1
|
Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 1998; 43:809-14. [PMID: 9629851 DOI: 10.1002/ana.410430616] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Serial monthly magnetization transfer (MT) imaging was performed to evaluate whether a change of the normal appearing white matter (NAWM), which precedes the appearance of enhancing lesions, is seen in patients with multiple sclerosis (MS). Every 4 weeks for 3 months, 10 patients with relapsing-remitting MS were scanned with a T1-weighted sequence, 20 minutes after injection with 0.3 mmol/kg gadolinium-DTPA (Gd-DTPA). During each of the monthly sessions, MT and dual echo scans were also performed before Gd-DTPA injection. On coregistered images, the MT ratio (MTR) was measured in NAWM subsequently involved by enhancing lesions, in NAWM areas on the same slices but outside any present or future MR abnormality, and in enhancing lesions at the time of their appearance. Forty-eight new enhancing lesions with no corresponding abnormalities on previous scans were identified. Their average MTR was 33.1% (+/-8.4%). Three, 2, and 1 month before enhancement appearance, the mean MTR in NAWM, measured from areas corresponding to future enhancing lesions, was significantly lower than the mean MTR in NAWM outside enhancing areas; the MTR decreased steadily as the time when the enhanced lesion approached. These results suggest that changes in the NAWM of patients with MS occur before lesions become evident on conventional MRI scans.
Collapse
|
|
27 |
245 |
2
|
Mattner F, Smiroldo S, Galbiati F, Muller M, Di Lucia P, Poliani PL, Martino G, Panina-Bordignon P, Adorini L. Inhibition of Th1 development and treatment of chronic-relapsing experimental allergic encephalomyelitis by a non-hypercalcemic analogue of 1,25-dihydroxyvitamin D(3). Eur J Immunol 2000; 30:498-508. [PMID: 10671205 DOI: 10.1002/1521-4141(200002)30:2<498::aid-immu498>3.0.co;2-q] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] inhibits production of IL-12, a cytokine involved in the development of Th1 cells and in the pathogenesis of Th1-mediated autoimmune diseases. Here, we show that 1,25(OH)(2)D(3) and a non-hypercalcemic analogue are selective and potent inhibitors of Th1 development in vitro and in vivo without inducing a deviation to the Th2 phenotype. Administration of 1,25(OH)(2)D(3) or its analogue prevents chronic-relapsing experimental allergic encephalomyelitis (CR-EAE) induced by the myelin oligodendrocyte glycoprotein (MOG) peptide 35 - 55 (MOG(35 - 55)) in Biozzi AB / H mice. The inhibition of EAE induction is associated with a profound reduction of MOG(35 - 55)-specific proliferation and Th1 cell development. Importantly, the non-hypercalcemic analogue also provides long-term protection from EAE relapses induced by immunization with spinal cord homogenate when administered for a short time at symptom onset or even after the first peak of disease. Neuropathological analysis shows a reduction of inflammatory infiltrates, demyelinated areas and axonal loss in brains and spinal cords of treated mice. These resuls indicate that inhibition of IL-12-dependent Th1 cell development is associated with effective treatment of CR-EAE and suggest the feasibility of an approach based on low molecular weight inhibitors of IL-12 production in the treatment of multiple sclerosis.
Collapse
|
|
25 |
172 |
3
|
Rossini PM, Martino G, Narici L, Pasquarelli A, Peresson M, Pizzella V, Tecchio F, Torrioli G, Romani GL. Short-term brain 'plasticity' in humans: transient finger representation changes in sensory cortex somatotopy following ischemic anesthesia. Brain Res 1994; 642:169-77. [PMID: 8032877 DOI: 10.1016/0006-8993(94)90919-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transient rearrangements of finger representation in primary somatosensory cortex induced by an anesthetic block of the sensory information from adjacent fingers have been shown invasively in animals. Such a phenomenon has been now replicated in seven healthy human volunteers. Somatosensory Evoked Fields (SEFs) have been recorded during separate electrical stimulation of the 1st, 3rd, or 5th finger. Recordings were obtained in control conditions (stage A), following complete ischemic anesthesia of the 4 non-stimulated fingers (stage B), and after regaining sensation (stage C). SEFs were recorded using a 28-channel DC-SQUID magnetometer; a single position of the sensor was enough to identify the source of N20m, P30m and following components using the Equivalent Current Dipole (ECD) model. The amount of afferent input during stages A through C was monitored with surface electrodes placed on the nerve at wrist and elbow. No variation of the nerve compound potential was observed during stages A through C. In stage A, the localizing algorithm was able to discriminate the individual finger representation in accordance with the somatotopic organisation of the sensory homunculus. It was observed that the ECDs responsible for the cortical responses from the unanesthetized finger were significantly changing following a relatively brief period of sensory deprivation from the adjacent fingers. Such changes of the ECDs with respect to the control conditions were characterized by an increase in strength and deepening for the middle finger, and by a shift on the coronal plane for the thumb and the little finger (medial for the former, lateral for the latter). Such changes became progressively evident in stage B, but were persisting in stage C.
Collapse
|
Comparative Study |
31 |
165 |
4
|
L’Episcopo F, Tirolo C, Testa N, Caniglia S, Morale M, Cossetti C, D’Adamo P, Zardini E, Andreoni L, Ihekwaba A, Serra P, Franciotta D, Martino G, Pluchino S, Marchetti B. Reactive astrocytes and Wnt/β-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neurobiol Dis 2011; 41:508-27. [PMID: 21056667 PMCID: PMC3558878 DOI: 10.1016/j.nbd.2010.10.023] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/15/2010] [Accepted: 10/27/2010] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence points to reactive glia as a pivotal factor in Parkinson's disease (PD) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model of basal ganglia injury, but whether astrocytes and microglia activation may exacerbate dopaminergic (DAergic) neuron demise and/or contribute to DAergic repair is presently the subject of much debate. Here, we have correlated the loss and recovery of the nigrostriatal DAergic functionality upon acute MPTP exposure with extensive gene expression analysis at the level of the ventral midbrain (VM) and striata (Str) and found a major upregulation of pro-inflammatory chemokines and wingless-type MMTV integration site1 (Wnt1), a key transcript involved in midbrain DAergic neurodevelopment. Wnt signaling components (including Frizzled-1 [Fzd-1] and β-catenin) were dynamically regulated during MPTP-induced DAergic degeneration and reactive glial activation. Activated astrocytes of the ventral midbrain were identified as candidate source of Wnt1 by in situ hybridization and real-time PCR in vitro. Blocking Wnt/Fzd signaling with Dickkopf-1 (Dkk1) counteracted astrocyte-induced neuroprotection against MPP(+) toxicity in primary mesencephalic astrocyte-neuron cultures, in vitro. Moreover, astroglial-derived factors, including Wnt1, promoted neurogenesis and DAergic neurogenesis from adult midbrain stem/neuroprogenitor cells, in vitro. Conversely, lack of Wnt1 transcription in response to MPTP in middle-aged mice and failure of DAergic neurons to recover were reversed by pharmacological activation of Wnt/β-catenin signaling, in vivo, thus suggesting MPTP-reactive astrocytes in situ and Wnt1 as candidate components of neuroprotective/neurorescue pathways in MPTP-induced nigrostriatal DAergic plasticity.
Collapse
|
research-article |
14 |
160 |
5
|
Furlan R, Brambilla E, Ruffini F, Poliani PL, Bergami A, Marconi PC, Franciotta DM, Penna G, Comi G, Adorini L, Martino G. Intrathecal delivery of IFN-gamma protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1821-9. [PMID: 11466408 DOI: 10.4049/jimmunol.167.3.1821] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The exclusive detrimental role of proinflammatory cytokines in demyelinating diseases of the CNS, such as multiple sclerosis, is controversial. Here we show that the intrathecal delivery of an HSV-1-derived vector engineered with the mouse IFN-gamma gene leads to persistent (up to 4 wk) CNS production of IFN-gamma and inhibits the course of a chronic-progressive form of experimental autoimmune encephalomyelitis (EAE) induced in C57BL/6 mice by myelin oligodendrocyte glycoprotein (MOG)(35-55). Mice treated with the IFN-gamma-containing vector before EAE onset showed an earlier onset but a milder course of the disease compared with control mice treated with the empty vector. In addition, 83% of IFN-gamma-treated mice completely recovered within 25 days post immunization, whereas control mice did not recover up to 60 days post immunization. Mice treated with the IFN-gamma-containing vector within 1 wk after EAE onset partially recovered from the disease within 25 days after vector injection, whereas control mice worsened. Recovery from EAE in mice treated with IFN-gamma was associated with a significant increase of CNS-infiltrating lymphocytes undergoing apoptosis. During the recovery phase, the mRNA level of TNFR1 was also significantly increased in CNS-infiltrating cells from IFN-gamma-treated mice compared with controls. Our results further challenge the exclusive detrimental role of IFN-gamma in the CNS during EAE/multiple sclerosis, and indicate that CNS-confined inflammation may induce protective immunological countermechanisms leading to a faster clearance of encephalitogenic T cells by apoptosis, thus restoring the immune privilege of the CNS.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Apoptosis/genetics
- Apoptosis/immunology
- Blood-Brain Barrier/genetics
- Blood-Brain Barrier/immunology
- Brain/immunology
- Brain/metabolism
- Brain/pathology
- Cell Movement/genetics
- Cell Movement/immunology
- Cerebral Ventricles/immunology
- Cerebral Ventricles/virology
- Chronic Disease
- Cisterna Magna
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Genetic Vectors/administration & dosage
- Herpesvirus 1, Human/genetics
- Injections
- Injections, Spinal
- Interferon-gamma/administration & dosage
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Lymphocyte Count
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Lymphocyte Subsets/pathology
- Mice
- Mice, Inbred C57BL
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor, Type I
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Subarachnoid Space/immunology
- Subarachnoid Space/virology
- Virus Replication/genetics
Collapse
|
|
24 |
137 |
6
|
Annibale B, Marignani M, Monarca B, Antonelli G, Marcheggiano A, Martino G, Mandelli F, Caprilli R, Delle Fave G. Reversal of iron deficiency anemia after Helicobacter pylori eradication in patients with asymptomatic gastritis. Ann Intern Med 1999; 131:668-72. [PMID: 10577329 DOI: 10.7326/0003-4819-131-9-199911020-00006] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Iron deficiency anemia is the most common form of anemia worldwide. Recent studies have suggested an association between Helicobacter pylori infection and iron deficiency. OBJECTIVE To investigate the effects of eradicating H. pylori with combination antibiotic therapy on iron deficiency anemia in patients with H. pylori-associated gastritis. DESIGN Case series. SETTING University hospital. PATIENTS 30 patients with a long history of iron deficiency anemia in whom H. pylori-associated gastritis was the only pathologic gastrointestinal finding detected. INTERVENTION Eradication therapy with two antibiotics and discontinuation of iron replacement therapy. MEASUREMENTS Complete blood count, ferritin levels, and gastroscopy with biopsy to evaluate H. pylori status. RESULTS At 6 months, 75% of patients had recovered from anemia (P<0.001), ferritin values increased from 5.7+/-0.7 microg/L to 24.5+/-5.2 microg/L (95% CI, 8.85 to 29.97). After 12 months, 91.7% of patients had recovered from anemia. CONCLUSIONS Cure of H. pylori infection is associated with reversal of iron dependence and recovery from iron deficiency anemia.
Collapse
|
|
26 |
134 |
7
|
Franciotta D, Martino G, Zardini E, Furlan R, Bergamaschi R, Andreoni L, Cosi V. Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease and undergoing immunomodulatory therapies. J Neuroimmunol 2001; 115:192-8. [PMID: 11282170 DOI: 10.1016/s0165-5728(01)00261-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The two chemokines, monocyte chemoattractant protein (MCP)-1 and gamma-interferon inducible protein (IP)-10, are thought to be involved in the pathogenesis of multiple sclerosis (MS). We measured MCP-1 and IP-10 levels in serum and CSF samples from 38 acute and 25 stable MS patients and from 40 controls. The latter consisted in patients with other inflammatory neurological diseases (OIND) or with non-inflammatory neurological diseases, and healthy controls. CSF MCP-1 levels exceeded those found in serum in all the patients studied as well as in healthy controls. CSF MCP-1 levels were significantly lower in acute MS [468+/-(S.E.M.) 18 pg/ml] than in stable MS (857+/-104 pg/ml). When detectable, serum and CSF IP-10 levels were significantly higher in acute MS (serum 331+/-66 pg/ml; CSF 118+/-16 pg/ml) than in stable MS (serum 69+/-7 pg/ml; CSF 25+/-2 pg/ml). Among OIND patients, those with HIV-1-associated dementia showed high serum and CSF levels of both MCP-1 and IP-10. Those with encephalitis showed high serum and CSF levels of IP-10 and CSF mononuclear pleiocytosis. We also evaluated the effects of 6-methylprednisolone or IFN-beta1a therapy on circulating MCP-1 and IP-10 levels. Neither MCP-1 nor IP-10 post-therapy levels varied significantly from baseline values. Our findings suggest that (a) MCP-1 could be constitutively produced within the brain; (b) MCP-1 and IP-10 CSF levels in acute MS vary significantly from those in stable MS, and these variations are inverse; and (c) current MS therapies do not modify circulating levels of MCP-1 and IP-10.
Collapse
|
Clinical Trial |
24 |
122 |
8
|
Abstract
Multiple sclerosis is considered to be an autoimmune disease that results from aberrant immune responses to central nervous system antigens. T cells are considered to be crucial in orchestrating an immunopathological cascade that culminates in damage to the myelin sheath, oligodendrocytes and axons.
Collapse
|
Review |
26 |
108 |
9
|
Lampasona V, Franciotta D, Furlan R, Zanaboni S, Fazio R, Bonifacio E, Comi G, Martino G. Similar low frequency of anti-MOG IgG and IgM in MS patients and healthy subjects. Neurology 2004; 62:2092-4. [PMID: 15184621 DOI: 10.1212/01.wnl.0000127615.15768.ae] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The authors used a liquid-phase radiobinding assay to measure serum anti-myelin oligodendrocyte protein (MOG) immunoglobulin (Ig) G in 87 patients with multiple sclerosis (MS), in 12 patients with encephalomyelitis, and in 47 healthy subjects. Anti-MOG IgM was determined in samples obtained at onset from 40 of 87 patients with MS and in control subjects. The frequency of positive samples with low titers of anti-MOG IgG (< or =5.7%) and IgM (< or =8.3%) was similar in all the groups and subgroups. Binding competition experiments showed that these antibodies had low affinity. Anti-MOG antibodies are not disease specific.
Collapse
|
|
21 |
105 |
10
|
Gallo D, Young JTF, Fourtounis J, Martino G, Álvarez-Quilón A, Bernier C, Duffy NM, Papp R, Roulston A, Stocco R, Szychowski J, Veloso A, Alam H, Baruah PS, Fortin AB, Bowlan J, Chaudhary N, Desjardins J, Dietrich E, Fournier S, Fugère-Desjardins C, Goullet de Rugy T, Leclaire ME, Liu B, Bhaskaran V, Mamane Y, Melo H, Nicolas O, Singhania A, Szilard RK, Tkáč J, Yin SY, Morris SJ, Zinda M, Marshall CG, Durocher D. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature 2022; 604:749-756. [PMID: 35444283 PMCID: PMC9046089 DOI: 10.1038/s41586-022-04638-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies1-4. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumour regressions when combined with gemcitabine in models of CCNE1 amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1-overexpressing cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the MMB-FOXM1 mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.
Collapse
|
research-article |
3 |
102 |
11
|
Mancardi GL, Sormani MP, Di Gioia M, Vuolo L, Gualandi F, Amato MP, Capello E, Currò D, Uccelli A, Bertolotto A, Gasperini C, Lugaresi A, Merelli E, Meucci G, Motti L, Tola MR, Scarpini E, Repice AM, Massacesi L, Saccardi R, Bosi A, Guidi S, Bagigalupo A, Bonzano L, Bruzzi P, Roccatagliata L, Antenucci R, Granella F, Martino G, Rottoli M, Solaro C, Salvi F, Barilaro A, Capobianco M. Autologous haematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in multiple sclerosis: the Italian multi-centre experience. Mult Scler 2011; 18:835-42. [PMID: 22127896 DOI: 10.1177/1352458511429320] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Over recent years numerous patients with severe forms of multiple sclerosis (MS) refractory to conventional therapies have been treated with intense immunosuppression followed by autologous haematopoietic stem cell transplantation (AHSCT). The clinical outcome and the toxicity of AHSCT can be diverse, depending on the various types of conditioning protocols and on the disease phase. OBJECTIVES To report the Italian experience on all the consecutive patients with MS treated with AHSCT with an intermediate intensity conditioning regimen, named BEAM/ATG, in the period from 1996 to 2008. METHODS Clinical and magnetic resonance imaging outcomes of 74 patients were collected after a median follow-up period of 48.3 (range = 0.8-126) months. RESULTS Two patients (2.7%) died from transplant-related causes. After 5 years, 66% of patients remained stable or improved. Among patients with a follow-up longer than 1 year, eight out of 25 subjects with a relapsing-remitting course (31%) had a 6-12 months confirmed Expanded Disability Status Scale improvement > 1 point after AHSCT as compared with one out of 36 (3%) patients with a secondary progressive disease course (p = 0.009). Among the 18 cases with a follow-up longer than 7 years, eight (44%) remained stable or had a sustained improvement while 10 (56%), after an initial period of stabilization or improvement with median duration of 3.5 years, showed a slow disability progression. CONCLUSIONS This study shows that AHSCT with a BEAM/ATG conditioning regimen has a sustained effect in suppressing disease progression in aggressive MS cases unresponsive to conventional therapies. It can also cause a sustained clinical improvement, especially if treated subjects are still in the relapsing-remitting phase of the disease.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
98 |
12
|
Ruffini F, Furlan R, Poliani PL, Brambilla E, Marconi PC, Bergami A, Desina G, Glorioso JC, Comi G, Martino G. Fibroblast growth factor-II gene therapy reverts the clinical course and the pathological signs of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice. Gene Ther 2001; 8:1207-13. [PMID: 11509953 DOI: 10.1038/sj.gt.3301523] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 06/06/2001] [Indexed: 11/08/2022]
Abstract
The development of therapies aimed to promote remyelination is a major issue in chronic inflammatory demyelinating disorders of the central nervous system (CNS) such as multiple sclerosis (MS), where the permanent neurological impairment is due to the axonal loss resulting from recurrent episodes of immune-mediated demyelination. Here, we show that the intrathecal injection of a herpes simplex virus (HSV) type-1 replication-defective multigene vector, engineered with the human fibroblast growth factor (FGF)-II gene (TH:bFGF vector), was able to significantly revert in C57BL/6 mice the clinicopathological signs of chronic experimental autoimmune encephalomyelitis (EAE), the animal model of MS. The treatment with the TH:bFGF vector was initiated within 1 week after the clinical onset of EAE and was effective throughout the whole follow-up period (ie 60 days). The disease-ameliorating effect in FGF-II-treated mice was associated with: (1) CNS production of FGF-II from vector-infected cells which were exclusively located around the CSF space (ependymal, choroidal and leptomeningeal cells); (2) significant decrease (P < 0.01) of the number of myelinotoxic cells (T cells and macrophages) both in the CNS parenchyma and in the leptomeningeal space; and (3) significant increase (P < 0.01) of the number of oligodendrocyte precursors and of myelin-forming oligodendrocytes in areas of demyelination and axonal loss. Our results indicate that CNS gene therapy using HSV-1-derived vector coding for neurotrophic factors (ie FGF-II) is a safe and non-toxic approach that might represent a potential useful 'alternative' tool for the future treatment of immune-mediated demyelinating diseases.
Collapse
|
|
24 |
98 |
13
|
Vicario CM, Salehinejad MA, Felmingham K, Martino G, Nitsche MA. A systematic review on the therapeutic effectiveness of non-invasive brain stimulation for the treatment of anxiety disorders. Neurosci Biobehav Rev 2018; 96:219-231. [PMID: 30543906 DOI: 10.1016/j.neubiorev.2018.12.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
The interest in the use of non-invasive brain stimulation for enhancing neural functions and reducing symptoms in anxiety disorders is growing. Based on the DSM-V classification for anxiety disorders, we examined all available research using repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) for the treatment of specific phobias, social anxiety disorder, panic disorder, agoraphobia, and generalized anxiety disorder. A systematic literature search conducted in PubMed and Google Scholar databases provided 26 results: 12 sham-controlled studies and 15 not sham-controlled studies. With regard to the latter sub-group of studies, 9 were case reports, and 6 open label studies. Overall, our work provides preliminary evidence that both, excitatory stimulation of the left prefrontal cortex and inhibitory stimulation of the right prefrontal cortex can reduce symptom severity in anxiety disorders. The current results are discussed in the light of a model for the treatment for anxiety disorders via non-invasive brain stimulation, which is based on up-/downregulation mechanisms and might serve as guide for future systematic investigations in the field.
Collapse
|
Systematic Review |
7 |
95 |
14
|
Martino G, Ivanenko YP, Serrao M, Ranavolo A, d'Avella A, Draicchio F, Conte C, Casali C, Lacquaniti F. Locomotor patterns in cerebellar ataxia. J Neurophysiol 2014; 112:2810-21. [PMID: 25185815 DOI: 10.1152/jn.00275.2014] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several studies have demonstrated how cerebellar ataxia (CA) affects gait, resulting in deficits in multijoint coordination and stability. Nevertheless, how lesions of cerebellum influence the locomotor muscle pattern generation is still unclear. To better understand the effects of CA on locomotor output, here we investigated the idiosyncratic features of the spatiotemporal structure of leg muscle activity and impairments in the biomechanics of CA gait. To this end, we recorded the electromyographic (EMG) activity of 12 unilateral lower limb muscles and analyzed kinematic and kinetic parameters of 19 ataxic patients and 20 age-matched healthy subjects during overground walking. Neuromuscular control of gait in CA was characterized by a considerable widening of EMG bursts and significant temporal shifts in the center of activity due to overall enhanced muscle activation between late swing and mid-stance. Patients also demonstrated significant changes in the intersegmental coordination, an abnormal transient in the vertical ground reaction force and instability of limb loading at heel strike. The observed abnormalities in EMG patterns and foot loading correlated with the severity of pathology [International Cooperative Ataxia Rating Scale (ICARS), a clinical ataxia scale] and the changes in the biomechanical output. The findings provide new insights into the physiological role of cerebellum in optimizing the duration of muscle activity bursts and the control of appropriate foot loading during locomotion.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
90 |
15
|
Martino G, Ivanenko YP, d'Avella A, Serrao M, Ranavolo A, Draicchio F, Cappellini G, Casali C, Lacquaniti F. Neuromuscular adjustments of gait associated with unstable conditions. J Neurophysiol 2015; 114:2867-82. [PMID: 26378199 DOI: 10.1152/jn.00029.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
A compact description of coordinated muscle activity is provided by the factorization of electromyographic (EMG) signals. With the use of this approach, it has consistently been shown that multimuscle activity during human locomotion can be accounted for by four to five modules, each one comprised of a basic pattern timed at a different phase of gait cycle and the weighting coefficients of synergistic muscle activations. These modules are flexible, in so far as the timing of patterns and the amplitude of weightings can change as a function of gait speed and mode. Here we consider the adjustments of the locomotor modules related to unstable walking conditions. We compared three different conditions, i.e., locomotion of healthy subjects on slippery ground (SL) and on narrow beam (NB) and of cerebellar ataxic (CA) patients on normal ground. Motor modules were computed from the EMG signals of 12 muscles of the right lower limb using non-negative matrix factorization. The unstable gait of SL, NB, and CA showed significant changes compared with controls in the stride length, stride width, range of angular motion, and trunk oscillations. In most subjects of all three unstable conditions, >70% of the overall variation of EMG waveforms was accounted for by four modules that were characterized by a widening of muscle activity patterns. This suggests that the nervous system adopts the strategy of prolonging the duration of basic muscle activity patterns to cope with unstable conditions resulting from either slippery ground, reduced support surface, or pathology.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
90 |
16
|
Cappellini G, Ivanenko YP, Martino G, MacLellan MJ, Sacco A, Morelli D, Lacquaniti F. Immature Spinal Locomotor Output in Children with Cerebral Palsy. Front Physiol 2016; 7:478. [PMID: 27826251 PMCID: PMC5078720 DOI: 10.3389/fphys.2016.00478] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/05/2016] [Indexed: 12/29/2022] Open
Abstract
Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2-12 years) and 33 typically developing (TD) children (1-12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior.
Collapse
|
Journal Article |
9 |
85 |
17
|
Liu D, Martino G, Thangaraju M, Sharma M, Halwani F, Shen SH, Patel YC, Srikant CB. Caspase-8-mediated intracellular acidification precedes mitochondrial dysfunction in somatostatin-induced apoptosis. J Biol Chem 2000; 275:9244-50. [PMID: 10734062 DOI: 10.1074/jbc.275.13.9244] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Activation of initiator and effector caspases, mitochondrial changes involving a reduction in its membrane potential and release of cytochrome c (cyt c) into the cytosol, are characteristic features of apoptosis. These changes are associated with cell acidification in some models of apoptosis. The hierarchical relationship between these events has, however, not been deciphered. We have shown that somatostatin (SST), acting via the Src homology 2 bearing tyrosine phosphatase SHP-1, exerts cytotoxic action in MCF-7 cells, and triggers cell acidification and apoptosis. We investigated the temporal sequence of apoptotic events linking caspase activation, acidification, and mitochondrial dysfunction in this system and report here that (i) SHP-1-mediated caspase-8 activation is required for SST-induced decrease in pH(i). (ii) Effector caspases are induced only when there is concomitant acidification. (iii) Decrease in pH(i) is necessary to induce reduction in mitochondrial membrane potential, cyt c release and caspase-9 activation and (iv) depletion of ATP ablates SST-induced cyt c release and caspase-9 activation, but not its ability to induce effector caspases and apoptosis. These data reveal that SHP-1-/caspase-8-mediated acidification occurs at a site other than the mitochondrion and that SST-induced apoptosis is not dependent on disruption of mitochondrial function and caspase-9 activation.
Collapse
|
|
25 |
85 |
18
|
Moiola L, Galbiati F, Martino G, Amadio S, Brambilla E, Comi G, Vincent A, Grimaldi LM, Adorini L. IL-12 is involved in the induction of experimental autoimmune myasthenia gravis, an antibody-mediated disease. Eur J Immunol 1998; 28:2487-97. [PMID: 9710226 DOI: 10.1002/(sici)1521-4141(199808)28:08<2487::aid-immu2487>3.0.co;2-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
IL-12 has been shown to be involved in the pathogenesis of Th1-mediated autoimmune diseases, but its role in antibody-mediated autoimmune pathologies is still unclear. We investigated the effects of exogenous and endogenous IL-12 in experimental autoimmune myasthenia gravis (EAMG). EAMG is an animal model for myasthenia gravis, a T cell-dependent, autoantibody-mediated disorder of neuromuscular transmission caused by antibodies to the muscle nicotinic acetylcholine receptor (AChR). Administration of IL-12 with Torpedo AChR (ToAChR) to C57BL/6 (B6) mice resulted in increased ToAChR-specific IFN-gamma production and increased anti-ToAChR IgG2a serum antibodies compared with B6 mice primed with ToAChR alone. These changes were associated with earlier and greater neurophysiological evidence of EAMG in the IL-12-treated mice, and reduced numbers of AChR. By contrast, when IL-12-deficient mice were immunized with ToAChR, ToAChR-specific Th1 cells and anti-ToAChR IgG2a serum antibodies were reduced compared to ToAChR-primed normal B6 mice, and the IL-12-deficient mice showed almost no neurophysiological evidence of EAMG and less reduction in AChR. These results indicate an important role of IL-12 in the induction of an antibody-mediated autoimmune disease, suggest that Th1-dependent complement-fixing IgG2a anti-AChR antibodies are involved in the pathogenesis of EAMG, and help to account for the lack of correlation between anti-AChR levels and clinical disease seen in many earlier studies.
Collapse
|
|
27 |
82 |
19
|
Martino G, Marks LE. Perceptual and linguistic interactions in speeded classification: tests of the semantic coding hypothesis. Perception 2000; 28:903-23. [PMID: 10664781 DOI: 10.1068/p2866] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We tested the semantic coding hypothesis, which states that cross-modal interactions observed in speeded classification tasks arise after perceptual information is recoded into an abstract format common to perceptual and linguistic systems. Using a speeded classification task, we first confirmed the presence of congruence interactions between auditory pitch and visual lightness and observed Garner-type interference with nonlinguistic (perceptual) stimuli (low-frequency and high-frequency tones, black and white squares). Subsequently, we found that modifying the visual stimuli by (a) making them lexical (related words) or (b) reducing their compactness or figural 'goodness' altered congruence effects and Garner interference. The results are consistent with the semantic coding hypothesis, but only in part, and suggest the need for additional assumptions regarding the role of perceptual organization in cross-modal dimensional interactions.
Collapse
|
|
25 |
81 |
20
|
Yu XH, Cao CQ, Martino G, Puma C, Morinville A, St-Onge S, Lessard É, Perkins MN, Laird JMA. A peripherally restricted cannabinoid receptor agonist produces robust anti-nociceptive effects in rodent models of inflammatory and neuropathic pain. Pain 2010; 151:337-344. [PMID: 20696525 DOI: 10.1016/j.pain.2010.07.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 07/05/2010] [Accepted: 07/15/2010] [Indexed: 01/29/2023]
Abstract
Cannabinoids are analgesic in man, but their use is limited by their psychoactive properties. One way to avoid cannabinoid receptor subtype 1 (CB1R)-mediated central side-effects is to develop CB1R agonists with limited CNS penetration. Activation of peripheral CB1Rs has been proposed to be analgesic, but the relative contribution of peripheral CB1Rs to the analgesic effects of systemic cannabinoids remains unclear. Here we addressed this by exploring the analgesic properties and site of action of AZ11713908, a peripherally restricted CB1R agonist, in rodent pain models. Systemic administration of AZ11713908 produced robust efficacy in rat pain models, comparable to that produced by WIN 55, 212-2, a CNS-penetrant, mixed CB1R and CB2R agonist, but AZ11713908 generated fewer CNS side-effects than WIN 55, 212-in a rat Irwin test. Since AZ11713908 is also a CB2R inverse agonist in rat and a partial CB2R agonist in mouse, we tested the specificity of the effects in CB1R and CB2R knock-out (KO) mice. Analgesic effects produced by AZ11713908 in wild-type mice with Freund's complete adjuvant-induced inflammation of the tail were completely absent in CB1R KO mice, but fully preserved in CB2R KO mice. An in vivo electrophysiological assay showed that the major site of action of AZ11713908 was peripheral. Similarly, intraplantar AZ11713908 was also sufficient to induce robust analgesia. These results demonstrate that systemic administration of AZ11713908, produced robust analgesia in rodent pain models via peripheral CB1R. Peripherally restricted CB1R agonists provide an interesting novel approach to analgesic therapy for chronic pain.
Collapse
|
Journal Article |
15 |
78 |
21
|
Isidori AM, Pozza C, Gianfrilli D, Giannetta E, Lemma A, Pofi R, Barbagallo F, Manganaro L, Martino G, Lombardo F, Cantisani V, Franco G, Lenzi A. Differential Diagnosis of Nonpalpable Testicular Lesions: Qualitative and Quantitative Contrast-enhanced US of Benign and Malignant Testicular Tumors. Radiology 2014; 273:606-18. [DOI: 10.1148/radiol.14132718] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
|
11 |
78 |
22
|
Butti E, Bergami A, Recchia A, Brambilla E, Del Carro U, Amadio S, Cattalini A, Esposito M, Stornaiuolo A, Comi G, Pluchino S, Mavilio F, Martino G, Furlan R. IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Ther 2008; 15:504-15. [PMID: 18239607 DOI: 10.1038/gt.2008.10] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) delivery of anti-inflammatory cytokines, such as interleukin 4 (IL4), holds promise as treatment for multiple sclerosis (MS). We have previously shown that short-term herpes simplex virus type 1-mediated IL4 gene therapy is able to inhibit experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in mice and non-human primates. Here, we show that a single administration of an IL4-expressing helper-dependent adenoviral vector (HD-Ad) into the cerebrospinal fluid (CSF) circulation of immunocompetent mice allows persistent transduction of neuroepithelial cells and long-term (up to 5 months) CNS transgene expression without toxicity. Mice affected by chronic and relapsing EAE display clinical and neurophysiological recovery from the disease once injected with the IL4-expressing HD-Ad vector. The therapeutic effect is due to the ability of IL4 to increase, in inflamed CNS areas, chemokines (CCL1, CCL17 and CCL22) capable of recruiting regulatory T cells (CD4+CD69-CD25+Foxp3+) with suppressant functions. CSF delivery of HD-Ad vectors expressing anti-inflammatory molecules might represent a valuable therapeutic option for CNS inflammatory disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
76 |
23
|
Vandenbroeck K, Martino G, Marrosu M, Consiglio A, Zaffaroni M, Vaccargiu S, Franciotta D, Ruggeri M, Comi G, Grimaldi LM. Occurrence and clinical relevance of an interleukin-4 gene polymorphism in patients with multiple sclerosis. J Neuroimmunol 1997; 76:189-92. [PMID: 9184650 DOI: 10.1016/s0165-5728(97)00058-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An epistatic gene interaction has been advocated to explain disease susceptibility in multiple sclerosis (MS). Cytokine genes are possible candidates due to the central role played by cytokines in the regulation of the immune-mediated pathogenetic process leading to central nervous system demyelination in these patients. Since interleukin (IL)-4 gene polymorphisms have been associated with immune-mediated diseases, we have analysed the relationship between a variable number of tandem repeat polymorphism of the IL-4 gene and clinical and physiological features of 256 sporadic MS patients and 146 healthy controls. Genotype frequencies were similar between the MS group and healthy controls. However, in MS patients a positive and significant correlation (r = 0.91; p < 0.001) was found between the carriage rate of the IL-4 B1 allele (from 0.21 to 0.36) and age of disease onset. No association was found between IL-4 alleles and disease progression, sex or ethnic background of the patients. Our results show that the IL-4 B1 allele is associated with late onset of MS and therefore might represent a modifier of age of onset rather than a susceptibility factor for patients with MS.
Collapse
|
|
28 |
76 |
24
|
Mari S, Serrao M, Casali C, Conte C, Martino G, Ranavolo A, Coppola G, Draicchio F, Padua L, Sandrini G, Pierelli F. Lower limb antagonist muscle co-activation and its relationship with gait parameters in cerebellar ataxia. THE CEREBELLUM 2014; 13:226-36. [PMID: 24170572 DOI: 10.1007/s12311-013-0533-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Increased antagonist muscle co-activation, seen in motor-impaired individuals, is an attempt by the neuromuscular system to provide mechanical stability by stiffening joints. The aim of this study was to investigate the co-activation pattern of the antagonist muscles of the ankle and knee joints during walking in patients with cerebellar ataxia, a neurological disease that strongly affects stability. Kinematic and electromyographic parameters of gait were recorded in 17 patients and 17 controls. Ankle and knee antagonist muscle co-activation indexes were measured throughout the gait cycle and during the sub-phases of gait. The indexes of ataxic patients were compared with those of controls and correlated with clinical and gait variables. Patients showed increased co-activity indexes of both ankle and knee muscles during the gait cycle as well as during the gait sub-phases. Both knee and ankle muscle co-activation indexes were positively correlated with disease severity, while ankle muscle co-activation was also positively correlated with stance and swing duration variability. Significant negative correlations were observed between the number of self-reported falls per year and knee muscle co-activation. The increased co-activation observed in these cerebellar ataxia patients may represent a compensatory strategy serving to reduce gait instability. Indeed, this mechanism allows patients to reduce the occurrence of falls. The need for this strategy, which results in excessive muscle co-contraction, increased metabolic costs and cartilage degeneration processes, could conceivably be overcome through the use of supportive braces specially designed to provide greater joint stability.
Collapse
|
Journal Article |
11 |
71 |
25
|
Brambilla P, Bellani M, Isola M, Bergami A, Marinelli V, Dusi N, Rambaldelli G, Tansella M, Maria Finardi A, Martino G, Perlini C, Furlan R. Increased M1/decreased M2 signature and signs of Th1/Th2 shift in chronic patients with bipolar disorder, but not in those with schizophrenia. Transl Psychiatry 2014; 4:e406. [PMID: 24984193 PMCID: PMC4119216 DOI: 10.1038/tp.2014.46] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/10/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022] Open
Abstract
We here present data on immune gene expression of chemokines, chemokine receptors, cytokines and regulatory T-cell (T-reg) markers in chronic patients suffering from either schizophrenia (SCZ, N=20) or bipolar disorder (BD=20) compared with healthy controls (HCs, N=20). We extracted RNA from peripheral blood mononuclear cells and performed real-time (RT)-PCR to measure mRNA levels of chemokines, chemokine receptors, cytokines and T-reg markers. All the analyses were Bonferroni-corrected. The classical monocyte activation (M1) markers il6, ccl3 were significantly increased in BD as compared with both HC and SCZ patients (P=0.03 and P=0.002; P=0.024 and P=0.021, respectively), whereas markers of alternative (M2) monocyte activation ccl1, ccl22 and il10 were coherently decreased (controls: P=0.01, P=0.001 and P=0.09; SCZ subjects: P=0.02, P=0.05 and P=0.011, respectively). Concerning T-cell markers, BD patients had compared with HC downregulated ccr5 (P=0.02) and upregulated il4 (P=0.04) and compared with both healthy and SCZ individuals downregulated ccl2 (P=0.006 and P=0.003) and tgfβ (P=0.004 and P=0.007, respectively). No significant associations were found between any immune gene expression and clinical variables (prior hospitalizations, Brief Psychiatric Rating Scale, medications' dosages and lifetime administration). Although some markers are expressed by different immune cell types, these findings suggest a coherent increased M1/decrease M2 signature in the peripheral blood of BD patients with potential Th1/Th2 shift. In contrast, all the explored immune marker levels were preserved in SCZ. Further larger studies are needed to investigate the relevance of inflammatory response in BD, trying to correlate it to psychopathology, treatment and outcome measures and, possibly, to brain connectivity.
Collapse
|
research-article |
11 |
64 |