101
|
Wang Y, Wang C, Cai X, Mou C, Cui X, Zhang Y, Ge F, Dong H, Hao Y, Cai L, Wu S, Feng C, Chen J, Li J, Xu W, Fan L, Xie W, Tong Y, Gu HF, Wu L. IL-21 Stimulates the expression and activation of cell cycle regulators and promotes cell proliferation in EBV-positive diffuse large B cell lymphoma. Sci Rep 2020; 10:12326. [PMID: 32704112 PMCID: PMC7378064 DOI: 10.1038/s41598-020-69227-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
The clinical features of EBV-positive diffuse large B cell lymphoma (DLBCL) indicate a poorer prognosis than EBV-negative DLBCL. Currently, there is no efficacious drug for EBV-positive DLBCL. The cytokine interleukin-21 (IL-21) has been reported to be pro-apoptotic in DLBCL cell lines and is being explored as a new therapeutic strategy for this type of lymphomas. However, our previous studies showed that IL-21 stimulation of EBV-positive DLBCL cell lines leads to increased proliferation. Here, analysis of a rare clinical sample of EBV-positive DLBCL, in combination with a NOD/SCID mouse xenograft model, confirmed the effect of IL-21 on the proliferation of EBV-positive DLBCL cells. Using RNA-sequencing, we identified the pattern of differentially-expressed genes following IL-21 treatment and verified the expression of key genes at the protein level using western blotting. We found that IL-21 upregulates expression of the host MYC and AP-1 (composed of related Jun and Fos family proteins) and STAT3 phosphorylation, as well as expression of the viral LMP-1 protein. These proteins are known to promote the G1/S phase transition to accelerate cell cycle progression. Furthermore, in NOD/SCID mouse xenograft model experiments, we found that IL-21 treatment increases glucose uptake and angiogenesis in EBV-positive DLBCL tumours. Although more samples are needed to validate these observations, our study reconfirms the adverse effects of IL-21 on EBV-positive DLBCL, which has implications for the drug development of DLBCL.
Collapse
|
102
|
Ge XY, Ge F, Wang Z, Wang YL, Lei LW, Liu QR, Sun XY, Jiang X. Analysis of risk factors of stage IV gastric cancer from the SEER database. Ann R Coll Surg Engl 2020; 102:355-362. [PMID: 32326735 PMCID: PMC7374772 DOI: 10.1308/rcsann.2020.0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Gastric cancer is the fourth most common cancer in the world. By the time the patients are diagnosed with stage IV gastric cancer, many patients already have distant metastases. There is no unified systemic treatment plan in existence. The use of gastrectomy is ambiguous in patients with stage IV gastric cancer. The objective of this study was to evaluate the beneficial outcome of gastrectomy in patients with stage IV gastric cancer. METHODS Clinical information of patients with gastric cancer from 2000 to 2010 in the Surveillance, Epidemiology, and End Results database were extracted and analysed. The risk factors for stage IV gastric cancer were also analysed. RESULTS We observed that the median survival time for patients after surgery was greater than that for patients not treated surgically. The five-year survival rate for chemotherapy patients was higher than that of non-chemotherapeutic patients. Patients who receive both chemotherapy and surgery could achieve a more significant survival benefit. The risks following gastrectomy (partial, subtotal, hemi-) were lower than those of other surgical procedures, which provided guidance on the choice of surgical method. The numbers of regional lymph node metastasis were found to be related to prognosis. CONCLUSIONS In patients with stage IV gastric cancer, gastrectomy (partial, subtotal or hemi) should be selected when surgery is necessary. The number of regional lymph node metastasis could be considered as a prognostic factor for patients with stage IV gastric cancer and lymph node dissection could reduce the risk of patients undergoing surgery.
Collapse
|
103
|
Liang C, Cao J, Liu Z, Ge F, Cang J, Miao C, Luo J. Positive RT-PCR test results after consecutively negative results in patients with COVID-19. Infect Dis (Lond) 2020; 52:517-519. [PMID: 32329388 DOI: 10.1080/23744235.2020.1755447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
104
|
Yang WL, Dai ZL, Cheng X, Guo L, Fan ZX, Ge F, Dai YJ. Sulfoxaflor Degraded by Aminobacter sp. CGMCC 1.17253 through Hydration Pathway Mediated by Nitrile Hydratase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4579-4587. [PMID: 32227888 DOI: 10.1021/acs.jafc.9b06668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sulfoxaflor, a sulfoximine insecticide, could efficiently control many insect pests of sap-feeding. Microbial degradation of sulfoxaflor and the enzymatic mechanism involved have not been studied to date. A bacterial isolate JW2 that transforms sulfoxaflor to X11719474 was isolated and identified as Aminobacter sp. CGMCC 1.17253. Both the recombinant Escherichia coli strain harboring the Aminobacter sp. CGMCC 1.17253 nitrile hydratase (NHase) gene and the pure NHase acquired sulfoxaflor-degrading ability. Aminobacter sp. CGMCC 1.17253 NHase is a typical cobalt-containing NHase content of subunit α, subunit β, and an accessory protein, and the three-dimensional homology model of NHase was built. Substrate specificity tests showed that NHase catalyzed the conversion of acetamiprid, thiacloprid, indolyl-3-acetonitrile, 3-cyanopyridine, and benzonitrile into their corresponding amides, indicating its broad substrate specificity. This is the first report of the pure bacteria degradation of the sulfoxaflor residual in the environment and reveals the enzymatic mechanism mediated by Aminobacter sp. CGMCC 1.17253.
Collapse
|
105
|
Zhu Z, Yang M, Bai Y, Ge F, Wang S. Antioxidant-related catalase CTA1 regulates development, aflatoxin biosynthesis, and virulence in pathogenic fungus Aspergillus flavus. Environ Microbiol 2020; 22:2792-2810. [PMID: 32250030 DOI: 10.1111/1462-2920.15011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) induce the synthesis of a myriad of secondary metabolites, including aflatoxins. It raises significant concern as it is a potent environmental contaminant. In Aspergillus flavus., antioxidant enzymes link ROS stress response with coordinated gene regulation of aflatoxin biosynthesis. In this study, we characterized the function of a core component of the antioxidant enzyme catalase (CTA1) of A. flavus. Firstly, we verified the presence of cta1 corresponding protein (CTA1) by Western blot analysis and mass-spectrometry based analysis. Then, the functional study revealed that the growth, sporulation and sclerotia formation significantly increased, while aflatoxins production and virulence were decreased in the cta1 deletion mutant as compared with the WT and complementary strains. Furthermore, the absence of the cta1 gene resulted in a significant rise in the intracellular ROS level, which in turn added to the oxidative stress level of cells. A further quantitative proteomics investigation hinted that in vivo, CTA1 might maintain the ROS level to facilitate the aflatoxin synthesis. All in all, the pleiotropic phenotype of A. flavus CTA1 deletion mutant revealed that the antioxidant system plays a crucial role in fungal development, aflatoxins biosynthesis and virulence.
Collapse
|
106
|
Yang X, Li S, Wu Y, Ge F, Chen Y, Xiong Q. The circular RNA CDR1as regulate cell proliferation via TMED2 and TMED10. BMC Cancer 2020; 20:312. [PMID: 32293333 PMCID: PMC7160961 DOI: 10.1186/s12885-020-06794-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Circular RNAs (CircRNAs) are biologically active RNAs. CDR1as is one such circRNA previously reported to be a microRNA-7 (miR-7) sponge, thereby regulating associated gene expression. The specific underlying molecular mechanisms of CDR1as biology, however, remain largely unknown. Methods We performed CDR1as knockdown in order to explore its function in cell proliferation, migration, the cell cycle, and tumorigenesis. We further employed quantitative proteomic analyses and associated bioinformatics strategies to globally assess CDR1as-regulated proteins (CRPs). Western blotting and immunofluorescence staining were used to validate the proteomic results. We additionally investigated a specific link between TMED2, TMED10, and miR-7 via a dual-luciferase reporter system, and generated CDR1as knockout cell lines via CRISPR/Cas9 editing. Results We identified 353 proteins dysregulated upon CDR1as knockdown in 293 T cells. These CRPs were found to interact with one another and to play key roles in certain cellular pathways. Two such proteins, TMED2 and TMED10, were found to specifically contribute to the influence of CDR1as on cell proliferation. CDR1as may regulate these two TMED proteins through miR-7 sponging. We were able to further confirm these results using both CRISPRi cell lines and nude mouse models. Conclusion This study suggested that CDR1as may regulate cell proliferation via serving as a miR-7 sponge, thereby regulating TMED2 and TMED10 expression. These results are an invaluable template for future streamlined studies of circRNAs.
Collapse
|
107
|
Zhou S, Zhou Y, Yu J, Du Y, Tan Y, Ke Y, Wang J, Han B, Ge F. Ophiocordyceps lanpingensis polysaccharides attenuate pulmonary fibrosis in mice. Biomed Pharmacother 2020; 126:110058. [PMID: 32145591 DOI: 10.1016/j.biopha.2020.110058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with growing prevalence. Currently available therapies for treating IPF are not desirable due to the limited efficacy and multiple side effects. Ophiocordyceps lanpingensis is one strain of entomogenous fungi, which has been collected from the eastern part of the Himalayas. This study revealed that O. lanpingensis polysaccharides (OLP) could attenuate bleomycin (BLM) induced lung fibrosis in mice. Results showed that OLP treatments significantly reduced BLM-induced collagen deposition and decreased the accumulation of macrophages. The oxidative stress of the lung was alleviated by OLP. The expression levels of pro-inflammatory and pro-fibrogenic factors in OLP groups were also decreased compared with those in the BLM group, which might explain the improved alveolar integrity and function in the OLP treated groups. Our findings indicated that OLP treatment could alleviate pulmonary fibrosis progression mainly through reducing the recruitment of macrophages to the lungs.
Collapse
|
108
|
Guo H, Sun Y, Yan H, Li C, Ge F. O 3-Induced Priming Defense Associated With the Abscisic Acid Signaling Pathway Enhances Plant Resistance to Bemisia tabaci. FRONTIERS IN PLANT SCIENCE 2020; 11:93. [PMID: 32210979 PMCID: PMC7069499 DOI: 10.3389/fpls.2020.00093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
Elevated ozone (O3) modulates phytohormone signals, which subsequently alters the interaction between plants and herbivorous insects. It has been reported that elevated O3 activates the plant abscisic acid (ABA) signaling pathway, but its cascading effect on the performance of herbivorous insects remains unclear. Here, we used the ABA-deficient tomato mutant notabilis (not) and its wild type, Ailsa Craig (AC), to determine the role of ABA signaling in mediating the effects of elevated O3 on Bemisia tabaci in field open-top chambers (OTCs). Our results showed that the population abundance and the total phloem-feeding duration of B. tabaci were decreased by O3 exposure in AC plants compared with not plants. Moreover, elevated O3 and B. tabaci infestation activated the ABA signaling pathway and enhanced callose deposition in AC plants but had little effect on those in not plants. The exogenous application of a callose synthesis inhibitor (2-DDG) neutralized O3-induced resistance to B. tabaci, and the application of ABA enhanced callose deposition and exacerbated the negative effects of elevated O3 on B. tabaci. However, the application of 2-DDG counteracted the negative effects of O3 exposure on B. tabaci in ABA-treated AC plants. Collectively, this study revealed that callose deposition, which relied on the ABA signaling pathway, was an effective O3-induced priming defense of tomato plants against B. tabaci infestation.
Collapse
|
109
|
Yang B, Chen Q, Liu X, Chen F, Liang Y, Qiang W, He L, Ge F. Effects of Pest Management Practices on Soil Nematode Abundance, Diversity, Metabolic Footprint and Community Composition Under Paddy Rice Fields. FRONTIERS IN PLANT SCIENCE 2020; 11:88. [PMID: 32140164 PMCID: PMC7042464 DOI: 10.3389/fpls.2020.00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The wide-scale adoption of transgenic crops has aroused public concern towards potential impacts to the ecological services of soil fauna, such as soil nematodes. However, few studies has examined whether the cultivation of transgenic rice would pose greater threats to soil nematode community and associated ecological functions than insecticides application. Moreover, what are determinants of soil nematode community in paddy fields remains unclear. During a 3-year field study, rhizosphere soil samples of transgenic-Bt rice, its counterpart non-Bt parental rice and not-Bt rice with insecticides application were taken at four times in the rice developmental cycle using a random block design with three replications for each treatment. We hypothesized that the effects of pest management practice on soil nematode abundance and metabolic footprint change with trophic group and sampling time. We also predicted there were significant differences in structure and composition of soil nematode community across the three treatments examined and sampling times. In agreement with our expectation, the effects of pest management practice on nematode abundance and metabolic footprints depend on trophic group and sampling time. However, pest management practice exerted no apparent effect on nematode diversity and community composition. Soil nutrient availability and C:N molar ratio are the primary regulating factor of soil nematode community in rice paddy fields. In conclusion, our findings implied that changes in abundance, diversity, metabolic footprints associated with the crop growth stage overweighed the application of Bt rice and insecticides. The cultivation of Bt rice Huahui-1 exerted no measurable adverse effect on soil nematode community in rhizosphere soil over 3 years of rice cropping.
Collapse
|
110
|
Yan HY, Guo HG, Sun YC, Ge F. Plant phenolics mediated bottom-up effects of elevated CO 2 on Acyrthosiphon pisum and its parasitoid Aphidius avenae. INSECT SCIENCE 2020; 27:170-184. [PMID: 29938899 DOI: 10.1111/1744-7917.12627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Elevated concentrations of atmospheric CO2 can alter plant secondary metabolites, which play important roles in the interactions among plants, herbivorous insects and natural enemies. However, few studies have examined the cascading effects of host plant secondary metabolites on tri-trophic interactions under elevated CO2 (eCO2 ). In this study, we determined the effects of eCO2 on the growth and foliar phenolics of Medicago truncatula and the cascading effects on two color genotypes of Acyrthosiphon pisum (pink vs. green) and their parasitoid Aphidius avenae in the field open-top chambers. Our results showed that eCO2 increased photosynthetic rate, nodule number, yield and the total phenolic content of M. truncatula. eCO2 had contrasting effects on two genotypes of A. pisum; the green genotype demonstrated increased population abundance, fecundity, growth and feeding efficiency, while the pink genotype showed decreased fitness and these were closely associated with the foliar genstein content. Furthermore, eCO2 decreased the parasitic rate of A. avenae independent of aphid genotypes. eCO2 prolonged the emergence time and reduced the emergence rate and percentage of females when associated with the green genotype, but little difference, except for increased percentage of females, was observed in A. avenae under eCO2 when associated with the pink genotype, indicating that parasitoids can perceive and discriminate the qualities of aphid hosts. We concluded that eCO2 altered plant phenolics and thus the performance of aphids and parasitoids. Our results indicate that plant phenolics vary by different abiotic and biotic stimuli and could potentially deliver the cascading effects of eCO2 to the higher trophic levels. Our results also suggest that the green genotype is expected to perform better in future eCO2 because of decreased plant resistance after its infestation and decreased parasitic rate.
Collapse
|
111
|
Guo L, Dai Z, Guo J, Yang W, Ge F, Dai Y. Oligotrophic bacterium Hymenobacter latericoloratus CGMCC 16346 degrades the neonicotinoid imidacloprid in surface water. AMB Express 2020; 10:7. [PMID: 31939001 PMCID: PMC6960279 DOI: 10.1186/s13568-019-0942-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The intensive and extensive application of imidacloprid in agriculture has resulted in water pollution and risks to aquatic invertebrates. However, pure bacteria remediation of imidacloprid in surface water environments has not been studied. Here, we isolated an imidacloprid-degrading bacterium from a water environment, examined its imidacloprid degradation in pure culture and surface water, sequenced its genome, and compared its Clusters of Orthologous Groups (COG) protein categorization with that for another imidacloprid-degrading bacterium. The isolate was an obligate oligotrophic bacterium, Hymenobacter latericoloratus CGMCC 16346, which degraded imidacloprid via hydroxylation by co-metabolism in pure culture. Resting cells degraded 64.4% of 100 mg/L imidacloprid in 6 days in the presence of co-substrate maltose, and growing culture degraded 40.8% of imidacloprid in 10 days. H. latericoloratus CGMCC 16346 degraded imidacloprid in surface water without co-substrate supplementation and retained imidacloprid-degrading activity after 30 days. The half-life of imidacloprid in surface water was decreased from 173.3 days in the control to 57.8 days by CGMCC 16346 inoculation. Genome sequencing and COG analysis indicated that carbohydrate metabolism and transport, cell wall/membrane biogenesis, and defense mechanisms are enriched in H. latericoloratus CGMCC 16346 compared with the copiotrophic imidacloprid-degrading Pseudoxanthomonas indica CGMCC 6648, indicating that H. latericoloratus CGMCC 16346 is adapted to live in oligotrophic water environments and biofilms. H. latericoloratus CGMCC 16346 is a promising bioremediation agent for elimination of imidacloprid contamination from surface water.
Collapse
|
112
|
Li S, Wang Z, Tang B, Zheng L, Chen H, Cui X, Ge F, Liu D. A Pathogenesis-Related Protein-Like Gene Is Involved in the Panax notoginseng Defense Response to the Root Rot Pathogen. FRONTIERS IN PLANT SCIENCE 2020; 11:610176. [PMID: 33519865 PMCID: PMC7838351 DOI: 10.3389/fpls.2020.610176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/17/2020] [Indexed: 05/14/2023]
Abstract
Pathogenesis-related proteins (PRs) are a class of proteins that accumulate in response to biotic and abiotic stresses to protect plants from damage. In this study, a gene encoding a PR-like protein (PnPR-like) was isolated from Panax notoginseng, which is used in traditional Chinese herbal medicines. An analysis of gene expression in P. notoginseng indicated that PnPR-like was responsive to an infection by the root rot pathogen Fusarium solani. The expression of this gene was induced by several signaling molecules, including methyl jasmonate, ethephon, hydrogen peroxide, and salicylic acid. The PnPR-like-GFP fusion gene was transiently expressed in onion (Allium cepa) epidermal cells, which revealed that PnPR-like is a cytoplasmic protein. The purified recombinant PnPR-like protein expressed in Escherichia coli had antifungal effects on F. solani and Colletotrichum gloeosporioides as well as inhibited the spore germination of F. solani. Additionally, the in vitro ribonuclease (RNase) activity of the recombinant PnPR-like protein was revealed. The PnPR-like gene was inserted into tobacco (Nicotiana tabacum) to verify its function. The gene was stably expressed in T2 transgenic tobacco plants, which exhibited more RNase activity and greater disease resistance than the wild-type tobacco. Moreover, the transient expression of hairpin RNA targeting PnPR-like in P. notoginseng leaves increased the susceptibility to F. solani and decreased the PnPR-like expression level. In conclusion, the cytoplasmic protein PnPR-like, which has RNase activity, is involved in the P. notoginseng defense response to F. solani.
Collapse
|
113
|
Ge F, Zhang C, Yao H, Zhang G, Wang X, Qiu L. Precisely Controlling the Structure of Ultrathin Semiconducting Films by a Laminating Method for High-Performance Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48147-48154. [PMID: 31786919 DOI: 10.1021/acsami.9b17621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-performance organic field-effect transistors (OFETs) based on conjugated polymers have received extensive attention in recent years. However, the relationships between the multiscale structures of conjugated polymers and electrical properties are not well established. Here, laminated, ultrathin poly(3-hexylthiophene) (P3HT) films have been prepared using a sequential, repeated transfer-etching process from the precursor conjugated/insulating polymer blend films and used to study the structure-property relationship at the transition of the film structure from 2D to 3D. The molecular packing of the films is improved by lamination as certified by grazing incidence X-ray diffraction, UV-visible spectroscopy, and Raman spectroscopy. The laminated ultrathin P3HT films exhibit excellent electrical properties with a maximum mobility of 0.23 cm2 V-1 s-1 at three layers, which is close to the highest value reported for undoped P3HT OFETs. Temperature-dependent FET characteristics reveal that the laminated films have low activation energy and a 2D charge transport profile regardless of the number of layers. These charge transport properties are attributed to the well-ordered molecular packing and low trap density in the films, which are enabled by the phase separation of the precursor blend films and the lamination process. In addition, OFETs based on these films have good photostability under different wavelengths of light, indicating that this approach has promising practical application prospects.
Collapse
|
114
|
Lu S, Xiong Q, Du K, Gan X, Wang X, Yang L, Wang Y, Ge F, He S. Comparative iTRAQ proteomics revealed proteins associated with lobed fin regeneration in Bichirs. Proteome Sci 2019; 17:6. [PMID: 31832023 PMCID: PMC6869209 DOI: 10.1186/s12953-019-0153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/09/2019] [Indexed: 11/23/2022] Open
Abstract
Background Polypterus senegalus can fully regenerate its pectoral lobed fins, including a complex endoskeleton, with remarkable precision. However, despite the enormous potential of this species for use in medical research, its regeneration mechanisms remain largely unknown. Methods To identify the differentially expressed proteins (DEPs) during the early stages of lobed fin regeneration in P. senegalus, we performed a differential proteomic analysis using isobaric tag for relative and absolute quantitation (iTRAQ) approach based quantitative proteome from the pectoral lobed fins at 3 time points. Furthermore, we validated the changes in protein expression with multiple-reaction monitoring (MRM) analysis. Results The experiment yielded a total of 3177 proteins and 15,091 unique peptides including 1006 non-redundant (nr) DEPs. Of these, 592 were upregulated while 349 were downregulated after lobed fin amputation when compared to the original tissue. Bioinformatics analyses showed that the DEPs were mainly associated with Ribosome and RNA transport, metabolic, ECM-receptor interaction, Golgi and endoplasmic reticulum, DNA replication, and Regulation of actin cytoskeleton. Conclusions To our knowledge, this is the first proteomic research to investigate alterations in protein levels and affected pathways in bichirs’ lobe-fin/limb regeneration. In addition, our study demonstrated a highly dynamic regulation during lobed fin regeneration in P. senegalus. These results not only provide a comprehensive dataset on differentially expressed proteins during the early stages of lobe-fin/limb regeneration but also advance our understanding of the molecular mechanisms underlying lobe-fin/limb regeneration.
Collapse
|
115
|
Ding X, Ding F, Wang Y, Wang L, Wang J, Xu L, Li W, Yang J, Meng X, Yuan M, Chu J, Ge F, Dong W, Xue M. Shanghai expert consensus on totally implantable access ports 2019. J Interv Med 2019; 2:141-145. [PMID: 34805890 PMCID: PMC8562251 DOI: 10.1016/j.jimed.2019.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Totally implantable access ports (TIAPs) are used for patients with poor peripheral vascular support requiring central venous access. In recent years, TIAPs have been gradually accepted and promoted by patients, doctors, and nurses owing to their advantages of convenient carrying, a long maintenance period, low complications, and a high quality of life for patients. Currently, medical personnel that handle TIAP implantation and management in China are from different areas of healthcare, including surgery, internal medicine, radiology, nurse anesthesia, vascular access, etc., and many only handle TIAP as a part of their duties. Therefore, the operating procedures and steps for the diagnosis and treatment of complications of TIAP vary from person to person, resulting in different incidence and treatment methods for complications in the implantation and use of TIAP in different medical units. Based on this, we have updated the Shanghai expert consensus on TIAPs from 2015 and explored the diagnosis and treatment procedures of related complications while continuing to emphasize standardized implantation and maintenance.
Collapse
|
116
|
Ge F, Liu W, Liu M, Tang S, Lu Y, Hou T. Accessing the discriminatory performance of FRAIL-NH in two-class and three-class frailty and examining its agreement with the frailty index among nursing home residents in mainland China. BMC Geriatr 2019; 19:296. [PMID: 31666011 PMCID: PMC6822433 DOI: 10.1186/s12877-019-1314-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 10/11/2019] [Indexed: 01/13/2023] Open
Abstract
Background FRAIL-NH has been commonly used to assess frailty in nursing home residents and validated in many ethnic populations; however, it has not been validated in mainland China, where such an assessment tool is lacking. This study aimed to (1) assess the discriminatory performance of FRAIL-NH in two-class frailty (non-frail+ pre-frail vs. frail) and three-class frailty (non-frail vs. pre-frail vs. frail), based on the Frailty Index (FI), (2) determine the appropriate cutoff points for FRAIL-NH that distinguish two-class and three-class frailty, and (3) examine the agreement in classification between FRAIL-NH and FI. Methods A cross-sectional study of 302 residents aged 60 years or older from six nursing homes in Changsha was conducted. The FRAIL-NH scale and 34-item FI were used to measure frailty. Two-way and three-way receiver operating characteristic (ROC) curves were used to estimate the performance of FRAIL-NH. Cohen’s Kappa statistics were used to examine the agreement between these two measures. Results The agreement between FRAIL-NH and FI ranged from 0.33 to 0.55. Regardless of what FI cutoff points were based on, the volume under the ROC surface (VUS) for FRAIL-NH from the three-way ROC were higher than the VUS of a useless test (1/6), and the area under the ROC curve (AUC) for FRAIL-NH from the two-way ROC were higher than the clinically meaningless value (0.5). When using FI cutoff points of 0.20 for pre-frail and 0.45 for frail, FRAIL-NH cutoff points of 1 and 9 in classifying three-class frailty had the highest VUS and the largest correct classification rates. Whichever FI was chosen, the performance of FRAIL-NH in distinguishing between pre-frailty and frailty, and between non-frailty and pre-frailty was equivalent. According to FRAIL-NH, the proportion of individuals with frailty misclassified as pre-frailty was higher than that of individuals with non-frailty misclassified as pre-frailty. Conclusion FRAIL-NH can be used as a preliminary frailty screening tool in nursing homes in mainland China. FI should be further used especially for those classified as pre-frailty by FRAIL-NH. It is not advisable to simply combine adjacent two classes of FRAIL-NH to create a new frailty variable in research settings.
Collapse
|
117
|
Yang G, Yue Y, Ren S, Yang M, Zhang Y, Cao X, Wang Y, Zhang J, Ge F, Wang S. Lysine acetylation contributes to development, aflatoxin biosynthesis and pathogenicity in
Aspergillus flavus. Environ Microbiol 2019; 21:4792-4807. [DOI: 10.1111/1462-2920.14825] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022]
|
118
|
Zheng C, Ouyang F, Liu X, Ma J, Zhao F, Ouyang Z, Ge F. Effect of coupled reduced irrigation and nitrogen fertilizer on soil mite community composition in a wheat field. Ecol Evol 2019; 9:11367-11378. [PMID: 31641479 PMCID: PMC6802016 DOI: 10.1002/ece3.5638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 12/03/2022] Open
Abstract
Groundwater and nitrogen fertilizer overuse severely threatens crop productions; thus, current ecological agriculture requires low irrigation and nitrogen fertilizer inputs. The effects of combined reduced irrigation and nitrogen fertilizer addition on soil organism (e.g., mite) community and biodiversity remain poorly understood. We analyzed soil mite community composition, wheat grain yield, and soil characteristics in a 10-year manipulation experiment with two levels of irrigation (reduced and conventional irrigation) and five nitrogen fertilizer levels (0, 70, 140, 210, and 280 kg N/ha). Reduced irrigation (20% reduction, from 280 to 220 mm) and nitrogen fertilizer (25% reduction, from 280 to 210 kg N/ha) addition did not significantly influence soil mite community and wheat yield. The relative abundances of fungivores and predators showed negative quadratic relationships with wheat yield, while that of plant parasites showed a positive relationship. The relationships between soil mite trophic groups and wheat yield revealed that we can evaluate the impacts of reduced irrigation and nitrogen fertilizer addition from the perspective of soil fauna. Soil mite community composition was altered by soil abiotic factors prior to reduced irrigation and nitrogen fertilizer addition. Overall, moderate reductions of irrigation and nitrogen fertilizer may not threaten to soil mite community and diversity or decrease crop production; in contrast, such reductions will benefit mite community development and the sustainable agriculture.
Collapse
|
119
|
Liu D, Zhao Q, Cui X, Chen R, Li X, Qiu B, Ge F. A transcriptome analysis uncovers Panax notoginseng resistance to Fusarium solani induced by methyl jasmonate. Genes Genomics 2019; 41:1383-1396. [PMID: 31493262 DOI: 10.1007/s13258-019-00865-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/27/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Panax notoginseng is a famous Chinese herbal medicine, but the root rot disease mainly caused by Fusarium solani severely reduces the yield and quality of its medicinal materials. OBJECTIVE The defense priming in P. notoginseng through exogenous application of signaling molecule will supply theoretical support for the exogenous regulation of disease resistance in P. notoginseng. METHODS In this study, the exogenous application of methyl jasmonate (MeJA) increased P. notoginseng's resistance to F. solani. Furthermore, the P. notoginseng transcriptome during F. solani infection was investigated through next-generation sequencing to uncover the resistance mechanism of P. notogingseng induced by MeJA. RESULTS The de novo assembly of transcriptome sequences produced 80,551 unigenes, and 36,771 of these unigenes were annotated by at least one database. A differentially expressed gene analysis revealed that a large number of genes related to terpenoid backbone biosynthesis, phenylalanine metabolism, and plant-pathogen interactions were predominantly up-regulated by MeJA. Moreover, jasmonic acid (JA) biosynthesis-related genes and the JA signaling pathway genes, such as linoleate 13S-lipoxygenase, allene oxide cyclase, allene oxide synthase, TIFY, defensin, and pathogenesis-related proteins, showed increased transcriptional levels after inoculation with F. solani. Notably, according to the gene expression analysis, JA and ethylene signaling pathways may act synergistically to positively regulate the defense responses of P. notoginseng to F. solani. CONCLUSION JA signaling appears to play a vital role in P. notoginseng responses to F. solani infection, which will be helpful in improving the disease resistance of P. notoginseng cultivars as well as in developing an environmentally friendly biological control method for root rot disease.
Collapse
|
120
|
Zhang S, Shi W, Siegler TD, Gao X, Ge F, Korgel BA, He Y, Li S, Wang X. An All‐Inorganic Colloidal Nanocrystal Flexible Polarizer. Angew Chem Int Ed Engl 2019; 58:8730-8735. [PMID: 31025792 DOI: 10.1002/anie.201902240] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 11/10/2022]
|
121
|
Du Y, Yao H, Galuska L, Ge F, Wang X, Lu H, Zhang G, Gu X, Qiu L. Side-Chain Engineering To Optimize the Charge Transport Properties of Isoindigo-Based Random Terpolymers for High-Performance Organic Field-Effect Transistors. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00474] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
122
|
Guo L, Fang WW, Guo LL, Yao CF, Zhao YX, Ge F, Dai YJ. Biodegradation of the Neonicotinoid Insecticide Acetamiprid by Actinomycetes Streptomyces canus CGMCC 13662 and Characterization of the Novel Nitrile Hydratase Involved. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5922-5931. [PMID: 31067049 DOI: 10.1021/acs.jafc.8b06513] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neonicotinoid insecticide pollution in soil and water poses serious environmental risks. Microbial biodegradation is an important neonicotinoid insecticide degradation pathway in the environment. In this study, 70.0% of the acetamiprid in a 200 mg/L solution was degraded by actinomycetes Streptomyces canus CGMCC 13662 (isolated from soil) in 48 h, and the acetamiprid degradation half-life was 27.7 h. Acetamiprid was degraded to IM-1-2 (( E)-1-(1-(((6-chloropyridin-3-yl)methyl)(methyl) amino)ethylidene)urea) through hydrolysis of the cyanoimine moiety. Gene cloning and overexpression indicated that a novel nitrile hydratase with three unusual subunits (AnhD, AnhE, and AnhA) without accessory protein mediated IM-1-2 formation. The purified nitrile hydratase responsible for degrading acetamiprid had a Km of 5.85 mmol/L and a Vmax of 15.99 U/mg. A homology model suggested that AnhD-Glu56 and AnhE-His21 play important roles in the catalytic efficiency of the nitrile hydratase. S. canus CGMCC 13662 could be used to remediate environments contaminated with acetamiprid.
Collapse
|
123
|
Zhang S, Shi W, Siegler TD, Gao X, Ge F, Korgel BA, He Y, Li S, Wang X. An All‐Inorganic Colloidal Nanocrystal Flexible Polarizer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
124
|
Yuan E, Yan H, Gao J, Guo H, Ge F, Sun Y. Increases in Genistein in Medicago sativa Confer Resistance against the Pisum Host Race of Acyrthosiphon pisum. INSECTS 2019; 10:E97. [PMID: 30939761 PMCID: PMC6523617 DOI: 10.3390/insects10040097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 11/27/2022]
Abstract
Interspecific interaction with host plants have important consequences for the host race formation of herbivorous insects. Plant secondary metabolites, particularly those that are involved in host races specializing on plants, warrant the theory of host specialization. Acyrthosiphon pisum comprises various host races that adapt to different Fabaceae plants, which provides an ideal system for determining the behavioral and physiological mechanisms underlying host-adaptive diversification. The current study evaluated the effects of host transfer on population fitness, feeding behavior and the transcriptome-wide gene expression of the two host races of A. pisum, one of which was originally from Medicago sativa and the other from Pisum sativum. The results showed that the Pisum host race of A. pisum had a lower population abundance and feeding efficiency than the Medicago host race in terms of a longer penetration time and shorter duration times of phloem ingestion when fed on M. sativa. In contrast, few differences were found in the population abundance and feeding behavior of A. pisum between the two host races when fed on P. sativum. Meanwhile, of the nine candidate phenolic compounds, only genistein was significantly affected by aphid infestation; higher levels of genistein were detected in M. sativa after feeding by the Pisum host race, but these levels were reduced relative to uninfested controls after feeding by the Medicago host race, which suggested that genistein may be involved in the specialization of the aphid host race on M. sativa. Further exogenous application of genistein in artificial diets showed that the increase in genistein reduced the survival rate of the Pisum host race but had little effect on that of the Medicago host race. The transcriptomic profiles indicated that the transcripts of six genes with functions related to detoxification were up-regulated in the Pisum host race relative to the Medicago host race of A. pisum. These results suggested that the inducible plant phenolics and associated metabolic process in aphids resulted in their differential adaptations to their Fabaceae host.
Collapse
|
125
|
Yao M, Xiong W, Xu L, Ge F. A modified approach for ultrasound-guided axillary venipuncture in the infraclavicular area: A retrospective observational study. J Vasc Access 2019; 20:630-635. [PMID: 30919718 DOI: 10.1177/1129729819838135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Catheterization of the axillary vein in the infraclavicular area has important advantages in patients with long-term, indwelling central venous catheters. The two most commonly used ultrasound-guided approaches for catheterization of the axillary vein include the long-axis/in-plane approach and the short-axis/out-of-plane approach, but there are certain drawbacks to both approaches. We have modified a new approach for axillary vein catheterization: the oblique-axis/in-plane approach. METHODS This observational study retrospectively collected data from patients who underwent ultrasound-guided placement of an axillary vein infusion port in the infraclavicular area at the Central Venous Access Clinics of Zhongshan Hospital at Fudan University between March 2014 and May 2017. The patients' demographic data, success rate of catheterization, venous catheterization site, and immediate complications associated with catheterization were recorded. RESULTS Between March 2014 and May 2017, a total of 858 patients underwent placement of an axillary vein infusion port in the infraclavicular area at our center. The ultrasound-guided oblique-axis/in-plane approach was used for all patients, and the venipuncture success rate was 100%. Two cases of accidental arterial puncture and one case of local hematoma formation were reported, and no other complications, such as pneumothorax or nerve damage, were reported. CONCLUSION The ultrasound-guided oblique-axis/in-plane approach is a safe and reliable alternative to the routine ultrasound-guided approach for axillary venous catheterization.
Collapse
|