101
|
Lamb L, Bartolone S, Conway M, Tree M, Lossia O, Dunbar G, Rossignol J, Smith C, Chancellor M. MP23-03 URINE BASED RAPID MOLECULAR DIAGNOSIS OF ZIKA VIRUS. J Urol 2017. [DOI: 10.1016/j.juro.2017.02.731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
102
|
Matyas JJ, Stewart AN, Goldsmith A, Nan Z, Skeel RL, Rossignol J, Dunbar GL. Effects of bone-marrow-derived MSC transplantation on functional recovery in a rat model of spinal cord injury: comparisons of transplant locations and cell concentrations. Cell Transplant 2017. [DOI: 10.3727/096368917x695678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
103
|
Anderson JD, Pham MT, Contreras Z, Hoon M, Fink KD, Johansson HJ, Rossignol J, Dunbar GL, Showalter M, Fiehn O, Bramlett CS, Bardini RL, Bauer G, Fury B, Hendrix KJ, Chedin F, EL-Andaloussi S, Hwang B, Mulligan MS, Lehtiö J, Nolta JA. Mesenchymal stem cell-based therapy for ischemic stroke. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0053-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
104
|
Grignano E, Mekinian A, Braun T, Liozon E, Hamidou M, Decaux O, Puéchal X, Kahn JE, Schoindre Y, Rossignol J, Lortholary O, Lioger B, Hermine O, Park S, Ades L, Montestruc F, Ricard L, Gardin C, Fenaux P, Fain O. Autoimmune and inflammatory diseases associated with chronic myelomonocytic leukemia: A series of 26 cases and literature review. Leuk Res 2016; 47:136-41. [DOI: 10.1016/j.leukres.2016.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022]
|
105
|
Hall T, Learman C, Bates E, Paladugu L, Song MS, Maiti P, Rossignol J, Dunbar G. P4‐098: An Exploration of the Gender Differences in Early Behavior and Pathology Relating to Heat Shock Protein and Amyloid Beta Protein Expression in the 5xFAD Mouse Model of Alzheimer’s Disease. Alzheimers Dement 2016. [DOI: 10.1016/j.jalz.2016.06.2187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
106
|
Lowrance SA, Fink KD, Crane A, Matyas J, Dey ND, Matchynski JJ, Thibo T, Reinke T, Kippe J, Hoffman C, Sandstrom M, Rossignol J, Dunbar GL. Bone-marrow-derived mesenchymal stem cells attenuate cognitive deficits in an endothelin-1 rat model of stroke. Restor Neurol Neurosci 2016; 33:579-88. [PMID: 23902985 DOI: 10.3233/rnn-130329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Stroke is the third leading cause of death and permanent disability in the United States, often producing long-term cognitive impairments, which are not easily recapitulated in animal models. The goals of this study were to assess whether: (1) the endothelin-1 (ET-1) model of chronic stroke produced discernable cognitive deficits; (2) a spatial operant reversal task (SORT) would accurately measure memory deficits in this model; and (3) bone-marrow-derived mesenchymal stem cells (BMMSCs) could reduce any observed deficits. METHODS Rats were given unilateral intracerebral injections of vehicle or ET-1, a stroke-inducing agent, near the middle cerebral artery. Seven days later, they were given intrastriatal injections of BMMSCs or vehicle, near the ischemic penumbra. The cognitive abilities of the rats were assessed on a novel SORT, which was designed to efficiently distinguish cognitive deficits from potential motoric confounds. RESULTS Rats given ET-1 had significantly more cognitive errors at six weeks post-stroke on the SORT, and that these deficits were attenuated by BMMSC transplants. CONCLUSIONS These findings indicate that: (1) the ET-1 model produces chronic cognitive deficits; (2) the SORT efficiently measures cognitive deficits that are not confounded by motoric impairment; and (3) BMMSCs may be a viable treatment for stroke-induced cognitive dysfunction.
Collapse
|
107
|
Dunbar GL, Sandstrom MI, Rossignol J, Lescaudron L. Neurotrophic Enhancers as Therapy for Behavioral Deficits in Rodent Models of Huntington's Disease: Use of Gangliosides, Substituted Pyrimidines, and Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2016; 5:63-79. [PMID: 16801683 DOI: 10.1177/1534582306289367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interest in using neurotrophic factors as potential treatments for neurodegenerative disorders, such as Huntington's disease, has grown in the past decade. A major impediment for the clinical utility of neurotrophic factors is their inability to cross the blood-brain barrier in therapeutically significant amounts. Although several novel mechanisms for delivering exogenous neurotrophins to the brain have been developed, most of them involve invasive procedures or present significant risks. One approach to circumventing these problems is using therapeutic agents that can be administered systemically and have the ability to enhance the activity of neurotrophic factors. This review highlights the use of gangliosides, substituted pyrimidines, and mesenchymal stem cells as neurotrophic enhancers that have significant therapeutic potential while avoiding the pitfalls of delivering exogenous neurotrophic factors through the blood-brain barrier. The review focuses on the potential of these neurotrophic enhancers for treating the behavioral deficits in rodent models of Huntington's disease.
Collapse
|
108
|
Fraison JB, Mekinian A, Grignano E, Kahn JE, Arlet JB, Decaux O, Denis G, Buchdahl AL, Omouri M, Maigne G, Aouba A, Leon N, Berthier S, Liozon E, Park S, Gardin C, Lortholary O, Rossignol J, Fenaux P, Fain O, Braun T. Efficacy of Azacitidine in autoimmune and inflammatory disorders associated with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Res 2016; 43:13-7. [DOI: 10.1016/j.leukres.2016.02.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 01/02/2023]
|
109
|
Matchynski-Franks JJ, Pappas C, Rossignol J, Reinke T, Fink K, Crane A, Twite A, Lowrance SA, Song C, Dunbar GL. Mesenchymal Stem Cells as Treatment for Behavioral Deficits and Neuropathology in the 5xFAD Mouse Model of Alzheimer's Disease. Cell Transplant 2016; 25:687-703. [DOI: 10.3727/096368916x690818] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by a progressive loss of memory and other cognitive disturbances. The neuropathology of AD includes the major hallmarks of toxic amyloid-β oligomer accumulation and neurofibrillary tangles, as well as increased oxidative stress, cholinergic dysfunction, synapse loss, changes in endogenous neurotrophic factors, and overall degeneration of the brain. Adult mesenchymal stem cells (MSCs) offer the potential for a readily available treatment that would be long lasting, have low likelihood of rejection, and could target a variety of pathological deficits. MSCs have been shown to be effective in alleviating symptoms in some transgenic models of AD, but the optimal location for transplanting MSCs has yet to be determined. In the present study, the behavioral effects of transplantation of MSCs into the lateral ventricles, the hippocampus, or both of these regions were compared in the 5xFAD mouse model of AD. The results indicate that MSC transplants effectively reduce learning deficits in the 5xFAD mouse model and demonstrate a clear impact of MSCs on the levels of Aβ42 in the brains of 5xFAD mice. Overall, these findings support the hypothesis that MSCs may be a viable treatment for AD, especially when injected into the lateral ventricles.
Collapse
|
110
|
Maiti P, Manna J, Ilavazhagan G, Rossignol J, Dunbar GL. Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neurosci Biobehav Rev 2015; 59:208-37. [PMID: 26562682 DOI: 10.1016/j.neubiorev.2015.09.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
The structure and dynamics of dendritic spines reflect the strength of synapses, which are severely affected in different brain diseases. Therefore, understanding the ultra-structure, molecular signaling mechanism(s) regulating dendritic spine dynamics is crucial. Although, since last century, dynamics of spine have been explored by several investigators in different neurological diseases, but despite countless efforts, a comprehensive understanding of the fundamental etiology and molecular signaling pathways involved in spine pathology is lacking. The purpose of this review is to provide a contextual framework of our current understanding of the molecular mechanisms of dendritic spine signaling, as well as their potential impact on different neurodegenerative and psychiatric diseases, as a format for highlighting some commonalities in function, as well as providing a format for new insights and perspectives into this critical area of research. Additionally, the potential strategies to restore spine structure-function in different diseases are also pointed out. Overall, these informations should help researchers to design new drugs to restore the structure-function of dendritic spine, a "hot site" of synaptic plasticity.
Collapse
|
111
|
Mekinian A, Grignano E, Braun T, Decaux O, Liozon E, Costedoat-Chalumeau N, Kahn JE, Hamidou M, Park S, Puéchal X, Toussirot E, Falgarone G, Launay D, Morel N, Trouiller S, Mathian A, Gombert B, Schoindre Y, Lioger B, De Wazieres B, Amoura Z, Buchdaul AL, Georgin-Lavialle S, Dion J, Madaule S, Raffray L, Cathebras P, Piette JC, Rose C, Ziza JM, Lortholary O, Montestruc F, Omouri M, Denis G, Rossignol J, Nimubona S, Adès L, Gardin C, Fenaux P, Fain O. Systemic inflammatory and autoimmune manifestations associated with myelodysplastic syndromes and chronic myelomonocytic leukaemia: a French multicentre retrospective study. Rheumatology (Oxford) 2015; 55:291-300. [DOI: 10.1093/rheumatology/kev294] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 01/02/2023] Open
|
112
|
Dunkerson J, Moritz KE, Young J, Pionk T, Fink K, Rossignol J, Dunbar G, Smith JS. Combining enriched environment and induced pluripotent stem cell therapy results in improved cognitive and motor function following traumatic brain injury. Restor Neurol Neurosci 2015; 32:675-87. [PMID: 25079980 DOI: 10.3233/rnn-140408] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Despite advances towards potential clinically viable therapies there has been only limited success in improving functional recovery following traumatic brain injury (TBI). In rats, exposure to an enriched environment (EE) improves learning and fosters motor skill development. Induced pluripotent stem cells (iPSC) have been shown to survive transplantation and influence the recovery process. The current study evaluated EE and iPSC as a polytherapy for remediating cognitive deficits following medial frontal cortex (mFC) controlled cortical impact (CCI) injury. METHODS Sixty adult male rats received a midline mFC CCI or sham injury and were randomly placed in either EE or standard environment (SE). Seven days post-injury rats received bilateral transplantation of iPSCs or media. Behavioral measures were conducted throughout the remainder of the study. Following behavioral analysis, brains were extracted and prepared for histological analysis. RESULTS Open-field data revealed that combined therapy resulted in typical Sham/EE activity rearing patterns by the conclusion of the study. On the Vermicelli Handling task, rats with EE/iPSC polytherapy performed better than media-treated rats. Furthermore, rats treated with polytherapy performed equivalently to Sham/EE rats on the Morris water maze. Proficiency on the Rotarod was consistently better in EE when compared to SE counterparts. Confocal microscopy confirmed that iPSCs survived and migrated away from the transplantation site. CONCLUSIONS Overall, EE or iPSC therapy improved cognition and motor performance, however, full cognitive restoration was seen only with the EE/iPSC treatment. These data suggest that EE/iPSC therapy should be explored as a potential, clinically relevant, treatment for TBI.
Collapse
|
113
|
Rossignol J, Terriou L, Robu D, Willekens C, Hivert B, Pascal L, Guieze R, Trappe R, Baillet C, Huglo D, Morschhauser F. Radioimmunotherapy ((90) Y-Ibritumomab Tiuxetan) for Posttransplant Lymphoproliferative Disorders After Prior Exposure to Rituximab. Am J Transplant 2015; 15:1976-81. [PMID: 25868706 DOI: 10.1111/ajt.13244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/18/2015] [Accepted: 01/25/2015] [Indexed: 01/25/2023]
Abstract
Posttransplantation lymphoproliferative disorders (PTLDs) are life-threatening complications after solid organ and hematopoietic stem cell transplantation. Only half of CD20-positive PTLDs respond to rituximab monotherapy, and outcomes remain poor for patients with relapsed/refractory disease, especially those who do not qualify for an anthracycline containing regimen due to frailty or comorbidities. Radioimmunotherapy (RIT) might be an option in this particular setting. We report a panel of eight patients with rituximab refractory/relapsed CD20-positive PTLDs including three ineligible for subsequent CHOP-like chemotherapy who received (90) Y-Ibritumomab tiuxetan as a single agent (n = 7) or combined to chemotherapy (n = 1). Five out of eight patients were kidney transplant recipients, while 2/8 had a liver transplant and 1/8 had a heart transplant. Patients received a median of two previous therapies. Overall response rate was 62.5%. Importantly, all responders achieved complete response. At a median follow-up of 37 months [5; 84], complete response was ongoing in four patients. Toxicity was predominantly hematological and easily manageable. No graft rejection was noticed concomitantly or following RIT administration despite immunosuppression reduction after diagnosis of PTLDs. This report emphasizes the potential efficiency of salvage RIT for early rituximab refractory PTLDs without any unexpected toxicity.
Collapse
|
114
|
Fraison J, Mekinian A, Grignano E, Kahn J, Arlet J, Silva NM, Berthier S, Liozon E, Denis G, Buchdahl A, Omouri M, Grosbois B, Park S, Bourgarit-Durand A, Rossignol J, Fenaux P, Fain O, Braun T. 280 EFFICACY OF AZACITIDINE (AZA) IN AUTOIMMUNE DISORDERS (AID) ASSOCIATED WITH MDS. Leuk Res 2015. [DOI: 10.1016/s0145-2126(15)30281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
115
|
D’Aveni M, Rossignol J, Coman T, Sivakumaran S, Henderson S, Manzo T, Santos e Sousa P, Bruneau J, Fouquet G, Zavala F, Alegria-Prévot O, Garfa-Traoré M, Suarez F, Trebeden-Nègre H, Mohty M, Bennett CL, Chakraverty R, Hermine O, Rubio MT. G-CSF mobilizes CD34
+
regulatory monocytes that inhibit graft-versus-host disease. Sci Transl Med 2015; 7. [DOI: 10.1126/scitranslmed.3010435] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
G-SCF–mobilized CD34
+
monocytes inhibit graft-versus-host disease by the production of nitric oxide and the induction of regulatory T cells.
Collapse
|
116
|
Rossignol J, Fink KD, Crane AT, Davis KK, Bombard MC, Clerc S, Bavar AM, Lowrance SA, Song C, Witte S, Lescaudron L, Dunbar GL. Reductions in behavioral deficits and neuropathology in the R6/2 mouse model of Huntington's disease following transplantation of bone-marrow-derived mesenchymal stem cells is dependent on passage number. Stem Cell Res Ther 2015; 6:9. [PMID: 25971780 PMCID: PMC4429666 DOI: 10.1186/scrt545] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
Introduction Huntington’s disease (HD) is an autosomal dominant disorder caused by an expanded CAG repeat (greater than 38) on the short arm of chromosome 4, resulting in loss and dysfunction of neurons in the neostriatum and cortex, leading to cognitive decline, motor dysfunction, and death, typically occurring 15 to 20 years after the onset of motor symptoms. Although an effective treatment for HD has remained elusive, current studies using transplants of bone-marrow-derived mesenchymal stem cells provides considerable promise. This study further investigates the efficacy of these transplants with a focus on comparing how passage number of these cells may affect subsequent efficacy following transplantation. Methods In this study, mesenchymal stem cells isolated from the bone-marrow of mice (BM MSCs), were labeled with Hoechst after low (3 to 8) or high (40 to 50) numbers of passages and then transplanted intrastriatally into 5-week-old R6/2 mice, which carries the N-terminal fragment of the human HD gene (145 to 155 repeats) and rapidly develops symptoms analogous to the human form of the disease. Results It was observed that the transplanted cells survived and the R6/2 mice displayed significant behavioral and morphological sparing compared to untreated R6/2 mice, with R6/2 mice receiving high passage BM MSCs displaying fewer deficits than those receiving low-passage BM MSCs. These beneficial effects are likely due to trophic support, as an increase in brain derived neurotrophic factor mRNA expression was observed in the striatum following transplantation of BM MSCs. Conclusion The results from this study demonstrate that BM MSCs hold significant therapeutic value for HD, and that the amount of time the cells are exposed to in vitro culture conditions can alter their efficacy.
Collapse
|
117
|
Grignano E, Mekinian A, Braun T, Liozon E, Hamidou M, Decaux O, Puéchal X, Kahn J, Schoindre Y, Rossignol J, Fenaux P, Fain O. Manifestations auto-immunes et maladies inflammatoires associées aux leucémies myélomonocytaires chroniques : étude rétrospective française. Rev Med Interne 2014. [DOI: 10.1016/j.revmed.2014.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
118
|
Willekens C, Dumezy F, Boyer T, Renneville A, Rossignol J, Berthon C, Cotteau-Leroy A, Mehiaoui L, Quesnel B, Preudhomme C. Linezolid induces ring sideroblasts. Haematologica 2014; 98:e138-40. [PMID: 24186315 DOI: 10.3324/haematol.2013.092395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
119
|
Fink KD, Crane AT, Lévêque X, Dues DJ, Huffman LD, Moore AC, Story DT, Dejonge RE, Antcliff A, Starski PA, Lu M, Lescaudron L, Rossignol J, Dunbar GL. Intrastriatal transplantation of adenovirus-generated induced pluripotent stem cells for treating neuropathological and functional deficits in a rodent model of Huntington's disease. Stem Cells Transl Med 2014; 3:620-31. [PMID: 24657963 DOI: 10.5966/sctm.2013-0151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) show considerable promise for cell replacement therapies for Huntington's disease (HD). Our laboratory has demonstrated that tail-tip fibroblasts, reprogrammed into iPSCs via two adenoviruses, can survive and differentiate into neuronal lineages following transplantation into healthy adult rats. However, the ability of these cells to survive, differentiate, and restore function in a damaged brain is unknown. To this end, adult rats received a regimen of 3-nitropropionic acid (3-NP) to induce behavioral and neuropathological deficits that resemble HD. At 7, 21, and 42 days after the initiation of 3-NP or vehicle, the rats received intrastriatal bilateral transplantation of iPSCs. All rats that received 3-NP and vehicle treatment displayed significant motor impairment, whereas those that received iPSC transplantation after 3-NP treatment had preserved motor function. Histological analysis of the brains of these rats revealed significant decreases in optical densitometric measures in the striatum, lateral ventricle enlargement, as well as an increase in striosome size in all rats receiving 3-NP when compared with sham rats. The 3-NP-treated rats given transplants of iPSCs in the 7- or 21-day groups did not exhibit these deficits. Transplantation of iPSCs at the late-stage (42-day) time point did not protect against the 3-NP-induced neuropathology, despite preserving motor function. Transplanted iPSCs were found to survive and differentiate into region-specific neurons in the striatum of 3-NP rats, at all transplantation time points. Taken together, these results suggest that transplantation of adenovirus-generated iPSCs may provide a potential avenue for therapeutic treatment of HD.
Collapse
|
120
|
Wyse RD, Dunbar GL, Rossignol J. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int J Mol Sci 2014; 15:1719-45. [PMID: 24463293 PMCID: PMC3958818 DOI: 10.3390/ijms15021719] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/18/2013] [Accepted: 01/14/2014] [Indexed: 01/01/2023] Open
Abstract
The transplantation of mesenchymal stem cells (MSCs) for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) have been recognized as therapeutic trophic factors for Parkinson's, Alzheimer's and Huntington's diseases, respectively. The aim of this literature review is to provide insights into: (1) the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2) the molecular tools available for genetic manipulation of MSCs; (3) the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4) the clinical challenges of utilizing genetically modified MSCs.
Collapse
|
121
|
Rossignol J, Fink K, Davis K, Clerc S, Crane A, Matchynski J, Lowrance S, Bombard M, DeKorver N, Lescaudron L, Dunbar GL. Transplants of Adult Mesenchymal and Neural Stem Cells Provide Neuroprotection and Behavioral Sparing in a Transgenic Rat Model of Huntington's Disease. Stem Cells 2014; 32:500-9. [DOI: 10.1002/stem.1508] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/16/2013] [Accepted: 07/27/2013] [Indexed: 02/06/2023]
|
122
|
Guetzoyan L, Ingham RJ, Nikbin N, Rossignol J, Wolling M, Baumert M, Burgess-Brown NA, Strain-Damerell CM, Shrestha L, Brennan PE, Fedorov O, Knapp S, Ley SV. Machine-assisted synthesis of modulators of the histone reader BRD9 using flow methods of chemistry and frontal affinity chromatography. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00007b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Novel technologies were developed and used for the synthesis and evaluation of new triazolopyridazine BRD9 inhibitors.
Collapse
|
123
|
Renand A, Milpied P, Rossignol J, Bruneau J, Lemonnier F, Dussiot M, Coulon S, Hermine O. Neuropilin-1 expression characterizes T follicular helper (Tfh) cells activated during B cell differentiation in human secondary lymphoid organs. PLoS One 2013; 8:e85589. [PMID: 24386482 PMCID: PMC3875584 DOI: 10.1371/journal.pone.0085589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/29/2013] [Indexed: 11/19/2022] Open
Abstract
T follicular helper (Tfh) cells play an essential role in the development of antigen-specific B cell immunity. Tfh cells regulate the differentiation and survival of activated B cells outside and inside germinal centers (GC) of secondary lymphoid organs. They act through cognate contacts with antigen-presenting B cells, but there is no current marker to specifically identify those Tfh cells which productively interact with B cells. Here we show that neuropilin 1 (Nrp1), a cell surface receptor, is selectively expressed by a subset of Tfh cells in human secondary lymphoid organs. Nrp1 expression on Tfh cells correlates with B cell differentiation in vivo and in vitro, is transient, and can be induced upon co-culture with autologous memory B cells in a cell contact-dependent manner. Comparative analysis of ex vivo Nrp1(+) and Nrp1(-) Tfh cells reveals gene expression modulation during activation. Finally, Nrp1 is expressed by malignant Tfh-like cells in a severe case of angioimmunoblastic T-cell lymphoma (AITL) associated with elevated terminal B cell differentiation. Thus, Nrp1 is a specific marker of Tfh cells cognate activation in humans, which may prove useful as a prognostic factor and a therapeutic target in neoplastic diseases associated with Tfh cells activity.
Collapse
|
124
|
Fink KD, Rossignol J, Crane AT, Davis KK, Bombard MC, Bavar AM, Clerc S, Lowrance SA, Song C, Lescaudron L, Dunbar GL. Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis. Stem Cell Res Ther 2013; 4:130. [PMID: 24456799 PMCID: PMC3854759 DOI: 10.1186/scrt341] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022] Open
Abstract
Introduction Huntington’s disease (HD) is an autosomal dominant disorder caused by an expanded CAG repeat on the short arm of chromosome 4 resulting in cognitive decline, motor dysfunction, and death, typically occurring 15 to 20 years after the onset of motor symptoms. Neuropathologically, HD is characterized by a specific loss of medium spiny neurons in the caudate and the putamen, as well as subsequent neuronal loss in the cerebral cortex. The transgenic R6/2 mouse model of HD carries the N-terminal fragment of the human HD gene (145 to 155 repeats) and rapidly develops some of the behavioral characteristics that are analogous to the human form of the disease. Mesenchymal stem cells (MSCs) have shown the ability to slow the onset of behavioral and neuropathological deficits following intrastriatal transplantation in rodent models of HD. Use of MSCs derived from umbilical cord (UC) offers an attractive strategy for transplantation as these cells are isolated from a noncontroversial and inexhaustible source and can be harvested at a low cost. Because UC MSCs represent an intermediate link between adult and embryonic tissue, they may hold more pluripotent properties than adult stem cells derived from other sources. Methods Mesenchymal stem cells, isolated from the UC of day 15 gestation pups, were transplanted intrastriatally into 5-week-old R6/2 mice at either a low-passage (3 to 8) or high-passage (40 to 50). Mice were tested behaviorally for 6 weeks using the rotarod task, the Morris water maze, and the limb-clasping response. Following behavioral testing, tissue sections were analyzed for UC MSC survival, the immune response to the transplanted cells, and neuropathological changes. Results Following transplantation of UC MSCs, R6/2 mice did not display a reduction in motor deficits but there appeared to be transient sparing in a spatial memory task when compared to untreated R6/2 mice. However, R6/2 mice receiving either low- or high-passage UC MSCs displayed significantly less neuropathological deficits, relative to untreated R6/2 mice. Conclusions The results from this study demonstrate that UC MSCs hold promise for reducing the neuropathological deficits observed in the R6/2 rodent model of HD.
Collapse
|
125
|
Matchynski JJ, Lowrance SA, Pappas C, Rossignol J, Puckett N, Sandstrom M, Dunbar GL. Combinatorial treatment of tart cherry extract and essential fatty acids reduces cognitive impairments and inflammation in the mu-p75 saporin-induced mouse model of Alzheimer's disease. J Med Food 2013; 16:288-95. [PMID: 23566055 DOI: 10.1089/jmf.2012.0131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects more than five million Americans and is characterized by a progressive loss of memory, loss of cholinergic neurons in the basal forebrain, formation of amyloid plaques and neurofibrillary tangles, and an increase in oxidative stress. Recent studies indicate that dietary supplements of antioxidants and omega-3 and omega-6 fatty acids may reduce the cognitive deficits in AD patients. The current study tested a combinatorial treatment of antioxidants from tart cherry extract and essential fatty acids from Nordic fish and emu oils for reducing cognitive deficits in the mu-p75 saporin (SAP)-induced mouse model of AD. Mice were given daily gavage treatments of Cerise(®) Total-Body-Rhythm™ (TBR; containing tart cherry extract, Nordic fish oil, and refined emu oil) or vehicle (methylcellulose) for 2 weeks before intracerebroventricular injections of the cholinergic toxin, mu-p75 SAP, or phosphate-buffered saline. The TBR treatments continued for an additional 17 days, when the mice were tested on a battery of cognitive and motor tasks. Results indicate that TBR decreased the SAP-induced cognitive deficits assessed by the object-recognition, place-recognition, and Morris-water-maze tasks. Histological examination of the brain tissue indicated that TBR protected against SAP-induced inflammatory response and loss of cholinergic neurons in the area around the medial septum. These findings indicate that TBR has the potential to serve as an adjunctive treatment which may help reduce the severity of cognitive deficits in disorders involving cholinergic deficits, such as AD.
Collapse
|