1
|
Graether SP, Kuiper MJ, Gagné SM, Walker VK, Jia Z, Sykes BD, Davies PL. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 2000; 406:325-8. [PMID: 10917537 DOI: 10.1038/35018610] [Citation(s) in RCA: 321] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insect antifreeze proteins (AFP) are considerably more active at inhibiting ice crystal growth than AFP from fish or plants. Several insect AFPs, also known as thermal hysteresis proteins, have been cloned and expressed. Their maximum activity is 3-4 times that of fish AFPs and they are 10-100 times more effective at micromolar concentrations. Here we report the solution structure of spruce budworm (Choristoneura fumiferana) AFP and characterize its ice-binding properties. The 9-kDa AFP is a beta-helix with a triangular cross-section and rectangular sides that form stacked parallel beta-sheets; a fold which is distinct from the three known fish AFP structures. The ice-binding side contains 9 of the 14 surface-accessible threonines organized in a regular array of TXT motifs that match the ice lattice on both prism and basal planes. In support of this model, ice crystal morphology and ice-etching experiments are consistent with AFP binding to both of these planes and thus may explain the greater activity of the spruce budworm antifreeze.
Collapse
|
|
25 |
321 |
2
|
Abstract
Marine teleosts at high latitudes can encounter ice-laden seawater that is approximately 1 degrees C colder than the colligative freezing point of their body fluids. They avoid freezing by producing small antifreeze proteins (AFPs) that adsorb to ice and halt its growth, thereby producing an additional non-colligative lowering of the freezing point. AFPs are typically secreted by the liver into the blood. Recently, however, it has become clear that AFP isoforms are produced in the epidermis (skin, scales, fin, and gills) and may serve as a first line of defense against ice propagation into the fish. The basis for the adsorption of AFPs to ice is something of a mystery and is complicated by the extreme structural diversity of the five antifreeze types. Despite the recent acquisition of several AFP three-dimensional structures and the definition of their ice-binding sites by mutagenesis, no common ice-binding motif or even theme is apparent except that surface-surface complementarity is important for binding. The remarkable diversity of antifreeze types and their seemingly haphazard phylogenetic distribution suggest that these proteins might have evolved recently in response to sea level glaciation occurring just 1-2 million years ago in the northern hemisphere and 10-30 million years ago around Antarctica. Not surprisingly, the expression of AFP genes from different origins can also be quite dissimilar. The most intensively studied system is that of the winter flounder, which has a built-in annual cycle of antifreeze expression controlled by growth hormone (GH) release from the pituitary in tune with seasonal cues. The signal transduction pathway, transcription factors, and promoter elements involved in this process are just beginning to be characterized.
Collapse
|
Review |
24 |
315 |
3
|
Liou YC, Tocilj A, Davies PL, Jia Z. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature 2000; 406:322-4. [PMID: 10917536 DOI: 10.1038/35018604] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insect antifreeze proteins (AFP) are much more effective than fish AFPs at depressing solution freezing points by ice-growth inhibition. AFP from the beetle Tenebrio molitor is a small protein (8.4 kDa) composed of tandem 12-residue repeats (TCTxSxxCxxAx). Here we report its 1.4-A resolution crystal structure, showing that this repetitive sequence translates into an exceptionally regular beta-helix. Not only are the 12-amino-acid loops almost identical in the backbone, but also the conserved side chains are positioned in essentially identical orientations, making this AFP perhaps the most regular protein structure yet observed. The protein has almost no hydrophobic core but is stabilized by numerous disulphide and hydrogen bonds. On the conserved side of the protein, threonine-cysteine-threonine motifs are arrayed to form a flat beta-sheet, the putative ice-binding surface. The threonine side chains have exactly the same rotameric conformation and the spacing between OH groups is a near-perfect match to the ice lattice. Together with tightly bound co-planar external water, three ranks of oxygen atoms form a two-dimensional array, mimicking an ice section.
Collapse
|
|
25 |
311 |
4
|
Abstract
Four distinct macromolecular antifreezes have been isolated and characterized from different marine fish. These include the glycoprotein antifreezes (Mr 2.5-33 K), which are made up of a repeating tripeptide (Ala-Ala-Thr)n with a disaccharide attached to the threonyl residues, and three antifreeze protein (AFP) types. Type I is an alanine-rich, amphiphilic, alpha-helix (Mr 3-5 K); type II is a larger protein (Mr 14 K) with a high content of reverse turns and five disulfide bridges; and type III is intermediate in size (Mr 6-7 K) with no distinguishing features of secondary structure or amino acid composition. Despite their marked structural differences, all four antifreeze types appear to function in the same way by binding to the prism faces of ice crystals and inhibiting growth along the a-axes. It is suggested that type I AFP binds preferentially to the prism faces as a result of interactions between the helix macrodipole and the dipoles on the water molecules in the ice lattice. Binding is stabilized by hydrogen bonding, and the amphiphilic character of the helix results in the hydrophobic phase of the helix being exposed to the solvent. When the solution temperature is lowered further, ice crystal growth occurs primarily on the uncoated, unordered basal plane resulting in bipyramidal-shaped crystals. The structural features of type I AFP that could contribute to this mechanism of action are reviewed. Current challenges lie in solving the other antifreeze structures and interpreting them in light of what appears to be a common mechanism of action.
Collapse
|
Review |
35 |
295 |
5
|
Hosfield CM, Elce JS, Davies PL, Jia Z. Crystal structure of calpain reveals the structural basis for Ca(2+)-dependent protease activity and a novel mode of enzyme activation. EMBO J 1999; 18:6880-9. [PMID: 10601010 PMCID: PMC1171751 DOI: 10.1093/emboj/18.24.6880] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The combination of thiol protease activity and calmodulin-like EF-hands is a feature unique to the calpains. The regulatory mechanisms governing calpain activity are complex, and the nature of the Ca(2+)-induced switch between inactive and active forms has remained elusive in the absence of structural information. We describe here the 2.6 A crystal structure of m-calpain in the Ca(2+)-free form, which illustrates the structural basis for the inactivity of calpain in the absence of Ca(2+). It also reveals an unusual thiol protease fold, which is associated with Ca(2+)-binding domains through heterodimerization and a C(2)-like beta-sandwich domain. Strikingly, the structure shows that the catalytic triad is not assembled, indicating that Ca(2+)-binding must induce conformational changes that re-orient the protease domains to form a functional active site. The alpha-helical N-terminal anchor of the catalytic subunit does not occupy the active site but inhibits its assembly and regulates Ca(2+)-sensitivity through association with the regulatory subunit. This Ca(2+)-dependent activation mechanism is clearly distinct from those of classical proteases.
Collapse
|
research-article |
26 |
258 |
6
|
Abstract
In a target discrimination task, trials with incorrect responses elicit event-related potentials (ERPs) that include an error-related negativity (ERN or Ne) and a later error-positivity (Pe). Substantial evidence points to the anterior cingulate cortex as the source generator of the ERN. We examined the development of ERP component morphology, amplitude and latency to processing of correct and incorrect responses in 124 children, 7 to 18 years of age, and 27 adults, 19 through 25 years of age. The ERN and Pe were recorded during a standard 480-trial visual flanker task. As expected, response times decreased significantly with age. The ERN amplitude in error trials increased with age, although this was qualified by a nonlinear change as well. The Pe amplitude did not change with age. In correct trials, most participants produced a small negativity corresponding to the timing of the ERN in error trials. This correct-response negativity (CRN) amplitude was larger in children than in adults. Results are discussed with respect to continued maturation of the anterior cingulate cortex and prefrontal cortex into young adulthood.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
252 |
7
|
|
Letter |
28 |
183 |
8
|
Chao H, Houston ME, Hodges RS, Kay CM, Sykes BD, Loewen MC, Davies PL, Sönnichsen FD. A diminished role for hydrogen bonds in antifreeze protein binding to ice. Biochemistry 1997; 36:14652-60. [PMID: 9398184 DOI: 10.1021/bi970817d] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The most abundant isoform (HPLC-6) of type I antifreeze protein (AFP1) in winter flounder is a 37-amino-acid-long, alanine-rich, alpha-helical peptide, containing four Thr spaced 11 amino acids apart. It is generally assumed that HPLC-6 binds ice through a hydrogen-bonding match between the Thr and neighboring Asx residues to oxygens atoms on the {2021} plane of the ice lattice. The result is a lowering of the nonequilibrium freezing point below the melting point (thermal hysteresis). HPLC-6, and two variants in which the central two Thr were replaced with either Ser or Val, were synthesized. The Ser variant was virtually inactive, while only a minor loss of activity was observed in the Val variant. CD, ultracentrifugation, and NMR studies indicated no significant structural changes or aggregation of the variants compared to HPLC-6. These results call into question the role of hydrogen bonds and suggest a much more significant role for entropic effects and van der Waals interactions in binding AFP to ice.
Collapse
|
|
28 |
174 |
9
|
Segalowitz SJ, Davies PL. Charting the maturation of the frontal lobe: An electrophysiological strategy. Brain Cogn 2004; 55:116-33. [PMID: 15134847 DOI: 10.1016/s0278-2626(03)00283-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2003] [Indexed: 10/26/2022]
Abstract
Tracking the functional development of specific regions of the prefrontal cortex in children using event-related potentials (ERPs) is challenging for both technical and conceptual reasons. In this paper we outline our strategy for studying frontal lobe development and present preliminary results from children aged 7-17 years and young adults using ERPs functionally associated with anterior cingulate and prefrontal cortex, especially the orbitofrontal, ventral, and medial portions. Our analysis of contingent negative variation, error-related negativity, and novelty P300 data show that the ERPs associated with these regions are still maturing into late adolescence, and that their amplitude has significant correlations with behavioral capacities.
Collapse
|
|
21 |
170 |
10
|
Abstract
Antifreeze proteins comprise a structurally diverse class of proteins that inhibit the growth of ice. Recently, new AFP types have been discovered; more active AFPs have been isolated; antecedents have been recognized supporting the notion of recent, multiple origins; and detailed structures have emerged leading to models for their adsorption to ice.
Collapse
|
Review |
28 |
170 |
11
|
Jia Z, DeLuca CI, Chao H, Davies PL. Structural basis for the binding of a globular antifreeze protein to ice. Nature 1996; 384:285-8. [PMID: 8918883 DOI: 10.1038/384285a0] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Antifreeze proteins (AFPs) have the unique ability to adsorb to ice and inhibit its growth. Many organisms ranging from fish to bacteria use AFPs to retard freezing or lessen the damage incurred upon freezing and thawing. The ice-binding mechanism of the long linear alpha-helical type I AFPs has been attributed to their regularly spaced polar residues matching the ice lattice along a pyramidal plane. In contrast, it is not known how globular antifreeze proteins such as type III AFP that lack repeating ice-binding residues bind to ice. Here we report the 1.25 A crystal structure of recombinant type III AFP (QAE isoform) from eel pout (Macrozoarces americanus), which reveals a remarkably flat amphipathic ice-binding site where five hydrogen-bonding atoms match two ranks of oxygens on the [1010] ice prism plane in the <0001> direction, giving high ice-binding affinity and specificity. This binding site, substantiated by the structures and properties of several ice-binding site mutants, suggests that the AFP occupies a niche in the ice surface in which it covers the basal plane while binding to the prism face.
Collapse
|
|
29 |
163 |
12
|
Blanchard H, Grochulski P, Li Y, Arthur JS, Davies PL, Elce JS, Cygler M. Structure of a calpain Ca(2+)-binding domain reveals a novel EF-hand and Ca(2+)-induced conformational changes. NATURE STRUCTURAL BIOLOGY 1997; 4:532-8. [PMID: 9228945 DOI: 10.1038/nsb0797-532] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The crystal structure of a Ca(2+)-binding domain (dVI) of rat m-calpain has been determined at 2.3 A resolution, both with and without bound Ca2+. The structures reveal a unique fold incorporating five EF-hand motifs per monomer, three of which bind calcium at physiological calcium concentrations, with one showing a novel EF-hand coordination pattern. This investigation gives us a first view of the calcium-induced conformational changes, and consequently an insight into the mechanism of calcium induced activation in calpain. The crystal structures reveal a dVI homodimer which provides a preliminary model for the subunit dimerization in calpain.
Collapse
|
|
28 |
154 |
13
|
Sönnichsen FD, DeLuca CI, Davies PL, Sykes BD. Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure 1996; 4:1325-37. [PMID: 8939756 DOI: 10.1016/s0969-2126(96)00140-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Antifreeze proteins are found in certain fish inhabiting polar sea water. These proteins depress the freezing points of blood and body fluids below that of the surrounding sea water by binding to and inhibiting the growth of seed ice crystals. The proteins are believed to bind irreversibly to growing ice crystals in such a way as to change the curvature of the ice-water interface, leading to freezing point depression, but the mechanism of high-affinity ice binding is not yet fully understood. RESULTS The solution structure of the type III antifreeze protein was determined by multidimensional NMR spectroscopy. Twenty-two structures converged and display a root mean square difference from the mean of 0.26 A for backbone atoms and 0.62 A for all non-hydrogen atoms. The protein exhibits a compact fold with a relatively large hydrophobic core, several short and irregular beta sheets and one helical turn. The ice-binding site, which encompasses parts of the C-terminal sheet and a loop, is planar and relatively nonpolar. The site is further characterized by the low solvent accessibilities and the specific spatial arrangement of the polar side-chain atoms of the putative ice-binding residues Gln9, Asn14, Thr15, Thr18 and Gln44. CONCLUSIONS In agreement with the adsorption-inhibition mechanism of action, interatomic distances between active polar protein residues match the spacing of water molecules in the prism planes (¿10&1macr;0¿) of the hexagonal ice crystal. The particular side-chain conformations, however, limit the number and strength of possible proten-ice hydrogen bonds. This suggests that other entropic and enthalpic contributions, such as those arising from hydrophobic groups, could play a role in the high-affinity protein-ice adsorption.
Collapse
|
|
29 |
151 |
14
|
Baardsnes J, Kondejewski LH, Hodges RS, Chao H, Kay C, Davies PL. New ice-binding face for type I antifreeze protein. FEBS Lett 1999; 463:87-91. [PMID: 10601644 DOI: 10.1016/s0014-5793(99)01588-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type I antifreeze protein (AFP) from winter flounder is an alanine-rich, 37 amino acid, single alpha-helix that contains three 11 amino acid repeats (Thr-X(2)-Asx-X(7)), where X is generally Ala. The regularly spaced Thr, Asx and Leu residues lie on one face of the helix and have traditionally been thought to form hydrogen bonds and van der Waals interactions with the ice surface. Recently, substitution experiments have called into question the importance of Leu and Asn for ice-binding. Sequence alignments of five type I AFP isoforms show that Leu and Asn are not well conserved, whereas Ala residues adjacent to the Thr, at right angles to the Leu/Asn-rich face, are completely conserved. To investigate the role of these Ala residues, a series of Ala to Leu steric mutations was made at various points around the helix. All the substituted peptides were fully alpha-helical and remained as monomers in solution. Wild-type activity was retained in A19L and A20L. A17L, where the substitution lies adjacent to the Thr-rich face, had no detectable antifreeze activity. The nearby A21L substitution had 10% wild-type activity and demonstrated weak interactions with the ice surface. We propose a new ice-binding face for type I AFP that encompasses the conserved Ala-rich surface and adjacent Thr.
Collapse
|
|
26 |
130 |
15
|
|
|
23 |
112 |
16
|
Bellows LL, Davies PL, Anderson J, Kennedy C. Effectiveness of a physical activity intervention for Head Start preschoolers: a randomized intervention study. Am J Occup Ther 2013; 67:28-36. [PMID: 23245780 PMCID: PMC3722665 DOI: 10.5014/ajot.2013.005777] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The level of children's motor skill proficiency may be an important determinant of their physical activity behaviors. This study assessed the efficacy of an intervention on gross motor skill performance, physical activity, and weight status of preschoolers. METHOD The Food Friends: Get Movin' With Mighty Moves(®) program was conducted in four Head Start centers. Measurements included the Peabody Developmental Motor Scales, pedometer counts, and body mass index (BMI) z scores. RESULTS The intervention led to significant changes in gross motor skills in the treatment group (n = 98) compared with the control group (n = 103) and was a strong predictor of overall gross motor performance (gross motor quotient), locomotor, stability, and object manipulation skills. No intervention effect was found for physical activity levels or weight status. CONCLUSION The intervention dose was adequate for enhancing gross motor skill performance but not for increasing physical activity levels or reducing BMI.
Collapse
|
Multicenter Study |
12 |
104 |
17
|
Tyshenko MG, Doucet D, Davies PL, Walker VK. The antifreeze potential of the spruce budworm thermal hysteresis protein. Nat Biotechnol 1997; 15:887-90. [PMID: 9306405 DOI: 10.1038/nbt0997-887] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antifreeze proteins (AFP) inhibit ice growth by surface adsorption that results in a depression of the freezing point below the melting point. The maximum level of this thermal hysteresis shown by the four structurally unrelated fish AFP is approximately 1.5 degrees C. In contrast, hemolymph and crude extracts from insects can have 5 degrees to 10 degrees C of thermal hysteresis. Based on the isolation, cloning, and expression of a thermal hysteresis protein (THP) from spruce budworm (Choristoneura fumiferana), the vastly greater activity is attributable to a 9 kDa protein. This novel, threonine- and cysteine-rich THP has striking effects on ice crystal morphology, both before and during freezing. It is also 10 to 30 times more active than any known fish AFP, offering the prospect of superior antifreeze properties in cryoprotective applications.
Collapse
|
|
28 |
101 |
18
|
Gronwald W, Loewen MC, Lix B, Daugulis AJ, Sönnichsen FD, Davies PL, Sykes BD. The solution structure of type II antifreeze protein reveals a new member of the lectin family. Biochemistry 1998; 37:4712-21. [PMID: 9537986 DOI: 10.1021/bi972788c] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A recombinant form of the sea raven type II antifreeze protein (SRAFP) has been produced using the Pichia pastoris expression system. The antifreeze activity of recombinant SRAFP is indistinguishable from that of the wild-type protein. The global fold of SRAFP has been determined by two-dimensional 1H homonuclear and three-dimensional 1H-¿15N¿ heteronuclear NMR spectroscopy using 785 NOE distance restraints and 47 angular restraints. The molecule folds into one globular domain that consists of two helices and nine beta-strands in two beta-sheets. The structure confirms the proposed existence of five disulfide bonds. The global fold of SRAFP is homologous to C-type lectins and pancreatic stone proteins, even though the sequence identity is only approximately 20%.
Collapse
|
|
27 |
100 |
19
|
Chao H, Davies PL, Carpenter JF. Effects of antifreeze proteins on red blood cell survival during cryopreservation. J Exp Biol 1996; 199:2071-6. [PMID: 8831147 DOI: 10.1242/jeb.199.9.2071] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antifreeze protein (AFP) types, I, II and III were tested for their ability to protect red blood cells from lysis during warming, after cryopreservation in hydroxyethyl starch. All three types reduced hemolysis to 25% of control values at similar micromolar concentrations but enhanced lysis as the AFP concentration approached millimolar levels. Site-directed mutants of type III AFP with different thermal hysteresis activities were tested for their ability to protect the cryopreserved cells from lysis. Their relative efficacy in protecting the cells correlated closely with their thermal hysteresis activity. Cryomicroscopy indicated that the protection of red cells by type III AFP and the mutant forms was due to inhibition of ice recrystallization.
Collapse
|
|
29 |
96 |
20
|
Flynn TG, Davies PL, Kennedy BP, de Bold ML, de Bold AJ. Alignment of rat cardionatrin sequences with the preprocardionatrin sequence from complementary DNA. Science 1985; 228:323-5. [PMID: 3157217 DOI: 10.1126/science.3157217] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mammalian atria contain peptides that promote the excretion of salt and water from the kidney. When rat atrial tissue is extracted under conditions known to inhibit proteolysis, four natriuretic peptides, cardionatrins I to IV, are consistently isolated. These peptides derive from a common precursor, preprocardionatrin, of 152 amino acids, whose sequence was determined by DNA sequencing of a complementary DNA clone. Amino acid sequencing located the start points of cardionatrins I, III, and IV in the overall sequence. Cardionatrin IV most closely resembles procardionatrin because it begins immediately after the signal sequence at residue 25. Cardionatrin III begins at residue 73, and cardionatrin I, sequenced previously, begins at residue 123. Compositional analysis indicated that each of these cardionatrins extends up to tyrosine at position 150 but lacks the terminal two arginine residues.
Collapse
|
|
40 |
94 |
21
|
Chao H, Sönnichsen FD, DeLuca CI, Sykes BD, Davies PL. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice. Protein Sci 1994; 3:1760-9. [PMID: 7849594 PMCID: PMC2142619 DOI: 10.1002/pro.5560031016] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antifreeze proteins (AFPs) depress the freezing point of aqueous solutions by binding to and inhibiting the growth of ice. Whereas the ice-binding surface of some fish AFPs is suggested by their linear, repetitive, hydrogen bonding motifs, the 66-amino-acid-long Type III AFP has a compact, globular fold without any obvious periodicity. In the structure, 9 beta-strands are paired to form 2 triple-stranded antiparallel sheets and 1 double-stranded antiparallel sheet, with the 2 triple sheets arranged as an orthogonal beta-sandwich (Sönnichsen FD, Sykes BD, Chao H, Davies PL, 1993, Science 259:1154-1157). Based on its structure and an alignment of Type III AFP isoform sequences, a cluster of conserved, polar, surface-accessible amino acids (N14, T18, Q44, and N46) was noted on and around the triple-stranded sheet near the C-terminus. At 3 of these sites, mutations that switched amide and hydroxyl groups caused a large decrease in antifreeze activity, but amide to carboxylic acid changes produced AFPs that were fully active at pH 3 and pH 6. This is consistent with the observation that Type III AFP is optimally active from pH 2 to pH 11. At a concentration of 1 mg/mL, Q44T, N14S, and T18N had 50%, 25%, and 10% of the activity of wild-type antifreeze, respectively. The effects of the mutations were cumulative, such that the double mutant N14S/Q44T had 10% of the wild-type activity and the triple mutant N14S/T18N/Q44T had no activity. All mutants with reduced activity were shown to be correctly folded by NMR spectroscopy. Moreover, a complete characterization of the triple mutant by 2-dimensional NMR spectroscopy indicated that the individual and combined mutations did not significantly alter the structure of these proteins. These results suggest that the C-terminal beta-sheet of Type III AFP is primarily responsible for antifreeze activity, and they identify N14, T18, and Q44 as key residues for the AFP-ice interaction.
Collapse
|
research-article |
31 |
90 |
22
|
Davies PL, Segalowitz SJ, Dywan J, Pailing PE. Error-negativity and positivity as they relate to other ERP indices of attentional control and stimulus processing. Biol Psychol 2001; 56:191-206. [PMID: 11399350 DOI: 10.1016/s0301-0511(01)00080-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We compared individual differences in the ERP associated with incorrect responses in a discrimination task with other ERP components associated with attentional control and stimulus discrimination (N2, P3, CNV). Trials with errors that are detected by the subject normally produce a negativity (N(E)) immediately following the response followed by a positivity (P(E)). The morphology of the N(E) and the P(E) is similar to that of the standard N2-P3 complex on correct discrimination trials. Our findings suggest that the P(E) is a P3 response to the internal detection of errors. The N(E), however, appears to be distinct from the N2. Finally, even though both the contingent negative variation (CNV) and the N(E) are associated with prefrontal cortex and the allocation of attention to response accuracy, the N(E) and CNV did not relate to one another.
Collapse
|
Comparative Study |
24 |
86 |
23
|
Liou YC, Thibault P, Walker VK, Davies PL, Graham LA. A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. Biochemistry 1999; 38:11415-24. [PMID: 10471292 DOI: 10.1021/bi990613s] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously identified a Thr- and Cys-rich thermal hysteresis (antifreeze) protein (THP) in the beetle Tenebrio molitor that has 10-100 times the freezing point depression activity of fish antifreeze proteins. Because this 8.4 kDa protein is significantly different in its properties from THP preparations previously reported from this insect, a thorough search was undertaken for other antifreeze types. Many active proteins were observed, but all appeared to be isoforms of the THP that differed in their number of 12-amino acid repeats (consensus sequence CTxSxxCxxAxT), amino acid substitutions, and N-linked glycosylation. Mass spectral analysis has matched most of these isoforms with cDNA sequences of 17 different clones from a larval fat body library that encode eight different mature THPs containing 84, 96, or 120 amino acids. Genomic Southern blots suggest there may be 30-50 tightly linked copies of the gene, which is a signature consistently seen with unrelated fish antifreeze protein genes, and one that has been associated with the need to rapidly increase gene product in response to climate change. A three-dimensional model is proposed for the fully disulfide-bonded structure of T. molitor THP, which can accommodate addition or deletion of 12-amino acid repeats. The structure is a beta-helix that places most of the Thr in a regular array on one side of the protein to form a putative ice-binding surface.
Collapse
|
|
26 |
85 |
24
|
Abstract
It has been suggested that cooperative interactions between antifreeze proteins (AFPs) on the ice surfaces are required for complete inhibition of ice crystal growth. To test this hypothesis, a 7-kDa type III AFP was linked through its N-terminus to thioredoxin (12 kDa) or maltose-binding protein (42 kDa). The resultant 20-kDa and 50-kDa fusion proteins were larger in diameter than free AFP and thus precluded any extensive AFP-AFP contacts on the ice surface. Both fusion proteins were at least as active as free AFP at virtually all concentrations tested. By these criteria, AFPs function independently of each other and do not require specific intermolecular interactions to bind tightly to ice.
Collapse
|
research-article |
27 |
83 |
25
|
Khetani MA, Graham JE, Davies PL, Law MC, Simeonsson RJ. Psychometric properties of the Young Children's Participation and Environment Measure. Arch Phys Med Rehabil 2015; 96:307-16. [PMID: 25449189 PMCID: PMC4306635 DOI: 10.1016/j.apmr.2014.09.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/03/2014] [Accepted: 09/18/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the psychometric properties of the newly developed Young Children's Participation and Environment Measure (YC-PEM). DESIGN Cross-sectional study. SETTING Data were collected online and by telephone. PARTICIPANTS Convenience and snowball sampling methods were used to survey caregivers of children (N=395, comprising children with [n=93] and without [n=302] developmental disabilities and delays) between the ages of 0 and 5 years (mean age±SD, 35.33±20.29 mo) and residing in North America. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES The YC-PEM includes 3 participation scales and 1 environment scale. Each scale is assessed across 3 settings: home, daycare/preschool, and community. Data were analyzed to derive estimates of internal consistency, test-retest reliability, and construct validity. RESULTS Internal consistency ranged from .68 to .96 and .92 to .96 for the participation and environment scales, respectively. Test-retest reliability (2-4 wk) ranged from .31 to .93 for participation scales and from .91 to .94 for the environment scale. One of 3 participation scales and the environment scale demonstrated significant group differences by disability status across all 3 settings, and all 4 scales discriminated between disability groups for the daycare/preschool setting. The participation scales exhibited small to moderate positive associations with functional performance scores. CONCLUSIONS Results lend initial support for the use of the YC-PEM in research to assess the participation of young children with disabilities and delays in terms of (1) home, daycare/preschool, and community participation patterns; (2) perceived environmental supports and barriers to participation; and (3) activity-specific parent strategies to promote participation.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
81 |