101
|
Villasana LE, Weber S, Akinyeke T, Raber J. Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species. J Neurochem 2016; 138:896-908. [PMID: 27412623 DOI: 10.1111/jnc.13737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
Apolipoprotein E (apoE), involved in cholesterol and lipid metabolism, also influences cognitive function and injury repair. In humans, apoE is expressed in three isoforms. E4 is a risk factor for age-related cognitive decline and Alzheimer's disease, particularly in women. E4 might also be a risk factor for developing behavioral and cognitive changes following (56) Fe irradiation, a component of the space environment astronauts are exposed to during missions. These changes might be related to enhanced generation of reactive oxygen species (ROS). In this study, we compared the behavioral and cognitive performance of sham-irradiated and irradiated wild-type (WT) mice and mice expressing the human E3 or E4 isoforms, and assessed the generation of ROS in hippocampal slices from these mice. E4 mice had greater anxiety-like and conditioned fear behaviors than WT mice, and these genotype differences were associated with greater levels of ROS in E4 than WT mice. The greater generation of ROS in the hippocampus of E4 than WT mice might contribute to their higher anxiety levels and enhanced fear conditioning. In E4, but not WT, mice, phorbol-12-myristate-13-acetate-treated hippocampal slices showed more dihydroxy ethidium oxidation in sham-irradiated than irradiated mice and hippocampal heme oxygenase-1 levels were higher in irradiated than sham-irradiated E4 mice. Mice with apolipoprotein E4 (E4), a risk factor for Alzheimer's disease, have greater anxiety-like and conditioned fear behaviors than wild-type (WT) mice. Generation of reactive oxygen species (ROS, in red) 3 months following (56) Fe irradiation, a component of the space environment astronauts are exposed to, is more pronounced in the hippocampus of E4 than WT mice. In E4, but not WT, mice, hippocampal levels of the oxidative stress-relevant marker heme oxygenase-1 are higher in irradiated than sham-irradiated E4 mice.
Collapse
|
102
|
Zuloaga DG, Wang J, Weber S, Mark GP, Murphy SJ, Raber J. Chronic methamphetamine exposure prior to middle cerebral artery occlusion increases infarct volume and worsens cognitive injury in Male mice. Metab Brain Dis 2016; 31:975-81. [PMID: 27021292 PMCID: PMC5940345 DOI: 10.1007/s11011-016-9808-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
Emerging evidence indicates that methamphetamine (MA) abuse can impact cardiovascular disease. In humans, MA abuse is associated with an increased risk of stroke as well as an earlier age at which the stroke occurs. However, little is known about how chronic daily MA exposure can impact ischemic outcome in either humans or animal models. In the present study, mice were injected with MA (10 mg/kg, i.p.) or saline once daily for 10 consecutive days. Twenty-four hours after the final injection, mice were subjected to transient middle cerebral artery occlusion (tMCAO) for one hour followed by reperfusion. Mice were tested for novel object memory at 96 h post-reperfusion, just prior to removal of brains for quantification of infarct volume using 2,3,5-Triphenyltetrazolium Chloride (TTC) staining. Mice treated with MA prior to tMCAO showed decreased object memory recognition and increased infarct volume compared to saline-treated mice. These findings indicate that chronic MA exposure can worsen both cognitive and morphological outcomes following cerebral ischemia.
Collapse
|
103
|
Zuloaga KL, Johnson LA, Roese NE, Marzulla T, Zhang W, Nie X, Alkayed FN, Hong C, Grafe MR, Pike MM, Raber J, Alkayed NJ. High fat diet-induced diabetes in mice exacerbates cognitive deficit due to chronic hypoperfusion. J Cereb Blood Flow Metab 2016; 36:1257-70. [PMID: 26661233 PMCID: PMC4929700 DOI: 10.1177/0271678x15616400] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/30/2015] [Indexed: 11/16/2022]
Abstract
Diabetes causes endothelial dysfunction and increases the risk of vascular cognitive impairment. However, it is unknown whether diabetes causes cognitive impairment due to reductions in cerebral blood flow or through independent effects on neuronal function and cognition. We addressed this using right unilateral common carotid artery occlusion to model vascular cognitive impairment and long-term high-fat diet to model type 2 diabetes in mice. Cognition was assessed using novel object recognition task, Morris water maze, and contextual and cued fear conditioning. Cerebral blood flow was assessed using arterial spin labeling magnetic resonance imaging. Vascular cognitive impairment mice showed cognitive deficit in the novel object recognition task, decreased cerebral blood flow in the right hemisphere, and increased glial activation in white matter and hippocampus. Mice fed a high-fat diet displayed deficits in the novel object recognition task, Morris water maze and fear conditioning tasks and neuronal loss, but no impairments in cerebral blood flow. Compared to vascular cognitive impairment mice fed a low fat diet, vascular cognitive impairment mice fed a high-fat diet exhibited reduced cued fear memory, increased deficit in the Morris water maze, neuronal loss, glial activation, and global decrease in cerebral blood flow. We conclude that high-fat diet and chronic hypoperfusion impair cognitive function by different mechanisms, although they share commons features, and that high-fat diet exacerbates vascular cognitive impairment pathology.
Collapse
|
104
|
Raber J, Weber SJ, Kronenberg A, Turker MS. Sex- and dose-dependent effects of calcium ion irradiation on behavioral performance of B6D2F1 mice during contextual fear conditioning training. LIFE SCIENCES IN SPACE RESEARCH 2016; 9:56-61. [PMID: 27345201 DOI: 10.1016/j.lssr.2016.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/13/2016] [Accepted: 03/13/2016] [Indexed: 06/06/2023]
Abstract
The space radiation environment includes energetic charged particles that may impact behavioral and cognitive performance. The relationship between the dose and the ionization density of the various types of charged particles (expressed as linear energy transfer or LET), and cognitive performance is complex. In our earlier work, whole body exposure to (28)Si ions (263 MeV/n, LET=78keV/μm; 1.6 Gy) affected contextual fear memory in C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation but this was not the case following exposure to (48)Ti ions (1 GeV/n, LET=107keV/μm; 0.2 or 0.4 Gy). As an increased understanding of the impact of charged particle exposures is critical for assessment of risk to the CNS of astronauts during and following missions, in this study we used (40)Ca ion beams (942 MeV/n, LET=90keV/μm) to determine the behavioral and cognitive effects for the LET region between that of Si ions and Ti ions. (40)Ca ion exposure reduced baseline activity in a novel environment in a dose-dependent manner, which suggests reduced motivation to explore and/or a diminished level of curiosity in a novel environment. In addition, exposure to (40)Ca ions had sex-dependent effects on response to shock. (40)Ca ion irradiation reduced the response to shock in female, but not male, mice. In contrast, (40)Ca ion irradiation did not affect fear learning, memory, or extinction of fear memory for either gender at the doses employed in this study. Thus (40)Ca ion irradiation affected behavioral, but not cognitive, performance. The effects of (40)Ca ion irradiation on behavioral performance are relevant, as a combination of novelty and aversive environmental stimuli is pertinent to conditions experienced by astronauts during and following space missions.
Collapse
|
105
|
Huang L, Wickramasekara SI, Akinyeke T, Stewart BS, Jiang Y, Raber J, Maier CS. Ion mobility-enhanced MS(E)-based label-free analysis reveals effects of low-dose radiation post contextual fear conditioning training on the mouse hippocampal proteome. J Proteomics 2016; 140:24-36. [PMID: 27020882 PMCID: PMC5029422 DOI: 10.1016/j.jprot.2016.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED Recent advances in the field of biodosimetry have shown that the response of biological systems to ionizing radiation is complex and depends on the type and dose of radiation, the tissue(s) exposed, and the time lapsed after exposure. The biological effects of low dose radiation on learning and memory are not well understood. An ion mobility-enhanced data-independent acquisition (MS(E)) approach in conjunction with the ISOQuant software tool was utilized for label-free quantification of hippocampal proteins with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-rays, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. Global proteome analysis revealed deregulation of 73 proteins (out of 399 proteins). Deregulated proteins indicated adverse effects of irradiation on myelination and perturbation of energy metabolism pathways involving a shift from the TCA cycle to glutamate oxidation. Our findings also indicate that proteins associated with synaptic activity, including vesicle recycling and neurotransmission, were altered in the irradiated mice. The elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which would be consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. SIGNIFICANCE This study is significant because the biological consequences of low dose radiation on learning and memory are complex and not yet well understood. We conducted a IMS-enhanced MS(E)-based label-free quantitative proteomic analysis of hippocampal tissue with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-ray, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. The IMS-enhanced MS(E) approach in conjunction with ISOQuant software was robust and accurate with low median CV values of 0.99% for the technical replicates of samples from both the sham and irradiated group. The biological variance was as low as 1.61% for the sham group and 1.31% for the irradiated group. The applied data generation and processing workflow allowed the quantitative evaluation of 399 proteins. The current proteomic analysis indicates that myelination is sensitive to low dose radiation. The observed protein level changes imply modulation of energy metabolism pathways in the radiation exposed group, specifically changes in protein abundance levels suggest a shift from TCA cycle to glutamate oxidation to satisfy energy demands. Most significantly, our study reveals deregulation of proteins involved in processes that govern synaptic activity including enhanced synaptic vesicle cycling, and altered long-term potentiation (LTP) and depression (LTD). An elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which is consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. Overall, our results underscore the importance of low dose radiation experiments for illuminating the sensitivity of biochemical pathways to radiation, and the modulation of potential repair and compensatory response mechanisms. This kind of studies and associated findings may ultimately lead to the design of strategies for ameliorating hippocampal and CNS injury following radiation exposure as part of medical therapies or as a consequence of occupational hazards.
Collapse
|
106
|
Impey S, Pelz C, Tafessu A, Marzulla T, Turker MS, Raber J. Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus. BMC Genomics 2016; 17:273. [PMID: 27036964 PMCID: PMC4815246 DOI: 10.1186/s12864-016-2581-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
Background Proton irradiation poses a potential hazard to astronauts during and following a mission, with post-mitotic cells at most risk because they cannot dilute resultant epigenetic changes via cell division. Persistent epigenetic changes that result from environmental exposures include gains or losses of DNA methylation of cytosine, which can impact gene expression. In the present study, we compared the long-term epigenetic effects of whole body proton irradiation in the mouse hippocampus and left ventricle. We used an unbiased genome-wide DNA methylation study, involving ChIP-seq with antibodies to 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) to identify DNA regions in which methylation levels have changed 22 weeks after a single exposure to proton irradiation. We used DIP-Seq to profile changes in genome-wide DNA methylation and hydroxymethylation following proton irradiation. In addition, we used published RNAseq data to assess whether differentially methylated regions were linked to changes in gene expression. Results The DNA methylation data showed tissue-dependent effects of proton irradiation and revealed significant major pathway changes in response to irradiation that are related to known pathophysiologic processes. Many regions affected in the ventricle mapped to genes involved in cardiovascular function pathways, whereas many regions affected in the hippocampus mapped to genes involved in neuronal functions. In the ventricle, increases in 5hmC were associated with decreases in 5mC. We also observed spatial overlap for regions where both epigenetic marks decreased in the ventricle. In hippocampus, increases in 5hmC were most significantly correlated (spatially) with regions that had increased 5mC, suggesting that deposition of hippocampal 5mC and 5hmC may be mechanistically coupled. Conclusions The results demonstrate long-term changes in DNA methylation patterns following a single proton irradiation, that these changes are tissue specific, and that they map to pathways consistent with tissue specific responses to proton irradiation. Further, the results suggest novel relationships between changes in 5mC and 5hmC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2581-x) contains supplementary material, which is available to authorized users.
Collapse
|
107
|
Zuloaga DG, Lahvis GP, Mills B, Pearce HL, Turner J, Raber J. Fetal domoic acid exposure affects lateral amygdala neurons, diminishes social investigation and alters sensory-motor gating. Neurotoxicology 2016; 53:132-140. [PMID: 26797589 PMCID: PMC5929993 DOI: 10.1016/j.neuro.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/01/2023]
Abstract
Domoic acid (DA) is an algal neurotoxin that accumulates in marine fish and shellfish. DA can move across the placenta and concentrate in amniotic fluid, which can be swallowed during late gestation. DA also transfers to infants via milk. Preclinical studies to determine effects of developmental DA expose have primarily involved DA exposure during the postnatal period and little is known about late CNS effects following prenatal DA. In the present study, we tested the hypothesis that prenatal exposure of FVB mice to low levels of DA would result in diminished social interaction and sensory motor gating associated with alterations in parvalbumin immunoreactivity in relevant brain regions undergoing development during and following DA exposure. In addition to parvalbumin, we stained with NeuN for a neuronal specific nuclear protein to determine if neuronal loss followed prenatal DA exposure. A single moderate dose of DA administered during gestation produces diminishes social investigation and alters sensorimotor gating, behavioral effects more pronounced in males than females. These behavioral changes were associated with discrete alterations in the parvalbumin-positive subtype of GABAergic neurons in the dentate gyrus and lateral amygdala.
Collapse
|
108
|
Zuloaga DG, Johnson LA, Weber S, Raber J. Immediate and lasting effects of chronic daily methamphetamine exposure on activation of cells in hypothalamic-pituitary-adrenal axis-associated brain regions. Psychopharmacology (Berl) 2016; 233:381-92. [PMID: 26525566 PMCID: PMC4815259 DOI: 10.1007/s00213-015-4114-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/11/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE Chronic methamphetamine (MA) abuse leads to dependence and symptoms of withdrawal after use has ceased. Negative mood states associated with withdrawal, as well as drug reinstatement, have been linked to drug-induced disruption of the hypothalamic-pituitary-adrenal (HPA) axis. However, effects of chronic MA exposure or acute MA exposure following withdrawal on neural activation patterns within brain regions that regulate the HPA axis are unknown. OBJECTIVES In this study, neural activation patterns were assessed by quantification of c-Fos protein in mice exposed to different regimens of MA administration. METHODS (Experiment 1) Adult male mice were treated with MA (5 mg/kg) or saline once or once daily for 10 days. (Experiment 2) Mice were treated with MA or saline once daily for 10 days and following a 10-day withdrawal period were re-administered a final dose of MA or saline. c-Fos was quantified in brains after the final injection. RESULTS (Experiment 1) Compared to exposure to a single dose of MA (5 mg/kg), chronic MA exposure decreased the number of c-Fos expressing cells in the paraventricular hypothalamus, dorsomedial hypothalamus, central amygdala, basolateral amygdala, bed nucleus of the stria terminalis (BNST), and CA3 hippocampal region. (Experiment 2) Compared to mice receiving their first dose of MA, mice chronically treated with MA, withdrawn, and re-administered MA, showed decreased c-Fos expressing cells within the central and basolateral amygdala, BNST, and CA3. CONCLUSIONS HPA axis-associated amygdala, extended amygdala, and hippocampal regions endure lasting effects following chronic MA exposure and therefore may be linked to stress-related withdrawal symptoms.
Collapse
|
109
|
Raber J, Allen AR, Weber S, Chakraborti A, Sharma S, Fike JR. Effect of behavioral testing on spine density of basal dendrites in the CA1 region of the hippocampus modulated by (56)Fe irradiation. Behav Brain Res 2016; 302:263-8. [PMID: 26801826 DOI: 10.1016/j.bbr.2016.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 01/11/2023]
Abstract
A unique feature of the space radiation environment is the presence of high-energy charged particles, including (56)Fe ions, which can present a significant hazard to space flight crews during and following a mission. (56)Fe irradiation-induced cognitive changes often involve alterations in hippocampal function. These alterations might involve changes in spine morphology and density. In addition to irradiation, performing a cognitive task can also affect spine morphology. Therefore, it is often hard to determine whether changes in spine morphology and density are due to an environmental challenge or group differences in performance on cognitive tests. In this study, we tested the hypothesis that the ability of exploratory behavior to increase specific measures of hippocampal spine morphology and density is affected by (56)Fe irradiation. In sham-irradiated mice, exploratory behavior increased basal spine density in the CA1 region of the hippocampus and the enclosed blade of the dentate gyrus. These effects were not seen in irradiated mice. In addition, following exploratory behavior, there was a trend toward a decrease in the percent stubby spines on apical dendrites in the CA3 region of the hippocampus in (56)Fe-irradiated, but not sham-irradiated, mice. Other hippocampal regions and spine measures affected by (56)Fe irradiation showed comparable radiation effects in behaviorally naïve and cognitively tested mice. Thus, the ability of exploratory behavior to alter spine density and morphology in specific hippocampal regions is affected by (56)Fe irradiation.
Collapse
|
110
|
Raber J, Allen AR, Sharma S, Allen B, Rosi S, Olsen RHJ, Davis MJ, Eiwaz M, Fike JR, Nelson GA. Effects of Proton and Combined Proton and 56Fe Radiation on the Hippocampus. Radiat Res 2015; 185:20-30. [DOI: 10.1667/rr14222.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
111
|
Allen AR, Raber J, Chakraborti A, Sharma S, Fike JR. 56Fe Irradiation Alters Spine Density and Dendritic Complexity in the Mouse Hippocampus. Radiat Res 2015; 184:586-94. [DOI: 10.1667/rr14103.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
112
|
Raber J, Marzulla T, Kronenberg A, Turker MS. (16)Oxygen irradiation enhances cued fear memory in B6D2F1 mice. LIFE SCIENCES IN SPACE RESEARCH 2015; 7:61-65. [PMID: 26553639 DOI: 10.1016/j.lssr.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
The space radiation environment includes energetic charged particles that may impact cognitive performance. We assessed the effects of (16)O ion irradiation on cognitive performance of C57BL/6J × DBA/2J F1 (B6D2F1) mice at OHSU (Portland, OR) one month following irradiation at Brookhaven National Laboratory (BNL, Upton, NY). Hippocampus-dependent contextual fear memory and hippocampus-independent cued fear memory of B6D2F1 mice were tested. (16)O ion exposure enhanced cued fear memory. This effect showed a bell-shaped dose response curve. Cued fear memory was significantly stronger in mice irradiated with (16)O ions at a dose of 0.4 or 0.8 Gy than in sham-irradiated mice or following irradiation at 1.6 Gy. In contrast to cued fear memory, contextual fear memory was not affected following (16)O ion irradiation at the doses used in this study. These data indicate that the amygdala might be particularly susceptible to effects of (16)O ion exposure.
Collapse
|
113
|
Nzabarushimana E, Prior S, Miousse IR, Pathak R, Allen AR, Latendresse J, Olsen RHJ, Raber J, Hauer-Jensen M, Nelson GA, Koturbash I. Combined exposure to protons and (56)Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung. LIFE SCIENCES IN SPACE RESEARCH 2015; 7:1-8. [PMID: 26553631 PMCID: PMC4641818 DOI: 10.1016/j.lssr.2015.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/08/2015] [Accepted: 08/15/2015] [Indexed: 05/15/2023]
Abstract
Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions ((56)Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and (56)Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to (56)Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and (56)Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed.
Collapse
|
114
|
Yasen AL, Raber J, Miller JK, Piper BJ. Sex, but not Apolipoprotein E Polymorphism, Differences in Spatial Performance in Young Adults. ARCHIVES OF SEXUAL BEHAVIOR 2015; 44:2219-26. [PMID: 25750133 PMCID: PMC4561598 DOI: 10.1007/s10508-015-0497-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 04/02/2014] [Accepted: 11/06/2014] [Indexed: 05/23/2023]
Abstract
The purpose of this study was to examine how sex and apolipoprotein E (APOE) genotype contribute to individual differences in spatial learning and memory. The associations of APOE genotype with neurocognitive function have been well studied among the elderly but less is known at earlier ages. Young adults (n = 169, 88 females) completed three neurocognitive tasks: mental rotation, spatial span, and Memory Island, a spatial navigation test. Males outperformed females on all three tasks: finding the hidden targets more quickly on Memory Island (Cohen's d = 0.62) and obtaining higher scores on mental rotation (d = 0.54) and spatial span (d = 0.37). In contrast, no significant effects of APOE were observed. The identified sex differences elaborate upon past literature documenting sexually dimorphic performance on specific neurobehavioral tasks.
Collapse
|
115
|
Kugelman T, Zuloaga DG, Weber S, Raber J. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex. Behav Brain Res 2015; 298:1-11. [PMID: 26522840 DOI: 10.1016/j.bbr.2015.10.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 01/07/2023]
Abstract
The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory.
Collapse
|
116
|
Zuloaga DG, Iancu OD, Weber S, Etzel D, Marzulla T, Stewart B, Allen CN, Raber J. Enhanced functional connectivity involving the ventromedial hypothalamus following methamphetamine exposure. Front Neurosci 2015; 9:326. [PMID: 26441501 PMCID: PMC4585047 DOI: 10.3389/fnins.2015.00326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (MA) consumption causes disruption of many biological rhythms including the sleep-wake cycle. This circadian effect is seen shortly following MA exposure and later in life following developmental MA exposure. MA phase shifts, entrains the circadian clock and can also alter the entraining effect of light by currently unknown mechanisms. We analyzed and compared immunoreactivity of the immediate early gene c-Fos, a marker of neuronal activity, to assess neuronal activation 2 h following MA exposure in the light and dark phases. We used network analyses of correlation patterns derived from global brain immunoreactivity patterns of c-Fos, to infer functional connectivity between brain regions. There were five distinct patterns of neuronal activation. In several brain areas, neuronal activation following exposure to MA was stronger in the light than the dark phase, highlighting the importance of considering circadian periods of increased effects of MA in defining experimental conditions and understanding the mechanisms underlying detrimental effects of MA exposure to brain function. Functional connectivity between the ventromedial hypothalamus (VMH) and other brain areas, including the paraventricular nucleus of the hypothalamus and basolateral and medial amygdala, was enhanced following MA exposure, suggesting a role for the VMH in the effects of MA on the brain.
Collapse
|
117
|
Zuloaga KL, Zhang W, Yeiser LA, Stewart B, Kukino A, Nie X, Roese NE, Grafe MR, Pike MM, Raber J, Alkayed NJ. Neurobehavioral and imaging correlates of hippocampal atrophy in a mouse model of vascular cognitive impairment. Transl Stroke Res 2015; 6:390-8. [PMID: 26040424 DOI: 10.1007/s12975-015-0412-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/19/2015] [Accepted: 05/27/2015] [Indexed: 12/01/2022]
Abstract
Vascular cognitive impairment (VCI) is the second most common cause of dementia. Reduced cerebral blood flow is thought to play a major role in the etiology of VCI. Therefore, chronic cerebral hypoperfusion has been used to model VCI in rodents. The goal of the current study was to determine the histopathological and neuroimaging substrates of neurocognitive impairments in a mouse model of chronic cerebral hypoperfusion induced by unilateral common carotid artery occlusion (UCCAO). Mice were subjected to sham or right UCCAO (VCI) surgeries. Three months later, neurocognitive function was evaluated using the novel object recognition task, Morris water maze, and contextual and cued fear-conditioning tests. Next, cerebral perfusion was evaluated with dynamic susceptibility contrast magnetic resonance imaging (MRI) using an ultra-high field (11.75 T) animal MRI system. Finally, brain pathology was evaluated using histology and T2-weighted MRI. VCI, but not sham, mice had significantly reduced cerebral blood flow in the right vs. left cerebral cortex. VCI mice showed deficits in object recognition. T2-weighted MRI of VCI brains revealed enlargement of lateral ventricles, which corresponded to areas of hippocampal atrophy upon histological analysis. In conclusion, our data demonstrate that the UCCAO model of chronic hypoperfusion induces hippocampal atrophy and ventricular enlargement, resulting in neurocognitive deficits characteristic of VCI.
Collapse
|
118
|
Raber J, Marzulla T, Stewart B, Kronenberg A, Turker MS. 28Silicon Irradiation Impairs Contextual Fear Memory in B6D2F1 Mice. Radiat Res 2015; 183:708-12. [DOI: 10.1667/rr13951.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
119
|
Zuloaga DG, Jacobskind JS, Jacosbskind JS, Raber J. Methamphetamine and the hypothalamic-pituitary-adrenal axis. Front Neurosci 2015; 9:178. [PMID: 26074755 PMCID: PMC4444766 DOI: 10.3389/fnins.2015.00178] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/03/2015] [Indexed: 01/22/2023] Open
Abstract
Psychostimulants such as methamphetamine (MA) induce significant alterations in the function of the hypothalamic-pituitary-adrenal (HPA) axis. These changes in HPA axis function are associated with altered stress-related behaviors and might contribute to addictive processes such as relapse. In this mini-review we discuss acute and chronic effects of MA (adult and developmental exposure) on the HPA axis, including effects on HPA axis associated genes/proteins, brain regions, and behaviors such as anxiety and depression. A better understanding of the mechanisms through which MA affects the HPA axis may lead to more effective treatment strategies for MA addiction.
Collapse
|
120
|
Raber J. Novel images and novel locations of familiar images as sensitive translational cognitive tests in humans. Behav Brain Res 2015; 285:53-9. [DOI: 10.1016/j.bbr.2015.01.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 01/20/2023]
|
121
|
Slaker M, Churchill L, Todd RP, Blacktop JM, Zuloaga DG, Raber J, Darling RA, Brown TE, Sorg BA. Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. J Neurosci 2015; 35:4190-202. [PMID: 25762666 PMCID: PMC4355195 DOI: 10.1523/jneurosci.3592-14.2015] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 12/29/2022] Open
Abstract
Pyramidal neurons in the medial prefrontal cortex (mPFC) critically contribute to cocaine-seeking behavior in humans and rodents. Activity of these neurons is significantly modulated by GABAergic, parvalbumin-containing, fast-spiking interneurons, the majority of which are enveloped by specialized structures of extracellular matrix called perineuronal nets (PNNs), which are integral to the maintenance of many types of plasticity. Using a conditioned place preference (CPP) procedure, we found that removal of PNNs primarily from the prelimbic region of the mPFC of adult, male, Sprague Dawley rats impaired the acquisition and reconsolidation of a cocaine-induced CPP memory. This impairment was accompanied by a decrease in the number of c-Fos-positive cells surrounded by PNNs. Following removal of PNNs, the frequency of inhibitory currents in mPFC pyramidal neurons was decreased; but following cocaine-induced CPP, both frequency and amplitude of inhibitory currents were decreased. Our findings suggest that cocaine-induced plasticity is impaired by removal of prelimbic mPFC PNNs and that PNNs may be a therapeutic target for disruption of cocaine CPP memories.
Collapse
|
122
|
Chang J, Feng W, Wang Y, Luo Y, Allen AR, Koturbash I, Turner J, Stewart B, Raber J, Hauer-Jensen M, Zhou D, Shao L. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. Radiat Res 2015; 183:240-8. [PMID: 25635345 DOI: 10.1667/rr13887.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH oxidase 4 (NOX4) mRNA expression and reactive oxygen species (ROS) production. In addition, the increased production of ROS in HSCs was associated with a significant reduction in HSC quiescence and an increase in DNA damage. These findings indicate that exposure to proton radiation can lead to long-term HSC injury, probably in part by radiation-induced oxidative stress.
Collapse
|
123
|
Raber J, Duvoisin RM. Novel metabotropic glutamate receptor 4 and glutamate receptor 8 therapeutics for the treatment of anxiety. Expert Opin Investig Drugs 2014; 24:519-28. [DOI: 10.1517/13543784.2014.986264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
124
|
Raber J, Olsen RHJ, Su W, Foster S, Xing R, Acevedo SF, Sherman LS. CD44 is required for spatial memory retention and sensorimotor functions. Behav Brain Res 2014; 275:146-9. [PMID: 25219362 PMCID: PMC4253558 DOI: 10.1016/j.bbr.2014.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 01/01/2023]
Abstract
CD44 is a transmembrane receptor for the glycosaminoglycan hyaluronan, a component of the extracellular matrix. CD44 is expressed by neural stem/progenitor cells, astrocytes, and some neurons but its function in the central nervous system is unknown. To determine the role of CD44 in brain function, we behaviorally analyzed CD44-null (KO) and wild-type (WT) mice. KO mice showed increased activity levels in the light-dark test and a trend toward increased activity in the open field. In addition, KO mice showed impaired hippocampus-dependent spatial memory retention in the probe trial following the first hidden-platform training day in the Morris water maze: WT mice showed spatial memory retention and spent more time in the target quadrant than any other quadrant, while KO mice did not. Although there were no genotype differences in swim speeds during the water maze training sessions with the visible or hidden platform, sensorimotor impairments were seen in other behavioral tests. In the inclined screen and balance beam tests, KO mice moved less than WT mice. In the wire hang test, KO mice also fell off of the wire faster than WT mice. In contrast, there was no genotype difference when emotional learning and memory were assessed in the passive avoidance test. These data support an important role for CD44 in locomotor and sensorimotor functions, and in spatial memory retention.
Collapse
|
125
|
Lind SE, Bowler DM, Raber J. Spatial navigation, episodic memory, episodic future thinking, and theory of mind in children with autism spectrum disorder: evidence for impairments in mental simulation? Front Psychol 2014; 5:1411. [PMID: 25538661 PMCID: PMC4256988 DOI: 10.3389/fpsyg.2014.01411] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/18/2014] [Indexed: 11/13/2022] Open
Abstract
This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation), and which we hypothesized may be impaired in autism spectrum disorder (ASD). Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years) were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection), theory of mind (ToM), relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the "memory island" task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. ToM was assessed using the "animations" task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings), patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not ToM or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to the number of repetitive behaviors. In other words, children who showed more repetitive behaviors showed poorer spatial navigation. The theoretical and practical implications of the results are discussed.
Collapse
|