101
|
Gautheron J, Vucur M, Schneider AT, Severi I, Roderburg C, Roy S, Bartneck M, Schrammen P, Diaz MB, Ehling J, Gremse F, Heymann F, Koppe C, Lammers T, Kiessling F, Van Best N, Pabst O, Courtois G, Linkermann A, Krautwald S, Neumann UP, Tacke F, Trautwein C, Green DR, Longerich T, Frey N, Luedde M, Bluher M, Herzig S, Heikenwalder M, Luedde T. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun 2016; 7:11869. [PMID: 27323669 PMCID: PMC4919522 DOI: 10.1038/ncomms11869] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3) mediates necroptosis, a form of programmed cell death that promotes inflammation in various pathological conditions, suggesting that it might be a privileged pharmacological target. However, its function in glucose homeostasis and obesity has been unknown. Here we show that RIPK3 is over expressed in the white adipose tissue (WAT) of obese mice fed with a choline-deficient high-fat diet. Genetic inactivation of Ripk3 promotes increased Caspase-8-dependent adipocyte apoptosis and WAT inflammation, associated with impaired insulin signalling in WAT as the basis for glucose intolerance. Similarly to mice, in visceral WAT of obese humans, RIPK3 is overexpressed and correlates with the body mass index and metabolic serum markers. Together, these findings provide evidence that RIPK3 in WAT maintains tissue homeostasis and suppresses inflammation and adipocyte apoptosis, suggesting that systemic targeting of necroptosis might be associated with the risk of promoting insulin resistance in obese patients.
Collapse
|
102
|
Giroud M, Pisani DF, Karbiener M, Barquissau V, Ghandour RA, Tews D, Fischer-Posovszky P, Chambard JC, Knippschild U, Niemi T, Taittonen M, Nuutila P, Wabitsch M, Herzig S, Virtanen KA, Langin D, Scheideler M, Amri EZ. miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function. Mol Metab 2016; 5:615-625. [PMID: 27656399 PMCID: PMC5021678 DOI: 10.1016/j.molmet.2016.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/17/2022] Open
Abstract
Objective In rodents and humans, besides brown adipose tissue (BAT), islands of thermogenic adipocytes, termed “brite” (brown-in-white) or beige adipocytes, emerge within white adipose tissue (WAT) after cold exposure or β3-adrenoceptor stimulation, which may protect from obesity and associated diseases. microRNAs are novel modulators of adipose tissue development and function. The purpose of this work was to characterize the role of microRNAs in the control of brite adipocyte formation. Methods/Results Using human multipotent adipose derived stem cells, we identified miR-125b-5p as downregulated upon brite adipocyte formation. In humans and rodents, miR-125b-5p expression was lower in BAT than in WAT. In vitro, overexpression and knockdown of miR-125b-5p decreased and increased mitochondrial biogenesis, respectively. In vivo, miR-125b-5p levels were downregulated in subcutaneous WAT and interscapular BAT upon β3-adrenergic receptor stimulation. Injections of an miR-125b-5p mimic and LNA inhibitor directly into WAT inhibited and increased β3-adrenoceptor-mediated induction of UCP1, respectively, and mitochondrial brite adipocyte marker expression and mitochondriogenesis. Conclusion Collectively, our results demonstrate that miR-125b-5p plays an important role in the repression of brite adipocyte function by modulating oxygen consumption and mitochondrial gene expression. miR-125b-5p levels negatively correlate with UCP1 expression in rodent and human. miR125b levels in white adipose tissue are positively correlated with BMI. miR-125b-5p modulates oxygen consumption. Mitochondriogenesis is controlled by miR-125b-5p. In vivo modulation of miR-125b-5p controls brown and brite adipocyte formation.
Collapse
|
103
|
Fuhrmeister J, Zota A, Sijmonsma TP, Seibert O, Cıngır Ş, Schmidt K, Vallon N, de Guia RM, Niopek K, Berriel Diaz M, Maida A, Blüher M, Okun JG, Herzig S, Rose AJ. Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health. EMBO Mol Med 2016; 8:654-69. [PMID: 27137487 PMCID: PMC4888855 DOI: 10.15252/emmm.201505801] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent studies have demonstrated that repeated short‐term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered “growth arrest and DNA damage‐inducible” GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre‐diabetes and type 2 diabetes, in both mice and humans. Using whole‐body knockout mice as well as liver/hepatocyte‐specific gain‐ and loss‐of‐function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity‐driven hyperglycaemia. In summary, fasting stress‐induced GADD45β represents a liver‐specific molecular event promoting adaptive metabolic function.
Collapse
|
104
|
Stoy C, Sundaram A, Rios Garcia M, Wang X, Seibert O, Zota A, Wendler S, Männle D, Hinz U, Sticht C, Muciek M, Gretz N, Rose AJ, Greiner V, Hofmann TG, Bauer A, Hoheisel J, Berriel Diaz M, Gaida MM, Werner J, Schafmeier T, Strobel O, Herzig S. Transcriptional co-factor Transducin beta-like (TBL) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Mol Med 2016; 7:1048-62. [PMID: 26070712 PMCID: PMC4551343 DOI: 10.15252/emmm.201404837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer fatalities in Western societies, characterized by high metastatic potential and resistance to chemotherapy. Critical molecular mechanisms of these phenotypical features still remain unknown, thus hampering the development of effective prognostic and therapeutic measures in PDAC. Here, we show that transcriptional co-factor Transducin beta-like (TBL) 1 was over-expressed in both human and murine PDAC. Inactivation of TBL1 in human and mouse pancreatic cancer cells reduced cellular proliferation and invasiveness, correlating with diminished glucose uptake, glycolytic flux, and oncogenic PI3 kinase signaling which in turn could rescue TBL1 deficiency-dependent phenotypes. TBL1 deficiency both prevented and reversed pancreatic tumor growth, mediated transcriptional PI3 kinase inhibition, and increased chemosensitivity of PDAC cells in vivo. As TBL1 mRNA levels were also found to correlate with PI3 kinase levels and overall survival in a cohort of human PDAC patients, TBL1 was identified as a checkpoint in the malignant behavior of pancreatic cancer and its expression may serve as a novel molecular target in the treatment of human PDAC.
Collapse
|
105
|
Giroud M, Pisani DF, Karbiener M, Barquisseau V, Ghandour RA, Chambard JC, Herzig S, Virtanen KA, Langin D, Scheideler M, Amri ZE. miR-125b impairs brite adipocyte formation and function. DIABETOL STOFFWECHS 2016. [DOI: 10.1055/s-0036-1580914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
106
|
Georgiadi A, Ma X, Bosma M, Graham E, Shilkova O, Mattijssen F, Khan AA, Higareda JCA, Wünsch T, Johansson M, Seaman S, Croix BS, Ritvos O, Nakamura N, Hirose S, Scheideler M, Herzig S, Böstrom PA. Fndc4, a highly identical ortholog of Irisin binds and activates a novel orphan receptor G-protein coupled receptor. DIABETOL STOFFWECHS 2016. [DOI: 10.1055/s-0036-1580814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
107
|
Fujikawa Y, Roma LP, Sobotta MC, Rose AJ, Diaz MB, Locatelli G, Breckwoldt MO, Misgeld T, Kerschensteiner M, Herzig S, Müller-Decker K, Dick TP. Mouse redox histology using genetically encoded probes. Sci Signal 2016; 9:rs1. [DOI: 10.1126/scisignal.aad3895] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
108
|
Ghandour RA, Giroud M, Vegiopoulos A, Herzig S, Ailhaud G, Amri EZ, Pisani DF. IP-receptor and PPARs trigger the conversion of human white to brite adipocyte induced by carbaprostacyclin. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:285-93. [PMID: 26775637 DOI: 10.1016/j.bbalip.2016.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/31/2022]
Abstract
Brite adipocytes recently discovered in humans are of considerable importance in energy expenditure by converting energy excess into heat. This property could be useful in the treatment of obesity, and nutritional aspects are relevant to this important issue. Using hMADS cells as a human cell model which undergoes a white to a brite adipocyte conversion, we had shown previously that arachidonic acid, the major metabolite of the essential nutrient Ω6-linoleic acid, plays a major role in this process. Its metabolites PGE2 and PGF2 alpha inhibit this process via a calcium-dependent pathway, whereas in contrast carbaprostacyclin (cPGI2), a stable analog of prostacyclin, activates white to brite adipocyte conversion. Herein, we show that cPGI2 generates via its cognate cell-surface receptor IP-R, a cyclic AMP-signaling pathway involving PKA activity which in turn induces the expression of UCP1. In addition, cPGI2 activates the pathway of nuclear receptors of the PPAR family, i.e. PPARα and PPARγ, which act separately from IP-R to up-regulate the expression of key genes involved in the function of brite adipocytes. Thus dual pathways are playing in concert for the occurrence of a browning process of human white adipocytes. These results make prostacyclin analogs as a new class of interesting molecules to treat obesity and associated diseases.
Collapse
|
109
|
Herzig S. Preface. Handb Exp Pharmacol 2016; 233:v. [PMID: 27227186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
110
|
Wortmann M, Hakimi M, Fleming T, Peters AS, Sijmonsma TP, Herzig S, Nawroth PP, Böckler D, Dihlmann S. A Glyoxalase-1 Knockdown Does Not Have Major Short Term Effects on Energy Expenditure and Atherosclerosis in Mice. J Diabetes Res 2016; 2016:2981639. [PMID: 26788517 PMCID: PMC4693023 DOI: 10.1155/2016/2981639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/27/2015] [Indexed: 12/16/2022] Open
Abstract
Objective. Glyoxalase-1 is an enzyme detoxifying methylglyoxal (MG). MG is a potent precursor of advanced glycation endproducts which are regarded to be a key player in micro- and macrovascular damage. Yet, the role of Glo1 in atherosclerosis remains unclear. In this study, the effect of Glo1 on mouse metabolism and atherosclerosis is evaluated. Methods. Glo1 knockdown mice were fed a high fat or a standard diet for 10 weeks. Body weight and composition were investigated by Echo MRI. The PhenoMaster system was used to measure the energy expenditure. To evaluate the impact of Glo1 on atherosclerosis, Glo1(KD) mice were crossed with ApoE-knockout mice and fed a high fat diet for 14 weeks. Results. Glo1 activity was significantly reduced in heart, liver, and kidney lysates derived from Glo1(KD) mice. Yet, there was no increase in methylglyoxal-derived AGEs in all organs analyzed. The Glo1 knockdown did not affect body weight or body composition. Metabolic studies via indirect calorimetry did not show significant effects on energy expenditure. Glo1(KD) mice crossed to ApoE(-/-) mice did not show enhanced formation of atherosclerosis. Conclusion. A Glo1 knockdown does not have major short term effects on the energy expenditure or the formation of atherosclerotic plaques.
Collapse
|
111
|
Karbiener M, Glantschnig C, Pisani DF, Laurencikiene J, Dahlman I, Herzig S, Amri EZ, Scheideler M. Mesoderm-specific transcript (MEST) is a negative regulator of human adipocyte differentiation. Int J Obes (Lond) 2015; 39:1733-41. [PMID: 26119994 PMCID: PMC4625608 DOI: 10.1038/ijo.2015.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND A growing body of evidence suggests that many downstream pathologies of obesity are amplified or even initiated by molecular changes within the white adipose tissue (WAT). Such changes are the result of an excessive expansion of individual white adipocytes and could potentially be ameliorated via an increase in de novo adipocyte recruitment (adipogenesis). Mesoderm-specific transcript (MEST) is a protein with a putative yet unidentified enzymatic function and has previously been shown to correlate with adiposity and adipocyte size in mouse. OBJECTIVES This study analysed WAT samples and employed a cell model of adipogenesis to characterise MEST expression and function in human. METHODS AND RESULTS MEST mRNA and protein levels increased during adipocyte differentiation of human multipotent adipose-derived stem cells. Further, obese individuals displayed significantly higher MEST levels in WAT compared with normal-weight subjects, and MEST was significantly correlated with adipocyte volume. In striking contrast to previous mouse studies, knockdown of MEST enhanced human adipocyte differentiation, most likely via a significant promotion of peroxisome proliferator-activated receptor signalling, glycolysis and fatty acid biosynthesis pathways at early stages. Correspondingly, overexpression of MEST impaired adipogenesis. We further found that silencing of MEST fully substitutes for the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) as an inducer of adipogenesis. Accordingly, phosphorylation of the pro-adipogenic transcription factors cyclic AMP responsive element binding protein (CREB) and activating transcription factor 1 (ATF1) were highly increased on MEST knockdown. CONCLUSIONS Although we found a similar association between MEST and adiposity as previously described for mouse, our functional analyses suggest that MEST acts as an inhibitor of human adipogenesis, contrary to previous murine studies. We have further established a novel link between MEST and CREB/ATF1 that could be of general relevance in regulation of metabolism, in particular obesity-associated diseases.
Collapse
|
112
|
Cheng YS, Seibert O, Klöting N, Dietrich A, Straßburger K, Fernández-Veledo S, Vendrell JJ, Zorzano A, Blüher M, Herzig S, Berriel Diaz M, Teleman AA. PPP2R5C Couples Hepatic Glucose and Lipid Homeostasis. PLoS Genet 2015; 11:e1005561. [PMID: 26440364 PMCID: PMC4595073 DOI: 10.1371/journal.pgen.1005561] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 09/10/2015] [Indexed: 01/12/2023] Open
Abstract
In mammals, the liver plays a central role in maintaining carbohydrate and lipid homeostasis by acting both as a major source and a major sink of glucose and lipids. In particular, when dietary carbohydrates are in excess, the liver converts them to lipids via de novo lipogenesis. The molecular checkpoints regulating the balance between carbohydrate and lipid homeostasis, however, are not fully understood. Here we identify PPP2R5C, a regulatory subunit of PP2A, as a novel modulator of liver metabolism in postprandial physiology. Inactivation of PPP2R5C in isolated hepatocytes leads to increased glucose uptake and increased de novo lipogenesis. These phenotypes are reiterated in vivo, where hepatocyte specific PPP2R5C knockdown yields mice with improved systemic glucose tolerance and insulin sensitivity, but elevated circulating triglyceride levels. We show that modulation of PPP2R5C levels leads to alterations in AMPK and SREBP-1 activity. We find that hepatic levels of PPP2R5C are elevated in human diabetic patients, and correlate with obesity and insulin resistance in these subjects. In sum, our data suggest that hepatic PPP2R5C represents an important factor in the functional wiring of energy metabolism and the maintenance of a metabolically healthy state. After a meal, dietary glucose travels through the hepatic portal vein to the liver. A substantial part of this glucose is taken up by liver, which converts it to glycogen which is stored, and lipids which are in part stored and in part secreted as VLDL particles. The rest of the organs receive whatever glucose the liver leaves in circulation, plus the secreted lipids. Hence the liver plays a crucial role in determining the balance of sugar versus lipids in the body after a meal. This balance is very important, because too much glucose in circulation leads to diabetic complications whereas too much VLDL increases risk of atherosclerosis. Little is known about how the liver strikes this balance. We identify here a phosphatase—the PP2A holoenzyme containing the PPP2R5C regulatory subunit—as a regulator of this process. We find that knockdown of PPP2R5C in mouse liver specifically causes it to uptake elevated levels of glucose, and secrete elevated levels of VLDL into circulation. This leads to a phenotype of improved glucose tolerance and insulin sensitivity. The prediction from these functional studies in mice is that elevated levels of PPP2R5C expression should lead to insulin resistance. Indeed, we find that PPP2R5C expression levels are elevated in diabetic patients, or healthy controls with visceral obesity, raising the possibility that dysregulation of PPP2R5C expression in humans may contribute towards metabolic dysfunction.
Collapse
|
113
|
Rausch V, Straub BK, Peccerella T, Pawella LM, Lackner C, Yagmur E, Stickel F, Herzig S, Seitz HK, Longerich, T, Mueller S. FOC5-2PRIMARY HEPATOCELLULAR DAMAGE AND SUPPRESSED FAT MOBILIZATION IN HEAVY DRINKERS WITH PNPLA3 G GENOTYPE. Alcohol Alcohol 2015. [DOI: 10.1093/alcalc/agv079.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
114
|
Rausch V, Katharina Straub B, Peccerella T, Pawella LM, Lackner, C, Yagmur E, Stickel F, Herzig S, Seitz H, Longerich T, Mueller S. SY14-4PRIMARY HEPATOCELLULAR DAMAGE AND SUPPRESSED FAT MOBILIZATION IN HEAVY DRINKERS WITH PNPLA3 G GENOTYPE. Alcohol Alcohol 2015. [DOI: 10.1093/alcalc/agv076.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
115
|
Okun JG, Conway S, Schmidt KV, Schumacher J, Wang X, de Guia R, Zota A, Klement J, Seibert O, Peters A, Maida A, Herzig S, Rose AJ. Molecular regulation of urea cycle function by the liver glucocorticoid receptor. Mol Metab 2015; 4:732-40. [PMID: 26500844 PMCID: PMC4588454 DOI: 10.1016/j.molmet.2015.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 11/21/2022] Open
Abstract
Objective One of the major side effects of glucocorticoid (GC) treatment is lean tissue wasting, indicating a prominent role in systemic amino acid metabolism. In order to uncover a novel aspect of GCs and their intracellular-receptor, the glucocorticoid receptor (GR), on metabolic control, we conducted amino acid and acylcarnitine profiling in human and mouse models of GC/GR gain- and loss-of-function. Methods Blood serum and tissue metabolite levels were determined in Human Addison's disease (AD) patients as well as in mouse models of systemic and liver-specific GR loss-of-function (AAV-miR-GR) with or without dexamethasone (DEX) treatments. Body composition and neuromuscular and metabolic function tests were conducted in vivo and ex vivo, the latter using precision cut liver slices. Results A serum metabolite signature of impaired urea cycle function (i.e. higher [ARG]:[ORN + CIT]) was observed in human (CTRL: 0.45 ± 0.03, AD: 1.29 ± 0.04; p < 0.001) and mouse (AAV-miR-NC: 0.97 ± 0.13, AAV-miR-GR: 2.20 ± 0.19; p < 0.001) GC/GR loss-of-function, with similar patterns also observed in liver. Serum urea levels were consistently affected by GC/GR gain- (∼+32%) and loss (∼−30%) -of-function. Combined liver-specific GR loss-of-function with DEX treatment revealed a tissue-autonomous role for the GR to coordinate an upregulation of liver urea production rate in vivo and ex vivo, and prevent hyperammonaemia and associated neuromuscular dysfunction in vivo. Liver mRNA expression profiling and GR-cistrome mining identified Arginase I (ARG1) a urea cycle gene targeted by the liver GR. Conclusions The liver GR controls systemic and liver urea cycle function by transcriptional regulation of ARG1 expression. Metabolite profiling revealed a role for the HPA-axis-liver GR in regulating urea cycle function in mouse and humans. The liver GR controls enhanced urea cycle function during chronic glucocorticoid exposure. Liver Arginase I is a key urea cycle transcript regulated by the GR.
Collapse
|
116
|
de Guia RM, Rose AJ, Herzig S. Glucocorticoid hormones and energy homeostasis. Horm Mol Biol Clin Investig 2015; 19:117-28. [PMID: 25390020 DOI: 10.1515/hmbci-2014-0021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 11/15/2022]
Abstract
Glucocorticoids (GC) and their cognate intracellular receptor, the glucocorticoid receptor (GR), have been characterised as critical checkpoints in the endocrine control of energy homeostasis in mammals. Indeed, aberrant GC action has been linked to a variety of severe metabolic diseases, including obesity, insulin resistance and type 2 diabetes. As a steroid-binding member of the nuclear receptor superfamily of transcription factors, the GR translocates into the cell nucleus upon GC binding where it serves as a transcriptional regulator of distinct GC-responsive target genes that are - in many cases - associated with glucose and lipid regulatory pathways and thereby intricately control both physiological and pathophysiological systemic energy homeostasis. Here, we summarize the current knowledge of GC/GR function in energy metabolism and systemic metabolic dysfunction, particularly focusing on glucose and lipid metabolism.
Collapse
|
117
|
Jiang Y, Rose AJ, Sijmonsma TP, Bröer A, Pfenninger A, Herzig S, Schmoll D, Bröer S. Mice lacking neutral amino acid transporter B(0)AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Mol Metab 2015; 4:406-17. [PMID: 25973388 PMCID: PMC4421019 DOI: 10.1016/j.molmet.2015.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Type 2 diabetes arises from insulin resistance of peripheral tissues followed by dysfunction of β-cells in the pancreas due to metabolic stress. Both depletion and supplementation of neutral amino acids have been discussed as strategies to improve insulin sensitivity. Here we characterise mice lacking the intestinal and renal neutral amino acid transporter B(0)AT1 (Slc6a19) as a model to study the consequences of selective depletion of neutral amino acids. METHODS Metabolic tests, analysis of metabolite levels and signalling pathways were used to characterise mice lacking the intestinal and renal neutral amino acid transporter B(0)AT1 (Slc6a19). RESULTS Reduced uptake of neutral amino acids in the intestine and loss of neutral amino acids in the urine causes an overload of amino acids in the lumen of the intestine and reduced systemic amino acid availability. As a result, higher levels of glucagon-like peptide 1 (GLP-1) are produced by the intestine after a meal, while the liver releases the starvation hormone fibroblast growth factor 21 (FGF21). The combination of these hormones generates a metabolic phenotype that is characterised by efficient removal of glucose, particularly by the heart, reduced adipose tissue mass, browning of subcutaneous white adipose tissue, enhanced production of ketone bodies and reduced hepatic glucose output. CONCLUSIONS Reduced neutral amino acid availability improves glycaemic control. The epithelial neutral amino acid transporter B(0)AT1 could be a suitable target to treat type 2 diabetes.
Collapse
|
118
|
Brune M, Nillegoda N, Bukau B, Nawroth PP, Herzig S. Hepatic heat shock proteins in Diabetes and long term diabetic complications. DIABETOL STOFFWECHS 2015. [DOI: 10.1055/s-0035-1549817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
119
|
Niopek K, Berriel Diaz M, Nawroth P, Herzig S. Mind the Ga(b)p! – A novel hepatic gatekeeper at the switch point of metabolic homeostasis and diabetic late complications controlled by reactive metabolites. DIABETOL STOFFWECHS 2015. [DOI: 10.1055/s-0035-1549568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
120
|
Friedrich K, Ekim Üstünel B, Wang X, Jones A, Rohm M, Berriel Diaz M, Stremmel W, Blüher M, Herzig S. Transforming growth factor beta-like stimulated clone 22 D4 promotes diabetic hyperglycemia and insulin resistance. DIABETOL STOFFWECHS 2015. [DOI: 10.1055/s-0035-1549518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
121
|
Hofmann KP, Katz S, Herzig S, Nawroth PP, Kroll J, Peters V, Gröne HJ, Müller OJ, Backs J. Die Rolle oxidierter CaM Kinase II bei diabetischer Nephropathie. DIABETOL STOFFWECHS 2015. [DOI: 10.1055/s-0035-1549636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
122
|
Bauer RV, Sulaj A, Kopf S, Gröne E, Gröne HJ, Hoffmann S, Schleicher E, Häring HU, Schwenger V, Herzig S, Nawroth PP, Fleming T. Loss of ALCAM/CD166 partially protects against diabetic nephropathy. DIABETOL STOFFWECHS 2015. [DOI: 10.1055/s-0035-1549526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
123
|
Medrikova D, Sijmonsma TP, Sowodniok K, Richards DM, Delacher M, Sticht C, Gretz N, Schafmeier T, Feuerer M, Herzig S. Brown adipose tissue harbors a distinct sub-population of regulatory T cells. PLoS One 2015; 10:e0118534. [PMID: 25714366 PMCID: PMC4340926 DOI: 10.1371/journal.pone.0118534] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/20/2015] [Indexed: 12/15/2022] Open
Abstract
Regulatory T (Treg) cells are critical determinants of both immune responses and metabolic control. Here we show that systemic ablation of Treg cells compromised the adaptation of whole-body energy expenditure to cold exposure, correlating with impairment in thermogenic marker gene expression and massive invasion of pro-inflammatory macrophages in brown adipose tissue (BAT). Indeed, BAT harbored a unique sub-set of Treg cells characterized by a unique gene signature. As these Treg cells respond to BAT activation upon cold exposure, this study defines a BAT-specific Treg sub-set with direct implications for the regulation of energy homeostasis in response to environmental stress.
Collapse
|
124
|
Mendler M, Schlotterer A, Ibrahim Y, Kukudov G, Fleming T, Bierhaus A, Riedinger C, Schwenger V, Herzig S, Hecker M, Tyedmers J, Nawroth PP, Morcos M. daf-16/FOXO and glod-4/glyoxalase-1 are required for the life-prolonging effect of human insulin under high glucose conditions in Caenorhabditis elegans. Diabetologia 2015; 58:393-401. [PMID: 25322843 DOI: 10.1007/s00125-014-3415-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine the protective effects of human insulin and its analogues, B28Asp human insulin (insulin aspart) and B29Lys(ε-tetradecanoyl),desB30 human insulin (insulin detemir), against glucose-induced lifespan reduction and neuronal damage in the model organism Caenorhabditis elegans and to elucidate the underlying mechanisms. METHODS Nematodes were cultivated under high glucose (HG) conditions comparable with the situation in diabetic patients and treated with human insulin and its analogues. Lifespan was assessed and neuronal damage was evaluated with regard to structural and functional impairment. Additionally, the activity of glyoxalase-1 and superoxide dismutase (SOD) and the formation of reactive oxygen species (ROS) and AGEs were determined. RESULTS Insulin and its analogues reversed the life-shortening effect of HG conditions and prevented the glucose-induced neuronal impairment. Insulin treatment under HG conditions was associated with reduced concentration of glucose, as well as a reduced formation of ROS and AGEs, and increased SOD activity. These effects were dependent on the Forkhead box O (FOXO) homologue abnormal dauer formation (DAF)-16. Furthermore, glyoxalase-1 activity, which was impaired under HG conditions, was restored by human insulin. This was essential for the insulin-induced lifespan extension under HG conditions, as no change in lifespan was observed following either suppression or overexpression of glyoxalase-1. CONCLUSIONS/INTERPRETATION Human insulin and its analogues prevent the reduction in lifespan and neuronal damage caused by HG conditions. The effect of human insulin is mediated by a daf-2/insulin receptor and daf-16/FOXO-dependent pathway and is mediated by upregulation of detoxifying mechanisms.
Collapse
|
125
|
Karbiener M, Pisani DF, Frontini A, Oberreiter LM, Lang E, Vegiopoulos A, Mössenböck K, Bernhardt GA, Mayr T, Hildner F, Grillari J, Ailhaud G, Herzig S, Cinti S, Amri EZ, Scheideler M. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells 2015; 32:1578-90. [PMID: 24375761 DOI: 10.1002/stem.1603] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/07/2013] [Accepted: 11/16/2013] [Indexed: 12/16/2022]
Abstract
Adipose tissue contains thermogenic adipocytes (i.e., brown and brite/beige) that oxidize nutrients at exceptionally high rates via nonshivering thermogenesis. Its recent discovery in adult humans has opened up new avenues to fight obesity and related disorders such as diabetes. Here, we identified miR-26a and -26b as key regulators of human white and brite adipocyte differentiation. Both microRNAs are upregulated in early adipogenesis, and their inhibition prevented lipid accumulation while their overexpression accelerated it. Intriguingly, miR-26a significantly induced pathways related to energy dissipation, shifted mitochondrial morphology toward that seen in brown adipocytes, and promoted uncoupled respiration by markedly increasing the hallmark protein of brown fat, uncoupling protein 1. By combining in silico target prediction, transcriptomics, and an RNA interference screen, we identified the sheddase ADAM metallopeptidase domain 17 (ADAM17) as a direct target of miR-26 that mediated the observed effects on white and brite adipogenesis. These results point to a novel, critical role for the miR-26 family and its downstream effector ADAM17 in human adipocyte differentiation by promoting characteristics of energy-dissipating thermogenic adipocytes.
Collapse
|