101
|
Steinke D, Connell AD, Hebert PDN. Linking adults and immatures of South African marine fishes. Genome 2016; 59:959-967. [PMID: 27653340 DOI: 10.1139/gen-2015-0212] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The early life-history stages of fishes are poorly known, impeding acquisition of the identifications needed to monitor larval recruitment and year-class strength. A comprehensive database of COI sequences, linked to authoritatively identified voucher specimens, promises to change this situation, representing a significant advance for fisheries science. Barcode records were obtained from 2526 early larvae and pelagic eggs of fishes collected on the inshore shelf within 5 km of the KwaZulu-Natal coast, about 50 km south of Durban, South Africa. Barcodes were also obtained from 3215 adults, representing 946 South African fish species. Using the COI reference library on BOLD based on adults, 89% of the immature fishes could be identified to a species level; they represented 450 species. Most of the uncertain sequences could be assigned to a genus, family, or order; only 92 specimens (4%) were unassigned. Accumulation curves based on inference of phylogenetic diversity indicate near-completeness of the collecting effort. The entire set of adult and larval fishes included 1006 species, representing 43% of all fish species known from South African waters. However, this total included 189 species not previously recorded from this region. The fact that almost 90% of the immatures gained a species identification demonstrates the power and completeness of the DNA barcode reference library for fishes generated during the 10 years of FishBOL.
Collapse
|
102
|
Bennett KR, Hogg ID, Adams BJ, Hebert PDN. High levels of intraspecific genetic divergences revealed for Antarctic springtails: evidence for small-scale isolation during Pleistocene glaciation. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12796] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
103
|
Dufresne F, Hebert PDN. Temperature-related differences in life-history characteristics between diploid and polyploid clones of the Daphnia pulex complex. ECOSCIENCE 2016. [DOI: 10.1080/11956860.1998.11682481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
104
|
Brehm G, Hebert PDN, Colwell RK, Adams MO, Bodner F, Friedemann K, Möckel L, Fiedler K. Turning Up the Heat on a Hotspot: DNA Barcodes Reveal 80% More Species of Geometrid Moths along an Andean Elevational Gradient. PLoS One 2016; 11:e0150327. [PMID: 26959368 PMCID: PMC4784734 DOI: 10.1371/journal.pone.0150327] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
We sampled 14,603 geometrid moths along a forested elevational gradient from 1020-3021 m in the southern Ecuadorian Andes, and then employed DNA barcoding to refine decisions on species boundaries initially made by morphology. We compared the results with those from an earlier study on the same but slightly shorter gradient that relied solely on morphological criteria to discriminate species. The present analysis revealed 1857 putative species, an 80% increase in species richness from the earlier study that detected only 1010 species. Measures of species richness and diversity that are less dependent on sample size were more than twice as high as in the earlier study, even when analysis was restricted to an identical elevational range. The estimated total number of geometrid species (new dataset) in the sampled area is 2350. Species richness at single sites was 32-43% higher, and the beta diversity component rose by 43-51%. These impacts of DNA barcoding on measures of richness reflect its capacity to reveal cryptic species that were overlooked in the first study. The overall results confirmed unique diversity patterns reported in the first investigation. Species diversity was uniformly high along the gradient, declining only slightly above 2800 m. Species turnover also showed little variation along the gradient, reinforcing the lack of evidence for discrete faunal zones. By confirming these major biodiversity patterns, the present study establishes that incomplete species delineation does not necessarily conceal trends of biodiversity along ecological gradients, but it impedes determination of the true magnitude of diversity and species turnover.
Collapse
|
105
|
Iftikhar R, Ashfaq M, Rasool A, Hebert PDN. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes. PLoS One 2016; 11:e0146014. [PMID: 26741134 PMCID: PMC4704811 DOI: 10.1371/journal.pone.0146014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/12/2015] [Indexed: 12/02/2022] Open
Abstract
Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5ʹ (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.
Collapse
|
106
|
Abstract
The accumulation of DNA barcode sequences will provide an increasingly useful and comprehensive library for species identification and discovery of marine metazoans. Here we present a summary of protocols designed to obtain DNA barcodes of marine metazoans from diverse phyla.
Collapse
|
107
|
Wirta H, Várkonyi G, Rasmussen C, Kaartinen R, Schmidt NM, Hebert PDN, Barták M, Blagoev G, Disney H, Ertl S, Gjelstrup P, Gwiazdowicz DJ, Huldén L, Ilmonen J, Jakovlev J, Jaschhof M, Kahanpää J, Kankaanpää T, Krogh PH, Labbee R, Lettner C, Michelsen V, Nielsen SA, Nielsen TR, Paasivirta L, Pedersen S, Pohjoismäki J, Salmela J, Vilkamaa P, Väre H, von Tschirnhaus M, Roslin T. Establishing a community-wide DNA barcode library as a new tool for arctic research. Mol Ecol Resour 2015; 16:809-22. [PMID: 26602739 DOI: 10.1111/1755-0998.12489] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 12/18/2022]
Abstract
DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied area of the High Arctic, the Zackenberg Valley in Northeast Greenland. To demonstrate its utility, we apply the library to identify nearly 20 000 arthropod individuals from two Malaise traps, each operated for two summers. Drawing on this material, we estimate the coverage of previous morphology-based species inventories, derive a snapshot of faunal turnover in space and time and describe the abundance and phenology of species in the rapidly changing arctic environment. Overall, 403 terrestrial animal and 160 vascular plant species were recorded by morphology-based techniques. DNA barcodes (CO1) offered high resolution in discriminating among the local animal taxa, with 92% of morphologically distinguishable taxa assigned to unique Barcode Index Numbers (BINs) and 93% to monophyletic clusters. For vascular plants, resolution was lower, with 54% of species forming monophyletic clusters based on barcode regions rbcLa and ITS2. Malaise catches revealed 122 BINs not detected by previous sampling and DNA barcoding. The insect community was dominated by a few highly abundant taxa. Even closely related taxa differed in phenology, emphasizing the need for species-level resolution when describing ongoing shifts in arctic communities and ecosystems. The DNA barcode library now established for Zackenberg offers new scope for such explorations, and for the detailed dissection of interspecific interactions throughout the community.
Collapse
|
108
|
Prosser SWJ, deWaard JR, Miller SE, Hebert PDN. DNA barcodes from century-old type specimens using next-generation sequencing. Mol Ecol Resour 2015; 16:487-97. [PMID: 26426290 DOI: 10.1111/1755-0998.12474] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 02/05/2023]
Abstract
Type specimens have high scientific importance because they provide the only certain connection between the application of a Linnean name and a physical specimen. Many other individuals may have been identified as a particular species, but their linkage to the taxon concept is inferential. Because type specimens are often more than a century old and have experienced conditions unfavourable for DNA preservation, success in sequence recovery has been uncertain. This study addresses this challenge by employing next-generation sequencing (NGS) to recover sequences for the barcode region of the cytochrome c oxidase 1 gene from small amounts of template DNA. DNA quality was first screened in more than 1800 century-old type specimens of Lepidoptera by attempting to recover 164-bp and 94-bp reads via Sanger sequencing. This analysis permitted the assignment of each specimen to one of three DNA quality categories--high (164-bp sequence), medium (94-bp sequence) or low (no sequence). Ten specimens from each category were subsequently analysed via a PCR-based NGS protocol requiring very little template DNA. It recovered sequence information from all specimens with average read lengths ranging from 458 bp to 610 bp for the three DNA categories. By sequencing ten specimens in each NGS run, costs were similar to Sanger analysis. Future increases in the number of specimens processed in each run promise substantial reductions in cost, making it possible to anticipate a future where barcode sequences are available from most type specimens.
Collapse
|
109
|
Ashfaq M, Prosser S, Nasir S, Masood M, Ratnasingham S, Hebert PDN. High diversity and rapid diversification in the head louse, Pediculus humanus (Pediculidae: Phthiraptera). Sci Rep 2015; 5:14188. [PMID: 26373806 PMCID: PMC4570997 DOI: 10.1038/srep14188] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 08/18/2015] [Indexed: 12/15/2022] Open
Abstract
The study analyzes sequence variation of two mitochondrial genes (COI, cytb) in Pediculus humanus from three countries (Egypt, Pakistan, South Africa) that have received little prior attention, and integrates these results with prior data. Analysis indicates a maximum K2P distance of 10.3% among 960 COI sequences and 13.8% among 479 cytb sequences. Three analytical methods (BIN, PTP, ABGD) reveal five concordant OTUs for COI and cytb. Neighbor-Joining analysis of the COI sequences confirm five clusters; three corresponding to previously recognized mitochondrial clades A, B, C and two new clades, "D" and "E", showing 2.3% and 2.8% divergence from their nearest neighbors (NN). Cytb data corroborate five clusters showing that clades "D" and "E" are both 4.6% divergent from their respective NN clades. Phylogenetic analysis supports the monophyly of all clusters recovered by NJ analysis. Divergence time estimates suggest that the earliest split of P. humanus clades occurred slightly more than one million years ago (MYa) and the latest about 0.3 MYa. Sequence divergences in COI and cytb among the five clades of P. humanus are 10X those in their human host, a difference that likely reflects both rate acceleration and the acquisition of lice clades from several archaic hominid lineages.
Collapse
|
110
|
Young MR, Hebert PDN. Correction: Patterns of Protein Evolution in Cytochrome c Oxidase 1 (COI) from the Class Arachnida. PLoS One 2015; 10:e0138167. [PMID: 26355957 PMCID: PMC4565706 DOI: 10.1371/journal.pone.0138167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0135053.].
Collapse
|
111
|
De Prins J, De Prins W, De Coninck E, Kawahara AY, Milton MA, Hebert PDN. Taxonomic history and invasion biology of two Phyllonorycter leaf miners (Lepidoptera: Gracillariidae) with links to taxonomic and molecular datasets. Zootaxa 2015; 3709:341-62. [PMID: 26240915 DOI: 10.11646/zootaxa.3709.4.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This paper deals with two European species, Phyllonorycter mespilella (Hübner, 1805) and P. trifasciella (Haworth, 1828), that have colonized the subtropical Canary Islands. The Rosaceae leaf miner, P. mespilella, is recorded for the first time from Lanzarote and La Palma, while the Caprifoliaceae leaf miner, P. trifasciella, is recorded from Tenerife. We present the diagnoses of these species based on morphology, a preliminary DNA barcode (COI) library of congeneric and con-familial species, and discuss the taxonomic position of the colonizers within the blancardella and trifasciella species groups. The recent intensification of anthropogenic disturbance likely accounts for their range expansion, an event that may impact the relict flora present on the Canary Islands.
Collapse
|
112
|
Telfer AC, Young MR, Quinn J, Perez K, Sobel CN, Sones JE, Levesque-Beaudin V, Derbyshire R, Fernandez-Triana J, Rougerie R, Thevanayagam A, Boskovic A, Borisenko AV, Cadel A, Brown A, Pages A, Castillo AH, Nicolai A, Glenn Mockford BM, Bukowski B, Wilson B, Trojahn B, Lacroix CA, Brimblecombe C, Hay C, Ho C, Steinke C, Warne CP, Garrido Cortes C, Engelking D, Wright D, Lijtmaer DA, Gascoigne D, Hernandez Martich D, Morningstar D, Neumann D, Steinke D, Marco DeBruin DD, Dobias D, Sears E, Richard E, Damstra E, Zakharov EV, Laberge F, Collins GE, Blagoev GA, Grainge G, Ansell G, Meredith G, Hogg I, McKeown J, Topan J, Bracey J, Guenther J, Sills-Gilligan J, Addesi J, Persi J, Layton KKS, D'Souza K, Dorji K, Grundy K, Nghidinwa K, Ronnenberg K, Lee KM, Xie L, Lu L, Penev L, Gonzalez M, Rosati ME, Kekkonen M, Kuzmina M, Iskandar M, Mutanen M, Fatahi M, Pentinsaari M, Bauman M, Nikolova N, Ivanova NV, Jones N, Weerasuriya N, Monkhouse N, Lavinia PD, Jannetta P, Hanisch PE, McMullin RT, Ojeda Flores R, Mouttet R, Vender R, Labbee RN, Forsyth R, Lauder R, Dickson R, Kroft R, Miller SE, MacDonald S, Panthi S, Pedersen S, Sobek-Swant S, Naik S, Lipinskaya T, Eagalle T, Decaëns T, Kosuth T, Braukmann T, Woodcock T, Roslin T, Zammit T, Campbell V, Dinca V, Peneva V, Hebert PDN, deWaard JR. Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve. Biodivers Data J 2015; 3:e6313. [PMID: 26379469 PMCID: PMC4568406 DOI: 10.3897/bdj.3.e6313] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Comprehensive biotic surveys, or 'all taxon biodiversity inventories' (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. NEW INFORMATION The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies - a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic specialist time. The final product is more than a comprehensive biotic inventory - it is also a rich dataset of fine-scale occurrence and sequence data, all archived and cross-linked in the major biodiversity data repositories. This model of rapid generation and dissemination of essential biodiversity data could be followed to conduct regional assessments of biodiversity status and change, and potentially be employed for evaluating progress towards the Aichi Targets of the Strategic Plan for Biodiversity 2011-2020.
Collapse
|
113
|
Young MR, Hebert PDN. Patterns of Protein Evolution in Cytochrome c Oxidase 1 (COI) from the Class Arachnida. PLoS One 2015; 10:e0135053. [PMID: 26308206 PMCID: PMC4550450 DOI: 10.1371/journal.pone.0135053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 01/01/2023] Open
Abstract
Because sequence information is now available for the 648bp barcode region of cytochrome c oxidase 1 (COI) from more than 400,000 animal species, this gene segment can be used to probe patterns of mitochondrial evolution. The present study examines levels of amino acid substitution and the frequency of indels in COI from 4177 species of arachnids, including representatives from all 16 orders and 43% of its families (267/625). It examines divergences at three taxonomic levels—among members of each order to an outgroup, among families in each order and among BINs, a species proxy, in each family. Order Distances vary fourfold (0.10–0.39), while the mean of the Family Distances for the ten orders ranges fivefold (0.07–0.35). BIN Distances show great variation, ranging from 0.01 or less in 12 families to more than 0.25 in eight families. Patterns of amino acid substitution in COI are generally congruent with previously reported variation in nucleotide substitution rates in arachnids, but provide some new insights, such as clear rate acceleration in the Opiliones. By revealing a strong association between elevated rates of nucleotide and amino acid substitution, this study builds evidence for the selective importance of the rate variation among arachnid lineages. Moreover, it establishes that groups whose COI genes have elevated levels of amino acid substitution also regularly possess indels, a dramatic form of protein reconfiguration. Overall, this study suggests that the mitochondrial genome of some arachnid groups is dynamic with high rates of amino acid substitution and frequent indels, while it is ‘locked down’ in others. Dynamic genomes are most prevalent in arachnids with short generation times, but the possible impact of breeding system deserves investigation since many of the rapidly evolving lineages reproduce by haplodiploidy, a mode of reproduction absent in ‘locked down’ taxa.
Collapse
|
114
|
Speidel W, Hausmann A, Müller GC, Kravchenko V, Mooser J, Witt TJ, Khallaayoune K, Prosser S, Hebert PDN. Taxonomy 2.0: Sequencing of old type specimens supports the description of two new species of the Lasiocampa decolorata group from Morocco (Lepidoptera, Lasiocampidae). Zootaxa 2015; 3999:401-12. [PMID: 26623584 DOI: 10.11646/zootaxa.3999.3.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 11/04/2022]
Abstract
The type of Lasiocampa decolorata (KLUG, 1830), collected in 1820, was successfully barcoded to generate a 658bp COI-fragment after 194 years. The resulting molecular data allowed the description of two closely related species from Morocco: Lasiocampa hannae SPEIDEL, MOOSER & WITT sp. n. from the Anti Atlas and Lasiocampa editae SPEIDEL, MOOSER & WITT sp. n. from the High Atlas.
Collapse
|
115
|
Blagoev GA, deWaard JR, Ratnasingham S, deWaard SL, Lu L, Robertson J, Telfer AC, Hebert PDN. Untangling taxonomy: a
DNA
barcode reference library for
C
anadian spiders. Mol Ecol Resour 2015; 16:325-41. [DOI: 10.1111/1755-0998.12444] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022]
|
116
|
Dincă V, Montagud S, Talavera G, Hernández-Roldán J, Munguira ML, García-Barros E, Hebert PDN, Vila R. DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Sci Rep 2015; 5:12395. [PMID: 26205828 PMCID: PMC4513295 DOI: 10.1038/srep12395] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/11/2015] [Indexed: 02/05/2023] Open
Abstract
How common are cryptic species--those overlooked because of their morphological similarity? Despite its wide-ranging implications for biology and conservation, the answer remains open to debate. Butterflies constitute the best-studied invertebrates, playing a similar role as birds do in providing models for vertebrate biology. An accurate assessment of cryptic diversity in this emblematic group requires meticulous case-by-case assessments, but a preview to highlight cases of particular interest will help to direct future studies. We present a survey of mitochondrial genetic diversity for the butterfly fauna of the Iberian Peninsula with unprecedented resolution (3502 DNA barcodes for all 228 species), creating a reliable system for DNA-based identification and for the detection of overlooked diversity. After compiling available data for European butterflies (5782 sequences, 299 species), we applied the Generalized Mixed Yule-Coalescent model to explore potential cryptic diversity at a continental scale. The results indicate that 27.7% of these species include from two to four evolutionary significant units (ESUs), suggesting that cryptic biodiversity may be higher than expected for one of the best-studied invertebrate groups and regions. The ESUs represent important units for conservation, models for studies of evolutionary and speciation processes, and sentinels for future research to unveil hidden diversity.
Collapse
|
117
|
Fraser LH, Harrower WL, Garris HW, Davidson S, Hebert PDN, Howie R, Moody A, Polster D, Schmitz OJ, Sinclair ARE, Starzomski BM, Sullivan TP, Turkington R, Wilson D. A call for applying trophic structure in ecological restoration. Restor Ecol 2015. [DOI: 10.1111/rec.12225] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
118
|
Gwiazdowski RA, Foottit RG, Maw HEL, Hebert PDN. The hemiptera (insecta) of Canada: constructing a reference library of DNA barcodes. PLoS One 2015; 10:e0125635. [PMID: 25923328 PMCID: PMC4414572 DOI: 10.1371/journal.pone.0125635] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
DNA barcode reference libraries linked to voucher specimens create new opportunities for high-throughput identification and taxonomic re-evaluations. This study provides a DNA barcode library for about 45% of the recognized species of Canadian Hemiptera, and the publically available R workflow used for its generation. The current library is based on the analysis of 20,851 specimens including 1849 species belonging to 628 genera and 64 families. These individuals were assigned to 1867 Barcode Index Numbers (BINs), sequence clusters that often coincide with species recognized through prior taxonomy. Museum collections were a key source for identified specimens, but we also employed high-throughput collection methods that generated large numbers of unidentified specimens. Many of these specimens represented novel BINs that were subsequently identified by taxonomists, adding barcode coverage for additional species. Our analyses based on both approaches includes 94 species not listed in the most recent Canadian checklist, representing a potential 3% increase in the fauna. We discuss the development of our workflow in the context of prior DNA barcode library construction projects, emphasizing the importance of delineating a set of reference specimens to aid investigations in cases of nomenclatural and DNA barcode discordance. The identification for each specimen in the reference set can be annotated on the Barcode of Life Data System (BOLD), allowing experts to highlight questionable identifications; annotations can be added by any registered user of BOLD, and instructions for this are provided.
Collapse
|
119
|
Kekkonen M, Mutanen M, Kaila L, Nieminen M, Hebert PDN. Delineating species with DNA barcodes: a case of taxon dependent method performance in moths. PLoS One 2015; 10:e0122481. [PMID: 25849083 PMCID: PMC4406103 DOI: 10.1371/journal.pone.0122481] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/22/2015] [Indexed: 11/26/2022] Open
Abstract
The accelerating loss of biodiversity has created a need for more effective ways to discover species. Novel algorithmic approaches for analyzing sequence data combined with rapidly expanding DNA barcode libraries provide a potential solution. While several analytical methods are available for the delineation of operational taxonomic units (OTUs), few studies have compared their performance. This study compares the performance of one morphology-based and four DNA-based (BIN, parsimony networks, ABGD, GMYC) methods on two groups of gelechioid moths. It examines 92 species of Finnish Gelechiinae and 103 species of Australian Elachistinae which were delineated by traditional taxonomy. The results reveal a striking difference in performance between the two taxa with all four DNA-based methods. OTU counts in the Elachistinae showed a wider range and a relatively low (ca. 65%) OTU match with reference species while OTU counts were more congruent and performance was higher (ca. 90%) in the Gelechiinae. Performance rose when only monophyletic species were compared, but the taxon-dependence remained. None of the DNA-based methods produced a correct match with non-monophyletic species, but singletons were handled well. A simulated test of morphospecies-grouping performed very poorly in revealing taxon diversity in these small, dull-colored moths. Despite the strong performance of analyses based on DNA barcodes, species delineated using single-locus mtDNA data are best viewed as OTUs that require validation by subsequent integrative taxonomic work.
Collapse
|
120
|
Schmidt S, Schmid-Egger C, Morinière J, Haszprunar G, Hebert PDN. DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera, Apoidea partim). Mol Ecol Resour 2015; 15:985-1000. [PMID: 25588628 DOI: 10.1111/1755-0998.12363] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/18/2014] [Accepted: 12/15/2014] [Indexed: 11/29/2022]
Abstract
This study presents DNA barcode records for 4118 specimens representing 561 species of bees belonging to the six families of Apoidea (Andrenidae, Apidae, Colletidae, Halictidae, Megachilidae and Melittidae) found in Central Europe. These records provide fully compliant barcode sequences for 503 of the 571 bee species in the German fauna and partial sequences for 43 more. The barcode results are largely congruent with traditional taxonomy as only five closely allied pairs of species could not be discriminated by barcodes. As well, 90% of the species possessed sufficiently deep sequence divergence to be assigned to a different Barcode Index Number (BIN). In fact, 56 species (11%) were assigned to two or more BINs reflecting the high levels of intraspecific divergence among their component specimens. Fifty other species (9.7%) shared the same Barcode Index Number with one or more species, but most of these species belonged to a distinct barcode cluster within a particular BIN. The barcode data contributed to clarifying the status of nearly half the examined taxonomically problematic species of bees in the German fauna. Based on these results, the role of DNA barcoding as a tool for current and future taxonomic work is discussed.
Collapse
|
121
|
Mutanen M, Kekkonen M, Prosser SWJ, Hebert PDN, Kaila L. One species in eight: DNA barcodes from type specimens resolve a taxonomic quagmire. Mol Ecol Resour 2015; 15:967-84. [PMID: 25524367 PMCID: PMC4964951 DOI: 10.1111/1755-0998.12361] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022]
Abstract
Each holotype specimen provides the only objective link to a particular Linnean binomen. Sequence information from them is increasingly valuable due to the growing usage of DNA barcodes in taxonomy. As type specimens are often old, it may only be possible to recover fragmentary sequence information from them. We tested the efficacy of short sequences from type specimens in the resolution of a challenging taxonomic puzzle: the Elachista dispunctella complex which includes 64 described species with minuscule morphological differences. We applied a multistep procedure to resolve the taxonomy of this species complex. First, we sequenced a large number of newly collected specimens and as many holotypes as possible. Second, we used all >400 bp examine species boundaries. We employed three unsupervised methods (BIN, ABGD, GMYC) with specified criteria on how to handle discordant results and examined diagnostic bases from each delineated putative species (operational taxonomic units, OTUs). Third, we evaluated the morphological characters of each OTU. Finally, we associated short barcodes from types with the delineated OTUs. In this step, we employed various supervised methods, including distance‐based, tree‐based and character‐based. We recovered 658 bp barcode sequences from 194 of 215 fresh specimens and recovered an average of 141 bp from 33 of 42 holotypes. We observed strong congruence among all methods and good correspondence with morphology. We demonstrate potential pitfalls with tree‐, distance‐ and character‐based approaches when associating sequences of varied length. Our results suggest that sequences as short as 56 bp can often provide valuable taxonomic information. The results support significant taxonomic oversplitting of species in the Elachista dispunctella complex.
Collapse
|
122
|
Huemer P, Mutanen M, Sefc KM, Hebert PDN. Testing DNA barcode performance in 1000 species of European lepidoptera: large geographic distances have small genetic impacts. PLoS One 2014; 9:e115774. [PMID: 25541991 PMCID: PMC4277373 DOI: 10.1371/journal.pone.0115774] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022] Open
Abstract
This study examines the performance of DNA barcodes (mt cytochrome c oxidase 1 gene) in the identification of 1004 species of Lepidoptera shared by two localities (Finland, Austria) that are 1600 km apart. Maximum intraspecific distances for the pooled data were less than 2% for 880 species (87.6%), while deeper divergence was detected in 124 species. Despite such variation, the overall DNA barcode library possessed diagnostic COI sequences for 98.8% of the taxa. Because a reference library based on Finnish specimens was highly effective in identifying specimens from Austria, we conclude that barcode libraries based on regional sampling can often be effective for a much larger area. Moreover, dispersal ability (poor, good) and distribution patterns (disjunct, fragmented, continuous, migratory) had little impact on levels of intraspecific geographic divergence. Furthermore, the present study revealed that, despite the intensity of past taxonomic work on European Lepidoptera, nearly 20% of the species shared by Austria and Finland require further work to clarify their status. Particularly discordant BIN (Barcode Index Number) cases should be checked to ascertain possible explanatory factors such as incorrect taxonomy, hybridization, introgression, and Wolbachia infections.
Collapse
|
123
|
Hendrich L, Morinière J, Haszprunar G, Hebert PDN, Hausmann A, Köhler F, Balke M. A comprehensive
DNA
barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD. Mol Ecol Resour 2014; 15:795-818. [DOI: 10.1111/1755-0998.12354] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 02/03/2023]
|
124
|
Fernandez-Triana JL, Penev L, Ratnasingham S, Smith MA, Sones J, Telfer A, deWaard JR, Hebert PDN. Streamlining the use of BOLD specimen data to record species distributions: a case study with ten Nearctic species of Microgastrinae (Hymenoptera: Braconidae). Biodivers Data J 2014:e4153. [PMID: 25473326 PMCID: PMC4251541 DOI: 10.3897/bdj.2.e4153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 10/24/2014] [Indexed: 11/13/2022] Open
Abstract
The Barcode of Life Data Systems (BOLD) is designed to support the generation and application of DNA barcode data, but it also provides a unique source of data with potential for many research uses. This paper explores the streamlining of BOLD specimen data to record species distributions – and its fast publication using the Biodiversity Data Journal (BDJ), and its authoring platform, the Pensoft Writing Tool (PWT). We selected a sample of 630 specimens and 10 species of a highly diverse group of parasitoid wasps (Hymenoptera: Braconidae, Microgastrinae) from the Nearctic region and used the information in BOLD to uncover a significant number of new records (of locality, provinces, territories and states). By converting specimen information (such as locality, collection date, collector, voucher depository) from the BOLD platform to the Excel template provided by the PWT, it is possible to quickly upload and generate long lists of "Material Examined" for papers discussing taxonomy, ecology and/or new distribution records of species. For the vast majority of publications including DNA barcodes, the generation and publication of ancillary data associated with the barcoded material is seldom highlighted and often disregarded, and the analysis of those data sets to uncover new distribution patterns of species has rarely been explored, even though many BOLD records represent new and/or significant discoveries. The introduction of journals specializing in – and streamlining – the release of these datasets, such as the BDJ, should facilitate thorough analysis of these records, as shown in this paper.
Collapse
|
125
|
Pentinsaari M, Hebert PDN, Mutanen M. Barcoding beetles: a regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLoS One 2014; 9:e108651. [PMID: 25255319 PMCID: PMC4177932 DOI: 10.1371/journal.pone.0108651] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/03/2014] [Indexed: 11/22/2022] Open
Abstract
With 400 K described species, beetles (Insecta: Coleoptera) represent the most diverse order in the animal kingdom. Although the study of their diversity currently represents a major challenge, DNA barcodes may provide a functional, standardized tool for their identification. To evaluate this possibility, we performed the first comprehensive test of the effectiveness of DNA barcodes as a tool for beetle identification by sequencing the COI barcode region from 1872 North European species. We examined intraspecific divergences, identification success and the effects of sample size on variation observed within and between species. A high proportion (98.3%) of these species possessed distinctive barcode sequence arrays. Moreover, the sequence divergences between nearest neighbor species were considerably higher than those reported for the only other insect order, Lepidoptera, which has seen intensive analysis (11.99% vs up to 5.80% mean NN divergence). Although maximum intraspecific divergence increased and average divergence between nearest neighbors decreased with increasing sampling effort, these trends rarely hampered identification by DNA barcodes due to deep sequence divergences between most species. The Barcode Index Number system in BOLD coincided strongly with known species boundaries with perfect matches between species and BINs in 92.1% of all cases. In addition, DNA barcode analysis revealed the likely occurrence of about 20 overlooked species. The current results indicate that DNA barcodes distinguish species of beetles remarkably well, establishing their potential to provide an effective identification tool for this order and to accelerate the discovery of new beetle species.
Collapse
|