt-2 (GATA transcription factor) and swsn-1 (core subunit of SWI/SNF complex) as key modulators of daf-16d/f gene expression. ELT-2 and another GATA factor, ELT-4, promote longevity via both DAF-16a and DAF-16d/f while the components of SWI/SNF complex promote longevity specifically via DAF-16d/f. CONCLUSIONS Our findings indicate that transcriptional control of C. elegans FOXO/daf-16 is an essential regulatory event. Considering the conservation of FOXO across species, our findings identify a new layer of FOXO regulation as a potential determinant of mammalian longevity and age-related diseases such as cancer and diabetes.
Collapse
|
1141
|
Kahn AJ. FOXO3 and related transcription factors in development, aging, and exceptional longevity. J Gerontol A Biol Sci Med Sci 2014; 70:421-5. [PMID: 24747665 DOI: 10.1093/gerona/glu044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In June 2013, a workshop was convened in San Francisco to explore, in depth, the role of the Forkhead transcription factor FOXO3 (and related FOXOs) in development, aging, and, in particular, exceptional longevity. The presentations covered results derived from model systems, computational analysis and bioinformatics, and genomics and genome-wide association studies of a number of cohorts. Although the data collectively strongly reinforce FOXO3 and the FOXO/FOXO3 pathway as very important determinants in aging and life span, much of the detail of how the latter is achieved still remains unknown, in part, because of the very large number of genes (~2,200 in Caenorhabditis elegans) the transcription factor is involved in helping regulate. Particularly challenging at the present time is understanding the association of apparently nonfunctional specific variants (single nucleotide polymorphisms) of FOXO3 and exceptional longevity in humans, a finding replicated in a number of studies. Nonetheless, as summarized in this report, valuable information and insights were presented at the workshop on the transcription factor including but not limited to its role in determining longevity in C elegans and Drosophila (in flies, eg, an important interaction in aging occurs between dFOXO and the transforming growth factor-β/activin pathway), stem cell function and aging (notably in hematopoiesis), downstream regulatory activity (eg, by binding near sites of RNAse occupancy and altering chromatin structure), and as a potential target for the development a healthy aging drug (in this example, using compounds developed and screened to effect FOXO function in cancer cells).
Collapse
|
1142
|
Sun L, Hu C, Zheng C, Huang Z, Lv Z, Huang J, Liang S, Shi X, Zhu X, Yuan H, Yang Z. Gene-gene interaction between CETP and APOE polymorphisms confers higher risk for hypertriglyceridemia in oldest-old Chinese women. Exp Gerontol 2014; 55:129-33. [PMID: 24746514 DOI: 10.1016/j.exger.2014.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 03/26/2014] [Accepted: 04/08/2014] [Indexed: 01/23/2023]
Abstract
The knowledge of dyslipidemia and its genetic contributors in oldest-old subjects is limited; in addition, the majority of oldest-old subjects are females. Evidence has accumulated that multiple genetic factors play important roles in determining susceptibility to dyslipidemia and extended life span. Cholesterol ester transfer protein (CETP) and apolipoprotein E (APOE) are two plausible candidate genes for human longevity owing to their functionally related modulation of circulating lipid homeostasis; however, few studies have considered their interplay. In this study, we analyzed the distribution of CETP*V (rs5882) and APOE*4 (rs429358 and rs7412) in 372 oldest-old Chinese women (aged 80-109) and 340 controls (aged 20-58). In addition to replicating the association of longevity, our main goal was to evaluate the contribution of CETP*V, APOE*4 and CETP*APOE interaction to the risk of dyslipidemia. Only APOE*4 conferred a risk against longevity and was associated with high-cholesterol (hTC) and mixed dyslipidemia for oldest-old females. Moreover, CETP*V was found to be associated with hypertriglyceridemia (hTG) independently from APOE*4, age, BMI, alcohol drinking, TC, TG, HDL-c, and LDL-c. The stratification test, multivariable-adjusted logistic regression, and nonparametric MDR analysis all suggested a significant CETP*APOE interaction associated with hTG. The unadjusted odds for hTG were more than 4-fold in subjects with CETP*V and APOE*4 than those without either (OR=4.36, P<0.001). These results provide evidence of strong independent associations between hTG and CETP*V in oldest-old Chinese females, and APOE*4, as an independently non-significant variant, might interact with CETP*V resulting in an increased risk for hTG.
Collapse
|
1143
|
Keith SA, Amrit FRG, Ratnappan R, Ghazi A. The C. elegans healthspan and stress-resistance assay toolkit. Methods 2014; 68:476-86. [PMID: 24727065 DOI: 10.1016/j.ymeth.2014.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/22/2022] Open
Abstract
A wealth of knowledge on the genetic mechanisms that govern aging has emerged from the study of mutants that exhibit enhanced longevity and exceptional resilience to adverse environmental conditions. In these studies, lifespan has been an excellent proxy for establishing the rate of aging, but it is not always correlated with qualitative measures of healthy aging or 'healthspan'. Although the attributes of healthspan have been challenging to define, they share some universal features that are increasingly being incorporated into aging studies. Here we describe methods used to determine Caenorhabditis elegans healthspan. These include assessments of tissue integrity and functionality and resistance to a variety of biotic and abiotic stressors. We have chosen to include simple, rapid assays in this collection that can be easily undertaken in any C. elegans laboratory, and can be relied on to provide a preliminary but thorough insight into the healthspan of a population.
Collapse
|
1144
|
Le Bourg E, Moreau M. Individual late-life fecundity plateaus do exist in Drosophila melanogaster and are very common at old age. Exp Gerontol 2014; 55:102-6. [PMID: 24735899 DOI: 10.1016/j.exger.2014.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/21/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
Several authors have discussed the existence of late-life fecundity plateaus in Drosophila melanogaster. However, all these studies have pooled flies to show such plateaus. Here, we have reanalyzed previously published fecundity results to know whether these plateaus exist at the individual level. We found that these plateaus are observed in ca 20% of females and in more than 50% if only the longer-lived flies are taken into account. We conclude that late-life fecundity plateaus are not a rare phenomenon when considering a whole cohort of flies and are very common in oldest flies.
Collapse
|
1145
|
Amrit FRG, Ratnappan R, Keith SA, Ghazi A. The C. elegans lifespan assay toolkit. Methods 2014; 68:465-75. [PMID: 24727064 DOI: 10.1016/j.ymeth.2014.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of single gene mutations that double its lifespan, the nematode Caenorhabditis elegans has provided remarkable insights into the biology of aging. The precisely measurable lifespan of worms has proven to be an efficient tool to assess the impact of various genetic, physiological and environmental factors on organismal aging. In this article, we describe methods to set up and monitor experiments to determine worm lifespan. We include procedures used for classical, small-scale lifespan assays that are generally performed on solid media, and review recent advances in high-throughput, automated longevity experiments conducted in liquid culture and microfluidic devices. In addition, tools that help analyze this data to obtain survival statistics are summarized, and C. elegans strains that offer particular advantages for lifespan studies are listed.
Collapse
|
1146
|
Sevini F, Giuliani C, Vianello D, Giampieri E, Santoro A, Biondi F, Garagnani P, Passarino G, Luiselli D, Capri M, Franceschi C, Salvioli S. mtDNA mutations in human aging and longevity: controversies and new perspectives opened by high-throughput technologies. Exp Gerontol 2014; 56:234-44. [PMID: 24709341 DOI: 10.1016/j.exger.2014.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/14/2014] [Accepted: 03/26/2014] [Indexed: 12/21/2022]
Abstract
The last 30 years of research greatly contributed to shed light on the role of mitochondrial DNA (mtDNA) variability in aging, although contrasting results have been reported, mainly due to bias regarding the population size and stratification, and to the use of analysis methods (haplogroup classification) that resulted to be not sufficiently adequate to grasp the complexity of the phenomenon. A 5-years European study (the GEHA EU project) collected and analyzed data on mtDNA variability on an unprecedented number of long-living subjects (enriched for longevity genes) and a comparable number of controls (matched for gender and ethnicity) in Europe. This very large study allowed a reappraisal of the role of both the inherited and the somatic mtDNA variability in aging, as an association with longevity emerged only when mtDNA variants in OXPHOS complexes co-occurred. Moreover, the availability of data from both nuclear and mitochondrial genomes on a large number of subjects paves the way for an evaluation at a very large scale of the epistatic interactions at a higher level of complexity. This scenario is expected to be even more clarified in the next future with the use of next generation sequencing (NGS) techniques, which are becoming applicable to evaluate mtDNA variability and, then, new mathematical/bioinformatic analysis methods are urgently needed. Recent advances of association studies on age-related diseases and mtDNA variability will also be discussed in this review, taking into account the bias hidden by population stratification. Finally, very recent findings in terms of mtDNA heteroplasmy (i.e. the coexistence of wild type and mutated copies of mtDNA) and aging as well as mitochondrial epigenetic mechanisms will also be discussed.
Collapse
|
1147
|
Mariadassou M, Pellay FX. Identification of amino acids in mitochondrially encoded proteins that correlate with lifespan. Exp Gerontol 2014; 56:53-8. [PMID: 24657631 DOI: 10.1016/j.exger.2014.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
Animals show a huge diversity in their lifespan that can vary from a few weeks to over a hundred years in vertebrates. Size is a key element in this variation and the positive correlation between size and maximum lifespan can be observed in each class of vertebrate. Some groups and species clearly stand out in this size-lifespan relationship and the ones with exceptionally long lifespan have been studied to understand the biological causes of their low aging rate. Among the potential explanations of animals' lifespan variations, mitochondria and mitochondrially encoded genes have drawn attention because of their importance in the aging process. To understand both the extent of lifespan variations and their dependence to genes and amino acid variations in mitochondrial genes and DNA (mtDNA), we analyze in a systematic way all 13 proteins encoded by mitochondria in all vertebrates for which we had information on weight, maximum lifespan and mtDNA sequence. This comparison allows us to visualize positions, and even specific amino acids, in these sequences that correlate with lifespan. With this approach, we draw a map of 356 amino acid residues, at 296 positions within the sequence, that correlate with longer or shorter lifespan. We also compared this map with the human mitochondrial polymorphism to determine its potential as a predictive tool.
Collapse
|
1148
|
Reprint of: Musculoskeletal system in the old age and the demand for healthy ageing biomarkers. Mech Ageing Dev 2014; 136-137:94-100. [PMID: 24662191 DOI: 10.1016/j.mad.2014.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Population ageing has emerged as a major demographic trend worldwide due to improved health and longevity. This global ageing phenomenon will have a major impact on health-care systems worldwide due to increased morbidity and greater needs for hospitalization/institutionalization. As the ageing population increases worldwide, there is an increasing awareness not only of increased longevity but also of the importance of "healthy ageing" and "quality of life". Yet, the age related chronic inflammation is believed to be pathogenic with regards to its contribution to frailty and degenerative disorders. In particular, the frailty syndrome is increasingly being considered as a key risk indicator of adverse health outcomes. In addition, elderly may be also prone to be resistant to anabolic stimuli which is likely a key factor in the loss of skeletal muscle mass with ageing. Vital to understand these key biological processes is the development of biological markers, through system biology approaches, aiding at strategies for tailored therapeutic and personalized nutritional program. Overall aim is to prevent or attenuate decline of key physiological functions required to live an active, independent life. This review focus on core indicators of health and functions in older adults, where nutrition and tailored personalized programs could exhibit preventive roles, and where the aid of metabolomics technologies are increasingly displaying potential in revealing key molecular mechanisms/targets linked to specific ageing and/or healthy ageing processes.
Collapse
|
1149
|
Labat-Robert J, Robert L. Longevity and aging. Role of free radicals and xanthine oxidase. A review. ACTA ACUST UNITED AC 2014; 62:61-6. [PMID: 24650523 DOI: 10.1016/j.patbio.2014.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/14/2014] [Indexed: 12/22/2022]
Abstract
Longevity and aging are differently regulated. Longevity has an important part of genetic determinants, aging is essentially post-genetic. Among the genes involved in longevity determination, sirtuins, activated also by calorie restriction and some others as the TOR pathway, attracted special interest after the insulin–IGF pathway first shown to regulate longevity in model organisms. For most of these genes, postponement of life-threatening diseases is the basis of their action which never exceeds about 35% of all determinants, in humans. Among the post-genetic mechanisms responsible for age-related decline of function, free radicals attracted early interest as well as the Maillard reaction, generating also free radicals. Most attempts to remediate to free radical damage failed however, although different scavenger mechanisms and protective substances are present in the organism. Synthetic protectors were also tested without success. The only example of a successful treatment of a free radical mediated pathology is the case of xanthine oxidase, involved in cardiovascular pathology, essentially during the ischemia-reperfusion process. Its inhibition by allopurinol is currently used to fight this deadly syndrome.
Collapse
|
1150
|
Knockdown expression of eukaryotic initiation factor 5 C-terminal domain containing protein extends lifespan in Drosophila melanogaster. Biochem Biophys Res Commun 2014; 446:465-9. [PMID: 24613847 DOI: 10.1016/j.bbrc.2014.02.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 02/27/2014] [Indexed: 11/21/2022]
Abstract
Inhibition of translation by mutations of a growing number of genes involved in protein synthesis could extend healthy lifespan in yeast, worm, fly and mouse as well. These genes vary from translation initiation factors to structural components of ribosomes and ribosomal RNA processing factors. ECP is a novel ribosome associated protein. Previous data supports the involvement of this gene in long term memory formation and exon guidance in Drosophila probably through its still unconfirmed functions in protein synthesis. However, the exact molecular function of ECP is still largely unknown. Our findings here show that fly lifespan could be significantly extended in ECP RNAi flies. Meanwhile, the locomotion ability of elder ECP RNAi flies was also improved remarkably. Further studies revealed an increase of mitochondria Complex IV activity in these ECP RNAi flies. A decrease of AKT and S6K phosphorylation level in contrast to an increase of AMPK phosphorylation level could also be detected in these flies. Together, these findings support a positive effect of ECP on longevity and delaying age-related impairment in locomotor behavior probably through activation of AMPK and enhancement of mitochondrial function via insulin/IGF-1 and TOR pathway.
Collapse
|