101
|
Abstract
Recent results have provided evidence that regulatory loops operating in vertebrate embryos between the developmental signalling factors Nodal and Lefty may provide a real example of the kind of reaction-diffusion process long predicted to be a mechanism of pattern formation.
Collapse
|
102
|
Myers DC, Sepich DS, Solnica-Krezel L. Convergence and extension in vertebrate gastrulae: cell movements according to or in search of identity? Trends Genet 2002; 18:447-55. [PMID: 12175805 DOI: 10.1016/s0168-9525(02)02725-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During vertebrate gastrulation, convergence and extension cell movements both narrow and lengthen the forming embryonic axis. Concurrently, positional information established principally by the ventral-to-dorsal gradient of bone morphogenetic protein activity specifies cell fates within the gastrula. New data, primarily from zebrafish, have identified domains of distinct convergence and extension movements, and have established a role for the noncanonical Wnt signaling pathway in promoting the mediolateral cell polarization that underlies this morphogenetic process. Other observations suggest the intriguing possibility that positional information regulates convergence and extension movements in parallel with cell-fate specification.
Collapse
|
103
|
Jessen JR, Topczewski J, Bingham S, Sepich DS, Marlow F, Chandrasekhar A, Solnica-Krezel L. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol 2002; 4:610-5. [PMID: 12105418 PMCID: PMC2219916 DOI: 10.1038/ncb828] [Citation(s) in RCA: 392] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Embryonic morphogenesis is driven by a suite of cell behaviours, including coordinated shape changes, cellular rearrangements and individual cell migrations, whose molecular determinants are largely unknown. In the zebrafish, Dani rerio, trilobite mutant embryos have defects in gastrulation movements and posterior migration of hindbrain neurons. Here, we have used positional cloning to demonstrate that trilobite mutations disrupt the transmembrane protein Strabismus (Stbm)/Van Gogh (Vang), previously associated with planar cell polarity (PCP) in Drosophila melanogaster, and PCP and canonical Wnt/beta-catenin signalling in vertebrates. Our genetic and molecular analyses argue that during gastrulation, trilobite interacts with the PCP pathway without affecting canonical Wnt signalling. Furthermore, trilobite may regulate neuronal migration independently of PCP molecules. We show that trilobite mediates polarization of distinct movement behaviours. During gastrulation convergence and extension movements, trilobite regulates mediolateral cell polarity underlying effective intercalation and directed dorsal migration at increasing velocities. In the hindbrain, trilobite controls effective migration of branchiomotor neurons towards posterior rhombomeres. Mosaic analyses show trilobite functions cell-autonomously and non-autonomously in gastrulae and the hindbrain. We propose Trilobite/Stbm mediates cellular interactions that confer directionality on distinct movements during vertebrate embryogenesis.
Collapse
|
104
|
Marlow F, Topczewski J, Sepich D, Solnica-Krezel L. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr Biol 2002; 12:876-84. [PMID: 12062050 DOI: 10.1016/s0960-9822(02)00864-3] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND During vertebrate gastrulation convergence and extension (CE), movements narrow and lengthen embryonic tissues. In Xenopus and zebrafish, a noncanonical Wnt signaling pathway constitutes the vertebrate counterpart to the Drosophila planar cell polarity pathway and regulates mediolateral cell polarization underlying CE. Despite the identification of several signaling molecules required for normal CE, the downstream transducers regulating individual cell behaviors driving CE are only beginning to be elucidated. Moreover, how defective mediolateral cell polarity impacts CE is not understood. RESULTS Here, we show that overexpression of zebrafish dominant-negative Rho kinase 2 (dnRok2) disrupts CE without altering cell fates, phenocopying noncanonical Wnt signaling mutants. Moreover, Rho kinase 2 (Rok2) overexpression partially suppresses the slb/wnt11 gastrulation phenotype, and ectopic expression of noncanonical Wnts modulates Rok2 intracellular distribution. In addition, time-lapse analyses associate defective dorsal convergence movements with impaired cell elongation, mediolateral orientation, and consequently failure to migrate along straight paths. Transplantation experiments reveal that dnRok2 cells in wild-type hosts neither elongate nor orient their axes. In contrast, wild-type cells are able to elongate their cell bodies in dnRok2 hosts, even though they fail to orient their axes. CONCLUSIONS During zebrafish gastrulation, Rok2 acts downstream of noncanonical Wnt11 signaling to mediate mediolateral cell elongation required for dorsal cell movement along straight paths. Furthermore, elongation and orientation of the cell body are independent properties that require both cell-autonomous and nonautonomous Rok2 function.
Collapse
|
105
|
Myers DC, Sepich DS, Solnica-Krezel L. Bmp activity gradient regulates convergent extension during zebrafish gastrulation. Dev Biol 2002; 243:81-98. [PMID: 11846479 DOI: 10.1006/dbio.2001.0523] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During vertebrate gastrulation, a ventral to dorsal gradient of bone morphogenetic protein (Bmp) activity establishes cell fates. Concomitantly, convergent extension movements narrow germ layers mediolaterally while lengthening them anteroposteriorly. Here, by measuring movements of cell populations in vivo, we reveal the presence of three domains of convergent extension movements in zebrafish gastrula. Ventrally, convergence and extension movements are absent. Lateral cell populations converge and extend at increasing speed until they reach the dorsal domain where convergence speed slows but extension remains strong. Using dorsalized and ventralized mutants, we demonstrate that these domains are specified by the Bmp activity gradient. In vivo cell morphology and behavior analyses indicated that low levels of Bmp activity might promote extension with little convergence by allowing mediolateral cell elongation and dorsally biased intercalation. Further, single cell movement analyses revealed that the high ventral levels of Bmp activity promote epibolic migration of cells into the tailbud, increasing tail formation at the expense of head and trunk. We show that high Bmp activity limits convergence and extension by negatively regulating expression of the wnt11 (silberblick) and wnt5a (pipetail) genes, which are required for convergent extension but not cell fate specification. Therefore, during vertebrate gastrulation, a single gradient of Bmp activity, which specifies cell fates, also regulates the morphogenetic process of convergent extension.
Collapse
|
106
|
Erter CE, Wilm TP, Basler N, Wright CV, Solnica-Krezel L. Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 2001; 128:3571-83. [PMID: 11566861 DOI: 10.1242/dev.128.18.3571] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dorsal ectoderm of the vertebrate gastrula was proposed by Nieuwkoop to be specified towards an anterior neural fate by an activation signal, with its subsequent regionalization along the anteroposterior (AP) axis regulated by a graded transforming activity, leading to a properly patterned forebrain, midbrain, hindbrain and spinal cord. The activation phase involves inhibition of BMP signals by dorsal antagonists, but the later caudalization process is much more poorly characterized. Explant and overexpression studies in chick, Xenopus, mouse and zebrafish implicate lateral/paraxial mesoderm in supplying the transforming influence, which is largely speculated to be a Wnt family member.
We have analyzed the requirement for the specific ventrolaterally expressed Wnt8 ligand in the posteriorization of neural tissue in zebrafish wild-type and Nodal-deficient embryos (Antivin overexpressing or cyclops;squint double mutants), which show extensive AP brain patterning in the absence of dorsal mesoderm. In different genetic situations that vary the extent of mesodermal precursor formation, the presence of lateral wnt8-expressing cells correlates with the establishment of AP brain pattern. Cell tracing experiments show that the neuroectoderm of Nodal-deficient embryos undergoes a rapid anterior-to-posterior transformation in vivo during a short period at the end of the gastrula stage. Moreover, in both wild-type and Nodal-deficient embryos, inactivation of Wnt8 function by morpholino (MOwnt8) translational interference dose-dependently abrogates formation of spinal cord and posterior brain fates, without blocking ventrolateral mesoderm formation. MOwnt8 also suppresses the forebrain deficiency in bozozok mutants, in which inactivation of a homeobox gene causes ectopic wnt8 expression. In addition, the bozozok forebrain reduction is suppressed in bozozok;squint;cyclops triple mutants, and is associated with reduced wnt8 expression, as seen in cyclops;squint mutants. Hence, whereas boz and Nodal signaling largely cooperate in gastrula organizer formation, they have opposing roles in regulating wnt8 expression and forebrain specification. Our findings provide strong support for a model of neural transformation in which a planar gastrula-stage Wnt8 signal, promoted by Nodal signaling and dorsally limited by Bozozok, acts on anterior neuroectoderm from the lateral mesoderm to produce the AP regional patterning of the CNS.
Collapse
|
107
|
Topczewska JM, Topczewski J, Shostak A, Kume T, Solnica-Krezel L, Hogan BL. The winged helix transcription factor Foxc1a is essential for somitogenesis in zebrafish. Genes Dev 2001; 15:2483-93. [PMID: 11562356 PMCID: PMC312789 DOI: 10.1101/gad.907401] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies identified zebrafish foxc1a and foxc1b as homologs of the mouse forkhead gene, Foxc1. Both genes are transcribed in the unsegmented presomitic mesoderm (PSM), newly formed somites, adaxial cells, and head mesoderm. Here, we show that inhibiting synthesis of Foxc1a (but not Foxc1b) protein with two different morpholino antisense oligonucleotides blocks formation of morphological somites, segment boundaries, and segmented expression of genes normally transcribed in anterior and posterior somites and expression of paraxis implicated in somite epithelialization. Patterning of the anterior PSM is also affected, as judged by the absence of mesp-b, ephrinB2, and ephA4 expression, and the down-regulation of notch5 and notch6. In contrast, the expression of other genes, including mesp-a and papc, in the anterior of somite primordia, and the oscillating expression of deltaC and deltaD in the PSM appear normal. Nevertheless, this expression is apparently insufficient for the maturation of the presumptive somites to proceed to the stage when boundary formation occurs or for the maintenance of anterior/posterior patterning. Mouse embryos that are compound null mutants for Foxc1 and the closely related Foxc2 have no morphological somites and show abnormal expression of Notch signaling pathway genes in the anterior PSM. Therefore, zebrafish foxc1a plays an essential and conserved role in somite formation, regulating both the expression of paraxis and the A/P patterning of somite primordia.
Collapse
|
108
|
Solnica-Krezel L, Driever W. The role of the homeodomain protein Bozozok in zebrafish axis formation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2001; 45:299-310. [PMID: 11291860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The zebrafish bozozok (boz) gene encoding a homeodomain protein (also named Dharma/Nieuwkoid) is required during blastula stages for the formation of a complete Spemann-Mangold gastrula organizer and subsequent development of axial mesoderm and anterior neural structures. Expression of bozin the dorsal yolk syncytial layer (YSL) and overlying marginal blastomeres is activated by beta-catenin. Bozozok itself acts as a transcriptional repressor, and promotes organizer formation by directly inhibiting expression of the bmp2b (swirl) gene and by negatively regulating Wnt signaling by an unknown mechanism. boz cooperates with the Nodal-related secreted factors, Cyclops and Squint, in organizer formation. The incomplete organizer in boz mutants is deficient in expression of a number of factors such as Chordin that antagonize Bone morphogenetic proteins (Bmps), and Dickkopf 1, a Wnt antagonist. Conversely, the dorsal blastoderm of boz mutants exhibits ectopic expression of genes normally excluded from the dorsal midline such as wnt8 or tbx6. boz specifies the formation of anterior neuroectoderm by regulating Bmp and Wnt pathways in a fashion consistent with Nieuwkoop's two-step neural patterning model. boz promotes neural induction by limiting the anti-neuralizing activity of Bmp morphogens. In addition, by negative regulation of Wnt signaling, boz limits posteriorization of neuroectoderm. bozozok chordino double mutants exhibit a synergistic loss of head and trunk. This synthetic phenotype is due to dramatically increased Bmp signaling and consequent massive accumulation of cells in the tailbud at the expense of dorso-anterior structures. Therefore, boz and din act in overlapping pathways that provide the main mechanism to limit Bmp signaling in the zebrafish gastrula and allow for head and trunk development. Notably, Bozozok appears to function by repressing transcription of target genes such as swr (bmp2b) gene, and as such is the earliest acting repressor that the nascent dorsal axis is using to antagonize ventral influences.
Collapse
|
109
|
Topczewski J, Sepich DS, Myers DC, Walker C, Amores A, Lele Z, Hammerschmidt M, Postlethwait J, Solnica-Krezel L. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev Cell 2001; 1:251-64. [PMID: 11702784 DOI: 10.1016/s1534-5807(01)00005-3] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in the zebrafish knypek locus impair gastrulation movements of convergent extension that narrow embryonic body and elongate it from head to tail. We demonstrate that knypek regulates cellular movements but not cell fate specification. Convergent extension movement defects in knypek are associated with abnormal cell polarity, as mutant cells fail to elongate and align medio-laterally. Positional cloning reveals that knypek encodes a member of the glypican family of heparan sulfate proteoglycans. Double mutant and overexpression analyses show that Knypek potentiates Wnt11 signaling, mediating convergent extension. These studies provide experimental and genetic evidence that glypican Knypek acts during vertebrate gastrulation as a positive modulator of noncanonical Wnt signaling to establish polarized cell behaviors underlying convergent extension movements.
Collapse
|
110
|
Topczewska JM, Topczewski J, Solnica-Krezel L, Hogan BL. Sequence and expression of zebrafish foxc1a and foxc1b, encoding conserved forkhead/winged helix transcription factors. Mech Dev 2001; 100:343-7. [PMID: 11165495 DOI: 10.1016/s0925-4773(00)00534-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mouse Foxc1 (previously Mf1) is a member of the conserved forkhead/winged helix transcription factor gene family. It is expressed in many mesodermal tissues including paraxial mesoderm of the trunk and head, prechondrogenic mesenchyme, branchial arches and developing kidney. Homozygous mutants die perinatally with hydrocephalus and skeletal, cardiovascular, ocular and genitourinary defects. Here, we report the cloning and expression of two zebrafish foxc1 homologues, foxc1a and foxc1b. During gastrulation and somitogenesis both genes have similar expression patterns in the hypoblast, paraxial and presomitic mesoderm, somites and trunk adaxial cells. Expression in the somites is downregulated as they differentiate, but is maintained in the sclerotome. Later, some differences in expression pattern emerge. For example, only foxc1a transcripts are detected in the pronephros primodia and in the head mesoderm around the eyes, while only foxc1b is expressed in the pharyngeal arches and pectoral fins. Early expression of foxc1a in the paraxial mesoderm is modified in chordino, swirl, somitabun, and spadetail mutants.
Collapse
|
111
|
Gonzalez EM, Fekany-Lee K, Carmany-Rampey A, Erter C, Topczewski J, Wright CV, Solnica-Krezel L. Head and trunk in zebrafish arise via coinhibition of BMP signaling by bozozok and chordino. Genes Dev 2000; 14:3087-92. [PMID: 11124801 PMCID: PMC317122 DOI: 10.1101/gad.852400] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2000] [Accepted: 10/31/2000] [Indexed: 11/25/2022]
Abstract
Spatial variations in the levels of bone morphogenetic protein (BMP) signaling are a critical determinant of dorsoanterior-ventroposterior pattern in vertebrate embryos. Whereas BMP overexpression abolishes both head and trunk development, known single and double loss-of-function mutations in BMP inhibitors have less dramatic effects. We report that combining mutations in the zebrafish genes bozozok and chordino causes a synergistic loss of head and trunk, whereas most cells express ventro-posterior markers and develop into a tail. Genetic inactivation of BMP signaling fully suppresses these defects. Thus, a remarkably simple genetic mechanism, involving a coinhibition of BMP function by the partially overlapping bozozok and chordino pathways is used to specify vertebrate head and trunk.
Collapse
|
112
|
Kawahara A, Wilm T, Solnica-Krezel L, Dawid IB. Antagonistic role of vega1 and bozozok/dharma homeobox genes in organizer formation. Proc Natl Acad Sci U S A 2000; 97:12121-6. [PMID: 11050240 PMCID: PMC17304 DOI: 10.1073/pnas.97.22.12121] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During zebrafish development, zygotic gene expression initiated at the midblastula transition converts maternal information on embryo polarity into a transcriptional read-out. Expression of a homeobox gene, vega1, is activated at midblastula transition in all blastomeres, but is down-regulated dorsally before gastrulation. Ubiquitous expression of vega1 is maintained in bozozok mutants, in which the dorsal-specific homeobox gene bozozok/dharma (boz/dha) is disrupted and organizer formation is impaired. Vega1 inhibits expression of boz/dha and organizer-specific genes, and causes ventralization resulting in a headless phenotype. In contrast, VP16-vega1, a fusion including the Vega1 homeodomain and VP16 activation domain, elicits ectopic expression of organizer genes and suppresses several aspects of the boz mutant phenotype. We propose that boz/dha-dependent down-regulation of vega1 in the dorsal region is an early essential step in organizer formation in zebrafish.
Collapse
|
113
|
Abstract
The gastrula organizer forms in the dorsal region of the zebrafish embryo, where the bozozok/dharma homeobox gene downregulates expression of the vega1 transcriptional repressor. Here, we describe a novel Vega family homeobox gene, vega2. Expression of vega2 is initiated at the ventral blastoderm margin during blastula stages, and by gastrulation becomes complementary to but partially overlapping with the dorsal expression domain of the homeobox gene goosecoid (gsc). This dorsal exclusion of vega2 expression is not observed in bozozok mutants in which organizer formation is impaired. Both vega2 and vega1 can physically interact with Gsc. Zebrafish embryos injected with vega2 mRNA failed to express gsc and developed a headless phenotype. Conversely, a putative dominant negative form of vega2, VP16-vega2, elicited the expansion of gsc expression and a dorsalized phenotype. We suggest that vega2, in cooperation with vega1, functions as a negative regulator of organizer genes including gsc, and participates in the refinement of the gastrula organizer domain.
Collapse
|
114
|
Pogoda HM, Solnica-Krezel L, Driever W, Meyer D. The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of nodal signaling required for organizer formation. Curr Biol 2000; 10:1041-9. [PMID: 10996071 DOI: 10.1016/s0960-9822(00)00669-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Signaling molecules related to the Nodal protein play essential roles in the formation and patterning of the gastrula organizer and the germ layers during vertebrate development. The forkhead transcription factor FoxH1 (also known as Fast1) is a component of the Nodal signaling pathway. Although different roles have been suggested for FoxH1, its specific function during development is still unclear. RESULTS We report that the zebrafish locus schmalspur (sur) encodes a member of the FoxH1 family. Maternal sur transcripts were localized to the animal pole during oogenesis. Further expression was detected in a dorsoventral gradient at the onset of gastrulation and in specific domains in the organizer, notochord and lateral plate mesoderm. Embryos lacking zygotic sur function had variable deficiencies of prechordal plate and ventral neuroectoderm. In the absence of both maternal and zygotic sur function, embryos failed to form a morphologically distinct gastrula organizer and, later, developed severe defects in all axial structures. In these embryos, expression of nodal genes was initiated but not maintained. Unlike embryos lacking Nodal signaling, sur mutants formed endoderm and paraxial mesoderm. CONCLUSIONS FoxH1 is involved in regulatory feedback loops that control the duration and intensity of Nodal signals in early patterning. In zebrafish, FoxH1 is not essential to induce Nodal-dependent cell fates, but its function is central in modulating and enhancing morphogenetic Nodal signals.
Collapse
|
115
|
Henry CA, Hall LA, Burr Hille M, Solnica-Krezel L, Cooper MS. Somites in zebrafish doubly mutant for knypek and trilobite form without internal mesenchymal cells or compaction. Curr Biol 2000; 10:1063-6. [PMID: 10996075 DOI: 10.1016/s0960-9822(00)00677-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In vertebrates, paraxial mesoderm is partitioned into repeating units called somites. It is thought that the mechanical forces arising from compaction of the presumptive internal cells of prospective somites cause them to detach from the unsegmented presomitic mesoderm [1-3]. To determine how prospective somites physically segregate from each other, we used time-lapse microscopy to analyze the mechanics underlying early somitogenesis in wild-type zebrafish and in the mutants trilobite(m209) (tri), knypek(m119) (kny), and kny;tri, which are defective in convergent extension during gastrulation. Formation of somite boundaries in all of these embryos involved segregation, local alignment, and cell-shape changes of presumptive epitheloid border cells along nascent intersomitic boundaries. Although kny;tri somites formed without convergence of the presomitic mesoderm and were composed of only two cells in their anteroposterior (AP) dimension, they still exhibited AP intrasegmental polarity. Furthermore, morphogenesis of somite boundaries in these embryos proceeded in a manner similar to that in wild-type embryos. Thus, intersomitic boundary formation in zebrafish involves short-range movements of presumptive border cells that do not require mechanical forces generated by internal cells or compaction of the presomitic mesoderm.
Collapse
|
116
|
Sepich DS, Myers DC, Short R, Topczewski J, Marlow F, Solnica-Krezel L. Role of the zebrafish trilobite locus in gastrulation movements of convergence and extension. Genesis 2000; 27:159-73. [PMID: 10992326 DOI: 10.1002/1526-968x(200008)27:4<159::aid-gene50>3.0.co;2-t] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Convergence and extension are gastrulation movements that participate in the establishment of the vertebrate body plan. Using new methods for quantifying convergence and extension movements of cell groups, we demonstrate that in wild-type embryos, dorsal convergence of lateral cells is initially slow, but speeds up between the end of the gastrula period and early segmentation. Convergence and extension movements of lateral cells in trilobite mutants are normal during the gastrula period but reduced by early segmentation. Morphometric studies revealed that during epiboly wild-type gastrulae become ovoid, whereas trilobite embryos remain rounder. By segmentation, trilobite embryos exhibit shorter, broader embryonic axes. The timing of these morphological defects correlates well with impaired cell movements, suggesting reduced convergence and extension are the main defects underlying the trilobite phenotype. Our gene expression, genetic, and fate mapping analyses show the trilobite mutation affects movements without altering dorsoventral patterning or cell fates. We propose that trilobite function is required for cell properties that promote increased speed of converging cells and extension movements in the dorsal regions of the zebrafish gastrula.
Collapse
|
117
|
Fekany-Lee K, Gonzalez E, Miller-Bertoglio V, Solnica-Krezel L. The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development 2000; 127:2333-45. [PMID: 10804176 DOI: 10.1242/dev.127.11.2333] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuroectoderm of the vertebrate gastrula was proposed by Nieuwkoop to be regionalized into forebrain, midbrain, hindbrain and spinal cord by a two-step process. In the activation step, the Spemann gastrula organizer induces neuroectoderm with anterior character, followed by posteriorization by a transforming signal. Recently, simultaneous inhibition of BMP and Wnt signaling was shown to induce head formation in frog embryos. However, how the inhibition of BMP and Wnt signaling pathways specify a properly patterned head, and how they are regulated in vivo, is not understood. Here we demonstrate that the loss of anterior neural fates observed in zebrafish bozozok (boz) mutants occurs during gastrulation due to a reduction and subsequent posteriorization of neuroectoderm. The neural induction defect was correlated with decreased chordino expression and consequent increases in bmp2b/4 expression, and was suppressed by overexpression of BMP antagonists. Whereas expression of anterior neural markers was restored by ectopic BMP inhibition in early boz gastrulae, it was not maintained during later gastrulation. The posteriorization of neuroectoderm in boz was correlated with ectopic dorsal wnt8 expression. Overexpression of a Wnt antagonist rescued formation of the organizer and anterior neural fates in boz mutants. We propose that boz specifies formation of anterior neuroectoderm by regulating BMP and Wnt pathways in a fashion consistent with Nieuwkoop's two-step neural patterning model. boz promotes neural induction by positively regulating organizer-derived chordino and limiting the antineuralizing activity of BMP2b/4 morphogens. In addition, by negative regulation of Wnt signaling, boz promotes organizer formation and limits posteriorization of neuroectoderm in the late gastrula.
Collapse
|
118
|
Hashimoto H, Itoh M, Yamanaka Y, Yamashita S, Shimizu T, Solnica-Krezel L, Hibi M, Hirano T. Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev Biol 2000; 217:138-52. [PMID: 10625541 DOI: 10.1006/dbio.1999.9537] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We identified a zebrafish homologue of Dickkopf-1 (Dkk1), which was previously identified in Xenopus as a Wnt inhibitor with potent head-inducing activity. Zebrafish dkk1 is expressed in the dorsal marginal blastoderm and also in the dorsal yolk syncytial layer after mid-blastula transition. At later blastula stages, the expression expands to the entire blastoderm margin. During gastrulation, dkk1-expressing cells are confined to the embryonic shield and later to the anterior axial mesendoderm, prospective prechordal plate. Embryos, in which dkk1 was ectopically expressed, exhibited enlarged forebrain, eyes, and axial mesendoderm such as prechordal plate and notochord. dkk1 expression in the dorso-anterior mesendoderm during gastrulation was prominently reduced in zebrafish mutants bozozok (boz), squint (sqt), and one-eyed pinhead (oep), which all display abnormalities in the formation and function of the Spemann organizer and axial mesendoderm. dkk1 expression was normal in these embryos during the blastula period, indicating that zygotic functions of these genes are required for maintenance but not establishment of dkk1 expression. Overexpression of dkk1 suppressed defects in the development of forebrain, eyes, and notochord in boz mutants. Overexpression of dkk1 promoted anterior neuroectoderm development in the embryos injected with antivin RNA, which lack most of the mesoderm and endoderm, suggesting that Dkk1 can affect regionalization of neuroectoderm independently of dorso-anterior mesendoderm. These data indicate that Dkk1, expressed in dorsal mesendoderm, functions in the formation of both the anterior nervous system and the axial mesendoderm in zebrafish.
Collapse
|
119
|
Bailey J, Cook LJ, Kilmer-Barber R, Swanston E, Solnica-Krezel L, Lohman K, Dove WF, Dee J, Anderson RW. Identification of three genes expressed primarily during development in Physarum polycephalum. Arch Microbiol 1999; 172:364-76. [PMID: 10591846 DOI: 10.1007/s002030050773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
During the life cycle of Physarum polycephalum, uninucleate amoebae develop into multinucleate syncytial plasmodia. These two cell types differ greatly in cellular organisation, behaviour and gene expression. Classical genetic analysis has identified the mating-type gene, matA, as the key gene controlling the initiation of plasmodium development, but nothing is known about the molecular events controlled by matA. In order to identify genes involved in regulating plasmodium formation, we constructed a subtracted cDNA library from cells undergoing development. Three genes that have their highest levels of expression during plasmodium development were identified: redA, redB (regulated in development) and mynD (myosin). Both redA and redB are single-copy genes and are not members of gene families. Although redA has no significant sequence similarities to known genes, redB has sequence similarity to invertebrate sarcoplasmic calcium-binding proteins. The mynD gene is closely related to type II myosin heavy-chain genes from many organisms and is one of a family of type II myosin genes in P. polycephalum. Our results indicate that many more red genes remain to be identified, some of which may play key roles in controlling plasmodium formation.
Collapse
|
120
|
Miller-Bertoglio V, Carmany-Rampey A, Fürthauer M, Gonzalez EM, Thisse C, Thisse B, Halpern ME, Solnica-Krezel L. Maternal and zygotic activity of the zebrafish ogon locus antagonizes BMP signaling. Dev Biol 1999; 214:72-86. [PMID: 10491258 DOI: 10.1006/dbio.1999.9384] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dorsal-ventral axis of vertebrate embryos is thought to be specified by a gradient of bone morphogenetic protein (BMP) activity, which, in part, arises through the interaction of dorsally expressed antagonists Chordin and Noggin with the ventralizing BMPs. The zebrafish mercedes(tm305), ogon(m60), and short tail(b180) mutations produce ventralized phenotypes, including expanded bmp2b/4 expression domains. We find that the three mutations are allelic and that the locus they define, renamed ogon (ogo), maps to linkage group 25. The ogo(m60) and ogo(b180) mutations are deficiencies and thus represent null alleles, whereas the ENU-induced allele ogo(tm305) retains partial function. Aspects of the ogo(m60) and ogo(tm305) mutant phenotypes are fully suppressed by overexpression of BMP antagonists. Moreover, swirl(tc300), a null mutation in bmp2b, is epistatic to ogo(m60) mutation, providing further evidence that ogo normally functions in a BMP-dependent manner. Embryonic patterning is highly sensitive to maternal and zygotic ogo gene dosage, especially when the level of zygotic chordin activity is also reduced. However, elimination of the zygotic activity of both genes does not result in a completely ventralized embryo. Thus, while ogo and chordin are required to limit activity of BMPs, additional mechanisms must exist to block these ventralizing signals. We have ruled out zebrafish noggin homologues as candidates for the ogo gene, including a newly identified gene, nog1, which is specifically expressed in the gastrula organizer. The results suggest that ogo encodes an as yet unidentified dorsalizing factor that mediates dorsoventral patterning by directly or indirectly antagonizing BMP activity.
Collapse
|
121
|
Fekany K, Yamanaka Y, Leung T, Sirotkin HI, Topczewski J, Gates MA, Hibi M, Renucci A, Stemple D, Radbill A, Schier AF, Driever W, Hirano T, Talbot WS, Solnica-Krezel L. The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 1999; 126:1427-38. [PMID: 10068636 DOI: 10.1242/dev.126.7.1427] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The dorsal gastrula organizer plays a fundamental role in establishment of the vertebrate axis. We demonstrate that the zebrafish bozozok (boz) locus is required at the blastula stages for formation of the embryonic shield, the equivalent of the gastrula organizer and expression of multiple organizer-specific genes. Furthermore, boz is essential for specification of dorsoanterior embryonic structures, including notochord, prechordal mesendoderm, floor plate and forebrain. We report that boz mutations disrupt the homeobox gene dharma. Overexpression of boz in the extraembryonic yolk syncytial layer of boz mutant embryos is sufficient for normal development of the overlying blastoderm, revealing an involvement of extraembryonic structures in anterior patterning in fish similarly to murine embryos. Epistatic analyses indicate that boz acts downstream of beta-catenin and upstream to TGF-beta signaling or in a parallel pathway. These studies provide genetic evidence for an essential function of a homeodomain protein in beta-catenin-mediated induction of the dorsal gastrula organizer and place boz at the top of a hierarchy of zygotic genes specifying the dorsal midline of a vertebrate embryo.
Collapse
|
122
|
|
123
|
Erter CE, Solnica-Krezel L, Wright CV. Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev Biol 1998; 204:361-72. [PMID: 9882476 DOI: 10.1006/dbio.1998.9097] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nodal-related factors have been implicated in mesodermal and neural patterning, and left-right asymmetry, in mouse, frog, and chicken embryos. We describe the isolation and characterization of zebrafish nodal-related 2 (znr2). znr2 is expressed at low levels maternally, and zygotic transcripts localize to dorsal blastomeres at MBT. Slightly later, znr2 is also expressed dorsally in the extraembryonic yolk syncytial layer (YSL). During early gastrulation, znr2 expression expands to include deep and superficial cells in the entire marginal zone and YSL. During shield stages, expression is primarily localized to superficial noninvoluting cells of the organizer called dorsal forerunners. Znr2 misexpression in whole fish embryos expands or duplicates dorsoanterior and axial cell fates. Furthermore, Znr2 overexpression exclusively in the YSL, a region implicated in endogenous mesodermal induction, causes broadened or duplicated gsc expression in the overlying blastoderm. Functional comparison of Znr2 and another recently identified zebrafish nodal-related factor, Znr1/Cyclops, reveals distinct inductive properties of each ligand. Znr2 efficiently induces organizer-type dorsoanterior mesodermal and endodermal markers, but only weakly, if at all, neural markers. In contrast, while Znr1/Cyclops reproducibly induces mesodermal and neural markers, it is an inefficient inducer of organizer-type mesoderm. Our results suggest that znr2 encodes a robust mesendodermal inducer that signals nonautonomously during the earliest stages of embryonic patterning, and that part of this activity arises from within the YSL.
Collapse
|
124
|
Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, Neuhauss SC, Stemple DL, Zwartkruis F, Rangini Z, Driever W, Fishman MC. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 1998; 125:4655-67. [PMID: 9806915 DOI: 10.1242/dev.125.23.4655] [Citation(s) in RCA: 324] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The zebrafish pronephric kidney provides a simplified model of nephron development and epithelial cell differentiation which is amenable to genetic analysis. The pronephros consists of two nephrons with fused glomeruli and paired pronephric tubules and ducts. Nephron formation occurs after the differentiation of the pronephric duct with both the glomeruli and tubules being derived from a nephron primordium. Fluorescent dextran injection experiments demonstrate that vascularization of the zebrafish pronephros and the onset of glomerular filtration occurs between 40 and 48 hpf. We isolated fifteen recessive mutations that affect development of the pronephros. All have visible cysts in place of the pronephric tubule at 2–2.5 days of development. Mutants were grouped in three classes: (1) a group of twelve mutants with defects in body axis curvature and manifesting the most rapid and severe cyst formation involving the glomerulus, tubule and duct, (2) the fleer mutation with distended glomerular capillary loops and cystic tubules, and (3) the mutation pao pao tang with a normal glomerulus and cysts limited to the pronephric tubules. double bubble was analyzed as a representative of mutations that perturb the entire length of the pronephros and body axis curvature. Cyst formation begins in the glomerulus at 40 hpf at the time when glomerular filtration is established suggesting a defect associated with the onset of pronephric function. Basolateral membrane protein targeting in the pronephric duct epithelial cells is also severely affected, suggesting a failure in terminal epithelial cell differentiation and alterations in electrolyte transport. These studies reveal the similarity of normal pronephric development to kidney organogenesis in all vertebrates and allow for a genetic dissection of genes needed to establish the earliest renal function.
Collapse
|
125
|
Marlow F, Zwartkruis F, Malicki J, Neuhauss SC, Abbas L, Weaver M, Driever W, Solnica-Krezel L. Functional interactions of genes mediating convergent extension, knypek and trilobite, during the partitioning of the eye primordium in zebrafish. Dev Biol 1998; 203:382-99. [PMID: 9808788 DOI: 10.1006/dbio.1998.9032] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vertebrate eye development in the anterior region of the neural plate involves a series of inductive interactions dependent on the underlying prechordal plate and signals from the midline of the neural plate, including Hedgehog. The mechanisms controlling the spatiotemporal expression pattern of hedgehog genes are currently not understood. Cyclopia is observed in trilobite (tri) and knypek (kny) mutants with affected convergent extension of the embryonic axis during gastrulation. Here, we demonstrate that tri mutants show a high frequency of partial or complete cyclopia, kny mutants exhibit cyclopia infrequently, while knym119 trim209 double-mutant embryos have dramatically reduced convergent extension and are completely cyclopic. We analyzed the relationships between the convergent extension defect, the expression of hedgehog and prechordal plate genes, and the formation of cyclopia in knym119 and trim209 mutants. Our results correlate the cyclopia phenotype with the abnormal location of hh-expressing cells with respect to the optic primordium. We show that cyclopia in these mutants is not due to an incompetence of tri and kny cells to respond to Hedgehog signaling. Rather, it is a consequence of exceeding a critical distance (>40-50 micrometer) between hedgehog-expressing cells and the prospective eye field. We hypothesize that at this distance, midline cells are not in an appropriate position to physically separate the eye field and that HH and other signals do not reach the appropriate target cells. Furthermore, tri and kny have overlapping functions in establishing proper alignment of the anterior neural plate and midline cells expressing shh and twhh genes when the partitioning of the eye primordium takes place.
Collapse
|