101
|
Shabani S, Karimi A, Rashki A, Meshkinkhood N, Niknam F, Poursharif A, Mahboudi F, Djadid ND. Identification and evaluation expression level of arrestin 1 gene during the development stage of Anopheles stephensi. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
102
|
Halabian M, Beigzadeh B, Karimi A, Shirazi HA, Shaali MH. A combination of experimental and finite element analyses of needle-tissue interaction to compute the stresses and deformations during injection at different angles. J Clin Monit Comput 2016; 30:965-975. [PMID: 26515741 DOI: 10.1007/s10877-015-9801-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022]
Abstract
One of the main clinical applications of the needles is its practical usage in the femoral vein catheterization. Annually more than two million peoples in the United States are exposed to femoral vein catheterization. How to use the input needles into the femoral vein has a key role in the sense of pain in post-injection and possible injuries, such as tissue damage and bleeding. It has been shown that there might be a correlation between the stresses and deformations due to femoral injection to the tissue and the sense of pain and, consequently, injuries caused by needles. In this study, the stresses and deformations induced by the needle to the femoral tissue were experimentally and numerically investigated in response to an input needle at four different angles, i.e., 30°, 45°, 60°, and 90°, via finite element method. In addition, a set of experimental injections at different angles were carried out to compare the numerical results with that of the experimental ones, namely pain score. The results revealed that by increasing the angle of injection up to 60°, the strain at the interaction site of the needle-tissue is increased accordingly while a significant falling is observed at the angle of 90°. In contrast, the stress due to injection was decreased at the region of needle-tissue interaction with showing the lowest one at the angle of 90°. Experimental results were also well confirmed the numerical observations since the lowest pain score was seen at the angle of 90°. The results suggest that the most effective angle of injection would be 90° due to a lower amount of stresses and deformations compared to the other angles of injection. These findings may have implications not only for understating the stresses and deformations induced during injection around the needle-tissue interaction, but also to give an outlook to the doctors to implement the most suitable angle of injection in order to reduce the pain as well as post injury of the patients.
Collapse
|
103
|
Karimi A, Rahmati SM, Sera T, Kudo S, Navidbakhsh M. A combination of experimental and numerical methods to investigate the role of strain rate on the mechanical properties and collagen fiber orientations of the healthy and atherosclerotic human coronary arteries. Bioengineered 2016; 8:154-170. [PMID: 27588460 DOI: 10.1080/21655979.2016.1212134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Atherosclerosis enables to alter not only the microstructural but also the physical properties of the arterial walls by plaque forming. Few studies so far have been conducted to calculate the isotropic or anisotropic mechanical properties of the healthy and atherosclerotic human coronary arteries. To date there is a paucity of knowledge on the mechanical response of the arteries under different strain rates. Therefore, the objective of the concurrent research was to comprehend whether the alteration in the strain rates of the human atherosclerotic arteries in comparison with the healthy ones contribute to the biomechanical behaviors. To do this, healthy and atherosclerotic human coronary arteries were removed from 18 individuals during autopsy. Histological analyses by both an expert histopathologist and an imaged-based recognizer software were performed to figure out the average angle of collagen fibers in the healthy and atherosclerotic arterial walls. Thereafter, the samples were subjected to 3 diverse strain rates, i.e., 5, 20, and 50 mm/min, until the material failure occurs. The stress-strain diagrams of the arterial tissues were calculated in order to capture their linear elastic and nonlinear hyperelastic mechanical properties. In addition, Artificial Neural Networks (ANNs) was employed to predict the alteration of mean angle of collagen fibers during load bearing up to failure. The findings suggest that strain rate has a significant (p < 0.05) role in the linear elastic and nonlinear hyperelastic mechanical properties as well as the mean angle of collagen fibers of the atherosclerotic arteries, whereas no specific impact on the healthy ones. Furthermore, the mean angle of collagen fibers during the load bearing up to the failure at each strain rate was well predicted by the proposed ANNs code.
Collapse
|
104
|
Khosravi N, Khalesi N, Sheykholeslami H, Nabavi M, Karimi A. Comparison of interleukin-10 and interleukin-13 in cord blood of infants born by vaginal delivery and caesarean. Biosci Rep 2016:BSR20160147. [PMID: 27407174 DOI: 10.1042/bsr20160147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/11/2016] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The present study assessed the levels of IL-13 and IL-10 in umbilical cord blood of infants born through normal vaginal delivery and infants born with cesarean section. METHODS: This pilot study was performed on 42 neonates born at Rasool-e-Akram hospital between May 2013 and May 2014 categorized into two groups born by vaginal delivery (n = 21) and those who born by cesarean section (n = 21). RESULTS No difference was observed between the two groups with normal vaginal delivery and cesarean delivery in the level of IL-13 in umbilical cord blood (1.42 ± 0.23 versus 1.40 ± 0.22, respectively, p = 0.785). The mean level of IL-10 in umbilical cord blood in the group with vaginal delivery was 6.35 ± 2.54 and in another group with cesarean section was 5.69 ± 2.42 with no significant difference (p = 0.393). According to the multivariate linear regression analyses, no difference was found between the two groups of the mode of delivery in the level of IL-10 (beta = -0.454, SE = 0.802, p = 0.575) and also in the level of IL-13 (beta = 0.012, SE = 0.076, p = 0.877). None of the indicators including gestational age, mother's age, sex of neonate, number of live births, history of abortion, and number of parity could predict increased level of the interleukins in umbilical cord blood. CONCLUSION: Mode of delivery may not be an indicator for altering cord blood levels of IL-13 and IL-10.
Collapse
|
105
|
Karimi A, Razaghi R, Navidbakhsh M, Sera T, Kudo S. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model. Injury 2016; 47:1042-50. [PMID: 26861803 DOI: 10.1016/j.injury.2016.01.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/12/2016] [Accepted: 01/23/2016] [Indexed: 02/02/2023]
Abstract
INTRODUCTION In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. MATERIALS AND METHODS Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. RESULTS The results revealed a peak stress of 135.70kPa brought about by detonation upsurge on the cornea at the distance of 25cm. The highest von Mises stresses were observed on the sclera (267.3kPa), whereas the lowest one was seen on the vitreous body (0.002kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. CONCLUSION These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye.
Collapse
|
106
|
Najafi M, Jahangiry L, Mortazavi H, Jalali A, Karimi A, Bozorgi A. Outcomes and long-term survival of patients undergoing coronary artery bypass graft surgery; the controversial role of opium as a risk marker. J Cardiothorac Vasc Anesth 2016. [DOI: 10.1053/j.jvca.2016.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
107
|
Karimi A, Razaghi R, Navidbakhsh M, Sera T, Kudo S. Dynamic finite element simulation of the gunshot injury to the human forehead protected by polyvinyl alcohol sponge. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:74. [PMID: 26886822 DOI: 10.1007/s10856-016-5686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Although there are some traditional models of the gunshot wounds, there is still a need for more modeling analyses due to the difficulties related to the gunshot wounds to the forehead region of the human skull. In this study, the degree of damage as a consequence of penetrating head injuries due to gunshot wounds was determined using a preliminary finite element (FE) model of the human skull. In addition, the role of polyvinyl alcohol (PVA) sponge, which can be used as an alternative to reinforce the kinetic energy absorption capacity of bulletproof vest and helmet materials, to minimize the amount of skull injury due to penetrating processes was investigated through the FE model. Digital computed tomography along with magnetic resonance imaging data of the human head were employed to launch a three-dimensional (3D) FE model of the skull. Two geometrical shapes of projectiles (steel ball and bullet) were simulated for penetrating with an initial impact velocity of 734 m/s using nonlinear dynamic modeling code, namely LS-DYNA. The role of the damaged/distorted elements were removed during computation when the stress or strain reached their thresholds. The stress distributions in various parts of the forehead and sponge after injury were also computed. The results revealed the same amount of stress for both the steel ball and bullet after hitting the skull. The modeling results also indicated the time that steel ball takes to penetrate into the skull is lower than that of the bullet. In addition, more than 21% of the steel ball's kinetic energy was absorbed by the PVA sponge and, subsequently, injury sternness of the forehead was considerably minimized. The findings advise the application of the PVA sponge as a substitute strengthening material to be able to diminish the energy of impact as well as the load transmitted to the object.
Collapse
|
108
|
Fallah S, Karimi A, Panahi G, Gerayesh Nejad S, Fadaei R, Seifi M. Human colon cancer HT-29 cell death responses to doxorubicin and Morus Alba leaves flavonoid extract. Cell Mol Biol (Noisy-le-grand) 2016; 62:72-77. [PMID: 27064876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
The mechanistic basis for the biological properties of Morus alba flavonoid extract (MFE) and chemotherapy drug of doxorubicin on human colon cancer HT-29 cell line death are unknown. The effect of doxorubicin and flavonoid extract on colon cancer HT-29 cell line death and identification of APC gene expression and PARP concentration of HT-29 cell line were investigated. The results showed that flavonoid extract and doxorubicin induce a dose dependent cell death in HT-29 cell line. MFE and doxorubicin exert a cytotoxic effect on human colon cancer HT-29 cell line by probably promoting or induction of apoptosis.
Collapse
|
109
|
Karimi A, Rahmati SM, Navidbakhsh M. Mechanical characterization of the rat and mice skin tissues using histostructural and uniaxial data. Bioengineered 2016; 6:153-60. [PMID: 25837446 DOI: 10.1080/21655979.2015.1036202] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The skin tissue has been shown to behave like a nonlinear anisotropic material. This study was aimed to employ a constitutive fiber family equation to characterize the nonlinear anisotropic mechanical behavior of the rat and mice skin tissues in different anatomical locations, including the abdomen and back, using histostructural and uniaxial data. The rat and mice skin tissues were excised from the animals' body and then the histological analyses were performed on each skin type to determine the mean fiber orientation angle. Afterward, the preconditioned skin tissues were subjected to a series of quasi-static axial and circumferential loads until the incidence of failure. The crucial role of fiber orientation was explicitly added into a proposed strain energy density function. The material coefficients were determined using the constrained nonlinear optimization method based on the axial and circumferential extension data of the rat and mice samples at different anatomical locations. The material coefficients of the skins were given with R(2) ≥ 0.998. The results revealed a significant load-bearing capacity and stiffness of the rat abdomen compared to the rat back tissues. In addition, the mice abdomen showed a higher stiffness in the axial direction in comparison with circumferential one, while the mice back displayed its highest stiffness in the circumferential direction. The material coefficients of the rat and mice skin tissues were determined and well compared to the experimental data. The optimized fiber angles were also compared to the experimental histological data, and in all cases less than 11.85% differences were observed in both the skin tissues.
Collapse
|
110
|
Kakavand T, Mirzaii M, Eslami M, Karimi A. Nuclear model calculation and targetry recipe for production of 110mIn. Appl Radiat Isot 2015; 104:60-6. [DOI: 10.1016/j.apradiso.2015.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 05/31/2015] [Accepted: 06/16/2015] [Indexed: 11/26/2022]
|
111
|
Karimi A, Navidbakhsh M, Kudo S. A comparative study on the mechanical properties of the healthy and varicose human saphenous vein under uniaxial loading. J Med Eng Technol 2015; 39:490-7. [PMID: 26361230 DOI: 10.3109/03091902.2015.1086030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Saphenous Vein (SV) due to fatness, age, inactiveness, etc. can be afflicted with varicose. The main reason of the varicose vein is believed to be related to the leg muscle pump which is unable to return the blood to the heart in contradiction of the effect of gravity. As a result of the varicose vein, both the structure and mechanical properties of the vein wall would alter. However, so far there is a lack of knowledge on the mechanical properties of the varicose vein. In this study, a comparative study was carried out to measure the elastic and hyperelastic mechanical properties of the healthy and varicose SVs. Healthy and varicose SVs were removed at autopsy and surgery from seven individuals and then axial tensile load was applied to them up to the failure point. In order to investigate the mechanical behaviour of the vein, this study was benefitted from three different stress definitions, such as 2nd Piola-Kichhoff, engineering and true stresses and four different strain definitions, i.e. Almansi-Hamel, Green-St. Venant, engineering and true strains, to determine the linear mechanical properties of the SVs. A Digital Image Correlation (DIC) technique was used to measure the true strain of the vein walls during load bearing. The non-linear mechanical behaviour of the SVs was also computationally evaluated via the Mooney-Rivlin material model. The true/Cauchy stress-strain diagram exhibited the elastic modulus of the varicose SVs as 45.11% lower than that of the healthy ones. Furthermore, by variation of the stress a significant alteration on the maximum stress of the healthy SVs was observed, but then not for the varicose veins. Additionally, the highest stresses of 4.99 and 0.65 MPa were observed for the healthy and varicose SVs, respectively. These results indicate a weakness in the mechanical strength of the SV when it becomes varicose, owing to the degradation of the elastin and collagen content of the SV. The Mooney-Rivlin hyperelastic and the Finite Element (FE) data were finally well compared to the experimental data.
Collapse
|
112
|
Halabian M, Karimi A, Beigzadeh B, Navidbakhsh M. A NUMERICAL STUDY ON THE HEMODYNAMIC AND SHEAR STRESS OF DOUBLE ANEURYSM THROUGH S-SHAPED VESSEL. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2015. [DOI: 10.4015/s1016237215500337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative disease defined as the abnormal ballooning of the abdominal aorta (AA) wall which is usually caused by atherosclerosis. The aneurysm grows larger and eventually ruptures if it is not diagnosed and treated. Aneurysms occur mostly in the aorta, the main artery of the chest and abdomen. The aorta carries blood flow from the heart to all parts of the body, including the vital organs, the legs, and feet. The objective of the present study is to investigate the combined effects of aneurysm and curvature on flow characteristics in S-shaped bends with sweep angle of 90° at Reynolds number of 900. The fluid mechanics of blood flow in a curved artery with abnormal aortic is studied through a mathematical analysis and employing Cosmos flow simulation. Blood is modeled as an incompressible non-Newtonian fluid and the flow is assumed to be steady and laminar. Hemodynamic characteristics are analyzed. Grid independence is tested on three successively refined meshes. It is observed that the abrupt expansion induced by AAA results in an immensely disturbed regime. The results may have implications not only for understanding the mechanical behavior of the blood flow inside an aneurysm artery but also for investigating the mechanical behavior of the blood flow in different arterial diseases, such as atherosclerosis.
Collapse
|
113
|
Karimi A, Kudo S, Razaghi R, Navidbakhsh M. A COMBINATION OF EXPERIMENTAL AND NUMERICAL ANALYSES TO MEASURE THE COMPRESSIVE MECHANICAL PROPERTIES OF TENNIS BALL. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2015. [DOI: 10.4015/s1016237215500398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tennis is almost a newly born sport (1859) that can be played individually against a single opponent (singles) or between two teams of two players each, namely doubles. Materially, tennis balls were made of cloth strips stitched together from thread. They have also been made of hollow rubber with a felt coating appearing in different colors from traditionally white to yellow in the recent years to permit their visibility. Although the most common injuries associated with tennis have been reported to be related to rotator cuff, elbow, wrist, anterior knee pain, and ankle, the injury that a tennis ball can cause, for example, for eye is still not clear. However, as the tennis ball can reach to a speed of 260 km/h, it seems vital to understand its mechanical properties to have a deep insight into the injury that can happen during playing. Therefore, this study aimed to perform an experimental study to evaluate the linear elastic and nonlinear hyperelastic mechanical properties of the tennis ball under compressive loading. To do this, 40 numbers of approved tennis balls by international tennis federation (ITF) were prepared and subjected to a series of compressive loadings. The strain of the balls was measured via a pair of CCD cameras using digital image correlation (DIC) technique. The results revealed the mean elastic modulus, maximum stress, and strain of 336.69 kPa, 410.15 kPa, and 66%, for the tennis balls, respectively. The nonlinear mechanical behavior of the tennis balls were also computationally investigated through a hyperelastic material model, namely Ogden. Finally, a finite element (FE) model was executed to verify the hyperelastic data with that of experimental and, interestingly, the numerical data were in good agreement with experimental ones. The findings of this study may have implications not only for understanding the compressive mechanical properties of the tennis ball, but also for investigating the injury that can occur in the human body by tennis ball, especially the eye.
Collapse
|
114
|
Ghanaie R, Sadeghi H, Esteghamati A, Fallah F, Armin S, Fahimzad S, Ghanaie M, Shamshiri A, Shiva F, Karimi A. Frequency of pertussis in iranian school-age children. J PEDIAT INF DIS-GER 2015. [DOI: 10.3233/jpi-130380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
115
|
Razaghi R, Karimi A, Rahmani S, Navidbakhsh M. A computational fluid–structure interaction model of the blood flow in the healthy and varicose saphenous vein. Vascular 2015; 24:254-63. [DOI: 10.1177/1708538115594095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Varicose vein has become enlarged and twisted and, consequently, has lost its mechanical strength. As a result of the varicose saphenous vein (SV) mechanical alterations, the hemodynamic parameters of the blood flow, such as blood velocity as well as vein wall stress and strain, would change accordingly. However, little is known about stress and strain and there consequences under experimental conditions on blood flow and velocity within normal and varicose veins. In this study, a three-dimensional (3D) computational fluid–structure interaction (FSI) model of a human healthy and varicose SVs was established to determine the hemodynamic characterization of the blood flow as a function of vein wall mechanical properties, i.e. elastic and hyperelastic. Methods The mechanical properties of the human healthy and varicose SVs were experimentally measured and implemented into the computational model. The fully coupled fluid and structure models were solved using the explicit dynamics finite element code LS-DYNA. Results The results revealed that, regardless of healthy and varicose, the elastic walls reach to the ultimate strength of the vein wall, whereas the hyperelastic wall can tolerate more stress. The highest von Mises stress compared to the healthy ones was seen in the elastic and hyperelastic varicose SVs with 1.412 and 1.535 MPa, respectively. In addition, analysis of the resultant displacement in the vein wall indicated that the varicose SVs experienced a higher displacement compared to the healthy ones irrespective of elastic and hyperelastic material models. The highest blood velocity was also observed for the healthy hyperelastic SV wall. Conclusion The findings of this study may have implications not only for determining the role of the vein wall mechanical properties in the hemodynamic alterations of the blood, but also for employing as a null information in balloon-angioplasty and bypass surgeries.
Collapse
|
116
|
Hanafi-Bojd AA, Rassi Y, Yaghoobi-Ershadi MR, Haghdoost AA, Akhavan AA, Charrahy Z, Karimi A. Predicted Distribution of Visceral Leishmaniasis Vectors (Diptera: Psychodidae; Phlebotominae) in Iran: A Niche Model Study. Zoonoses Public Health 2015; 62:644-54. [DOI: 10.1111/zph.12202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 01/30/2023]
|
117
|
Rahmani S, Alagheband M, Karimi A, Alizadeh M, Navidbakhsh M. Wall stress in media layer of stented three-layered aortic aneurysm at different intraluminal thrombus locations with pulsatile heart cycle. J Med Eng Technol 2015; 39:239-45. [PMID: 25906361 DOI: 10.3109/03091902.2015.1040173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
At the point when the aorta ruptures suddenly, as opposed to as the after-effect of injury, it is for the most part in aortic aneurysm. Aortic aneurysm rupture happens when the wall stress surpasses the strength of the vascular tissue. Intraluminal thrombus (ILT) may have advantages as it can absorb tension and decrease aortic aneurysm wall stress. This study aims to investigate the presence and growth effects of ILT on the wall stress in a stented aneurysm in one heart cycle. A virtual stented aneurysm model with ILT was made to study the flow and wall dynamics using fluid-structure interaction (FSI) analysis. Wall stresses at the center line of media layer of aorta thickness were calculated by two-dimensional axisymmetric finite element analysis. Calculations were executed as thrombus elastic modulus increased from 0.1 to 2 MPa and calculations were repeated as thrombus depth was increased in 10% increment until thrombus filled the whole aneurysm cavity. The von Mises stresses were compared in three sections, namely proximal, aneurysm and distal sections in the abdominal aorta. The wall stress showed its maximum value during a peak flow and pressure and gradually decreased as the pressure and velocity of blood reduced in all three aforementioned sections. As the intraluminal thrombus depth increased from 10% to 100%, the wall stress in distal, proximal and centre of aneurysm during one heart cycle was decreased. Furthermore, increasing the elastic modulus of thrombus from 10% to 100% triggered a reduction in wall stress in proximal, centre of intraluminal thrombus and distal regions during one heart cycle. The achievements of this study may have implications not only for understanding the wall stress in ILT, but also for providing more detailed information about aortic aneurysm with intraluminal thrombus and can help surgeons to do their best.
Collapse
|
118
|
Karimi A, Razaghi R, Shojaei A, Navidbakhsh M. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury. ACTA ACUST UNITED AC 2015; 60:593-602. [PMID: 25870956 DOI: 10.1515/bmt-2014-0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/11/2015] [Indexed: 11/15/2022]
Abstract
The stresses induced within plaque tissues and arterial layers during stent expansion inside an atherosclerotic artery can be exceeded from the yield stresses of those tissues and, consequently, lead to plaque or arterial wall rupture. The distribution and magnitude of the stresses in the plaque-artery-stent structure might be distinctly different for different plaque types. In this study, the mechanical properties of six healthy and atherosclerotic human coronary arteries were determined for application in plaque and arterial vulnerability assessment. A nonlinear finite element simulation based on an Ogden material model was established to investigate the effect of plaque types on the stresses induced in the arterial wall during implantation of a balloon expandable coronary stent. The atherosclerotic artery was assumed to consist of a plaque and normal arterial tissues on its outer side. The results indicated a significant influence of plaque types on the maximum stresses induced within the plaque wall and arterial wall during stenting but not when computing maximum stress on the stent. The stress on the stiffest calcified plaque wall was 3.161 MPa, whereas cellular and hypocellular plaques showed relatively less stress on their wall. The highest von Mises stresses within the arterial wall were observed on the hypocellular plaque, whereas the lowest stresses were seen to be located in the calcified and cellular plaques. Although the computed stresses on the arterial wall for the calcified and cellular plaques were not high enough to invoke a rupture, the stress on the hypocellular plaque was relatively higher than that of the strength of the arterial wall. These findings may have implications not only for understanding the stresses induced in plaque and the arterial wall, but also for developing surgeries such as balloon-angioplasty and stenting.
Collapse
|
119
|
Fatemeh F, Karimi A, Abbassion M, Rad PK, Yazdi MK. Extraction of Rosa damascena as an antibacterial agent. Int J Mycobacteriol 2015. [DOI: 10.1016/j.ijmyco.2014.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
120
|
Ali Moghaddam K, Vaezi M, Karimi A, Jahani M, Namroud N, Ghavamzadeh A. Post-HSCT Fertility in Patients Receiving Non-TBI-Based Conditioning Regimen: A 23-Year of Iranian Experience. Biol Blood Marrow Transplant 2015. [DOI: 10.1016/j.bbmt.2014.11.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
121
|
Elhamian SMM, Alizadeh M, Shokrieh MM, Karimi A. A depth dependent transversely isotropic micromechanic model of articular cartilage. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:111. [PMID: 25665849 DOI: 10.1007/s10856-015-5449-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/14/2014] [Indexed: 06/04/2023]
Abstract
Articular cartilage owing to the variation of collagen fibers orientation through its zones has been indicated to have depth dependent mechanical properties. The aim of this study was to present an innovative micromechanics model to predict the depth dependent mechanical properties of articular cartilage as a function of collagen fibers and proteoglycan matrix mechanical properties, collagen fibers volume fraction as well as angle toward cartilage surface. The variation of collagen fibers angle toward the cartilage surface as a function of cartilage depth was computed using the micromechanics model. This function showed that the collagen fibers parallel to the cartilage surface in the superficial zone have a nonlinear angle variation in the transition zone and become perpendicular to cartilage surface in the deep zone. Depth dependent elastic modulus in perpendicular to cartilage surface plane direction was calculated using presented micromechanics model and variation function of the collagen fibers' angle. The results revealed a suitable agreement with that of the experimental measurements in different samples at different ages and races (R2=0.944). The results also showed that the elastic and aggregate modules perpendicular to the cartilage surface plane in the deep zone were 25.8 and 26.3 times higher than that of the superficial zone, respectively. These findings have implications not only for computing the depth dependent mechanical properties of any type of articular cartilage at different ages and races, but also of potential ability for developing a depth dependent transversely isotropic biphasic model to predict the accurate mechanical behavior of articular cartilage.
Collapse
|
122
|
Karimi A, Navidbakhsh M, Shojaei A. A combination of histological analyses and uniaxial tensile tests to determine the material coefficients of the healthy and atherosclerotic human coronary arteries. Tissue Cell 2015; 47:152-8. [PMID: 25758947 DOI: 10.1016/j.tice.2015.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 11/28/2022]
Abstract
Atherosclerosis is considered as the most severe form of cardiovascular diseases as it alters the structure of the elastin and collagen and, consequently, the mechanical properties of the artery wall. The role of collagen fibers orientations in the mechanical properties of the healthy and atherosclerotic human coronary arteries so far has not been well determined. In this study, a fiber family based constitutive equation was employed to address the mechanical behavior of healthy and atherosclerotic human coronary arteries using the combination of histostructural and uniaxial data. A group of six healthy and atherosclerotic human coronary arteries was excised at autopsy and histological analyses were performed on each artery to determine the mean angle of collagen fibers. The preconditioned arterial tissues were then subjected to a series of quasi-static axial and circumferential loadings. The key role of fiber orientation was explicitly added into a proposed strain energy density function. The constrained nonlinear optimization method was used to determine the material coefficients based on the axial and circumferential extension data of the arteries. The material coefficients of coronary arteries were given with R(2)≥0.991. The results regardless of loading direction revealed a significant load-bearing capacity and stiffness of atherosclerotic arteries compared to the healthy ones (p<0.005). The optimized fiber angles were in good agreement with the experimental histological data as only 2.52% and 10.10% differences were observed for the healthy and atherosclerotic arteries, respectively. The stored energy function of the healthy arteries was found to be higher than that of atherosclerotic ones. These findings help us to understand the directional mechanical properties of coronary arteries which may have implications for different types of interventions and surgeries, including bypass, stenting, and balloon-angioplasty.
Collapse
|
123
|
Karimi A, Karig D, Kumar A, Ardekani AM. Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. LAB ON A CHIP 2015; 15:23-42. [PMID: 25385289 PMCID: PMC4261921 DOI: 10.1039/c4lc01095g] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacteria in natural and artificial environments often reside in self-organized, integrated communities known as biofilms. Biofilms are highly structured entities consisting of bacterial cells embedded in a matrix of self-produced extracellular polymeric substances (EPS). The EPS matrix acts like a biological 'glue' enabling microbes to adhere to and colonize a wide range of surfaces. Once integrated into biofilms, bacterial cells can withstand various forms of stress such as antibiotics, hydrodynamic shear and other environmental challenges. Because of this, biofilms of pathogenic bacteria can be a significant health hazard often leading to recurrent infections. Biofilms can also lead to clogging and material degradation; on the other hand they are an integral part of various environmental processes such as carbon sequestration and nitrogen cycles. There are several determinants of biofilm morphology and dynamics, including the genotypic and phenotypic states of constituent cells and various environmental conditions. Here, we present an overview of the role of relevant physical processes in biofilm formation, including propulsion mechanisms, hydrodynamic effects, and transport of quorum sensing signals. We also provide a survey of microfluidic techniques utilized to unravel the associated physical mechanisms. Further, we discuss the future research areas for exploring new ways to extend the scope of the microfluidic approach in biofilm studies.
Collapse
|
124
|
Bazyar J, Daliri S, Sayehmiri K, Karimi A, Delpisheh A. Assessing the relationship between maternal and neonatal factors and low birth weight in Iran; a systematic review and meta-analysis. J Med Life 2015; 8:23-31. [PMID: 28316702 PMCID: PMC5319292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/17/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction. Low birth weight is an important indicator of the health of babies. A low birth weight is a leading health problem and a major reason for death in newborns. This study targeted to assess the relationship between maternal and infant factors and low birth weight in Iran through a systematic review and meta-analysis. Materials and Methods. This paper was a systematic review and meta-analysis of the relationship between maternal/ infant factors and low birth weight based on the published research papers conducted in Iran. To achieve this goal, two trained researchers independently elicited all the relevant articles by using the appropriate keywords and their combinations in SID, Madlib, Iranmedex, Irandoc, Google Scholar, Pubmed, ISI, Scopus and Magiran databases. The results of the study were combined with SPSS 20 and STATA software. Results. In the initial stage, 25 more relevant articles out of 46 papers were selected. The gestational age with less than 37 weeks and prenatal care had the most (CI: 27- 14. 53, OR: 19.81) and the least (CI: 1.86, OR: 1.5) effect on the low birth weight in newborns, respectively. Conclusion. This study showed that there is a significant relationship between the low birth weight and multiple births, pre-eclampsia, maternal weight gaining during pregnancy, baby's gender, and pregnancy age. Hence, controlling the factors above in mothers during pregnancy by the health authorities could lead to the birth of infants with a healthy weight and consequently the number of infants with low birth weight will decrease.
Collapse
|
125
|
Javidi M, Heydari M, Attar MM, Haghpanahi M, Karimi A, Navidbakhsh M, Amanpour S. Cylindrical agar gel with fluid flow subjected to an alternating magnetic field during hyperthermia. Int J Hyperthermia 2014; 31:33-9. [PMID: 25523967 DOI: 10.3109/02656736.2014.988661] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE In magnetic fluid hyperthermia (MFH), nanoparticles are injected into diseased tissue and subjected to an alternating high frequency magnetic field. The process triggers sufficient heat to destroy the cancerous cells. One of the challenging problems during MFH is blood flow in tissue. In real conditions the heat which is transferred by blood flow should be considered in the analysis of MFH. METHODS In this study, heat transfer was investigated in an agar gel phantom containing fluid flow. Fe3O4 as a nano-fluid was injected into the centre of a gel cylinder which was filled with another gel cylinder and subjected to an alternating magnetic field of 7.3 kA/m and a frequency of 50 kHz for 3600 s. The temperature was measured at three points in the gel. Temperature distributions regarding the time at these three points were experimentally measured. Moreover, the specific absorption rate (SAR) function was calculated with a temperature function. RESULTS The SAR function was a key asset in the hyperthermia and was obtained on the condition that the fluid flowed through the gel. Finally, a finite element analysis (FEA) was performed to verify the SAR function. The results revealed that there was good agreement between the measured temperature and the one obtained from FEA. In addition, the effects of fluid flow and accuracy of function obtained for heat production in the gel were presented. CONCLUSION It is believed that the proposed model has the potential ability to get close to reality in this type of investigation. The proposed function has implications for use in further modelling studies as a heat generation source.
Collapse
|