101
|
Vanaerschot M, Lucantoni L, Li T, Combrinck JM, Ruecker A, Kumar TRS, Rubiano K, Ferreira PE, Siciliano G, Gulati S, Henrich PP, Ng CL, Murithi JM, Corey VC, Duffy S, Lieberman OJ, Veiga MI, Sinden RE, Alano P, Delves MJ, Lee Sim K, Winzeler EA, Egan TJ, Hoffman SL, Avery VM, Fidock DA. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity. Nat Microbiol 2017; 2:1403-1414. [PMID: 28808258 DOI: 10.1038/s41564-017-0007-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Abstract
Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.
Collapse
|
102
|
Wu Y, Chakravarty S, Li M, Wai TT, Hoffman SL, Sim BKL. Development of a Live Attenuated Bivalent Oral Vaccine Against Shigella sonnei Shigellosis and Typhoid Fever. J Infect Dis 2017; 215:259-268. [PMID: 27803169 DOI: 10.1093/infdis/jiw528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/24/2016] [Indexed: 11/14/2022] Open
Abstract
Shigella sonnei and Salmonella Typhi cause significant morbidity and mortality. We exploited the safety record of the oral, attenuated S. Typhi vaccine (Ty21a) by using it as a vector to develop a bivalent oral vaccine to protect against S. sonnei shigellosis and typhoid fever. We recombineered the S. sonnei form I O-antigen gene cluster into the Ty21a chromosome to create Ty21a-Ss, which stably expresses S. sonnei form I O antigen. To enhance survivability in the acid environment of the stomach, we created an acid-resistant strain, Ty21a-AR-Ss, by inserting Shigella glutaminase-glutamate decarboxylase systems coexpressed with S. sonnei form I O-antigen gene. Mice immunized intranasally with Ty21a-AR-Ss produced antibodies against S. sonnei and S. Typhi, and survived lethal intranasal S. sonnei challenge. This paves the way for proposed good manufacturing practices manufacture and clinical trials intended to test the clinical effectiveness of Ty21a-AR-Ss in protecting against S. sonnei shigellosis and typhoid fever, as compared with the current Ty21a vaccine.
Collapse
|
103
|
Mpina M, Maurice NJ, Yajima M, Slichter CK, Miller HW, Dutta M, McElrath MJ, Stuart KD, De Rosa SC, McNevin JP, Linsley PS, Abdulla S, Tanner M, Hoffman SL, Gottardo R, Daubenberger CA, Prlic M. Controlled Human Malaria Infection Leads to Long-Lasting Changes in Innate and Innate-like Lymphocyte Populations. THE JOURNAL OF IMMUNOLOGY 2017; 199:107-118. [PMID: 28576979 DOI: 10.4049/jimmunol.1601989] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/01/2017] [Indexed: 11/19/2022]
Abstract
Animal model studies highlight the role of innate-like lymphocyte populations in the early inflammatory response and subsequent parasite control following Plasmodium infection. IFN-γ production by these lymphocytes likely plays a key role in the early control of the parasite and disease severity. Analyzing human innate-like T cell and NK cell responses following infection with Plasmodium has been challenging because the early stages of infection are clinically silent. To overcome this limitation, we examined blood samples from a controlled human malaria infection (CHMI) study in a Tanzanian cohort, in which volunteers underwent CHMI with a low or high dose of Plasmodium falciparum sporozoites. The CHMI differentially affected NK, NKT (invariant NKT), and mucosal-associated invariant T cell populations in a dose-dependent manner, resulting in an altered composition of this innate-like lymphocyte compartment. Although these innate-like responses are typically thought of as short-lived, we found that changes persisted for months after the infection was cleared, leading to significantly increased frequencies of mucosal-associated invariant T cells 6 mo postinfection. We used single-cell RNA sequencing and TCR αβ-chain usage analysis to define potential mechanisms for this expansion. These single-cell data suggest that this increase was mediated by homeostatic expansion-like mechanisms. Together, these data demonstrate that CHMI leads to previously unappreciated long-lasting alterations in the human innate-like lymphocyte compartment. We discuss the consequences of these changes for recurrent parasite infection and infection-associated pathologies and highlight the importance of considering host immunity and infection history for vaccine design.
Collapse
|
104
|
Sulyok M, Rückle T, Roth A, Mürbeth RE, Chalon S, Kerr N, Samec SS, Gobeau N, Calle CL, Ibáñez J, Sulyok Z, Held J, Gebru T, Granados P, Brückner S, Nguetse C, Mengue J, Lalremruata A, Sim BKL, Hoffman SL, Möhrle JJ, Kremsner PG, Mordmüller B. DSM265 for Plasmodium falciparum chemoprophylaxis: a randomised, double blinded, phase 1 trial with controlled human malaria infection. THE LANCET. INFECTIOUS DISEASES 2017; 17:636-644. [PMID: 28363637 PMCID: PMC5446410 DOI: 10.1016/s1473-3099(17)30139-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/05/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND A drug for causal (ie, pre-erythrocytic) prophylaxis of Plasmodium falciparum malaria with prolonged activity would substantially advance malaria control. DSM265 is an experimental antimalarial that selectively inhibits the parasite dihydroorotate dehydrogenase. DSM265 shows in vitro activity against liver and blood stages of P falciparum. We assessed the prophylactic activity of DSM265 against controlled human malaria infection (CHMI). METHODS At the Institute of Tropical Medicine, Eberhard Karls University (Tübingen, Germany), healthy, malaria-naive adults were allocated to receive 400 mg DSM265 or placebo either 1 day (cohort 1A) or 7 days (cohort 2) before CHMI by direct venous inoculation (DVI) of 3200 aseptic, purified, cryopreserved P falciparum sporozoites (PfSPZ Challenge; Sanaria Inc, Rockville, MD, USA). An additional group received daily atovaquone-proguanil (250-100 mg) for 9 days, starting 1 day before CHMI (cohort 1B). Allocation to DSM265, atovaquone-proguanil, or placebo was randomised by an interactive web response system. Allocation to cohort 1A and 1B was open-label, within cohorts 1A and 2, allocation to DSM265 and placebo was double-blinded. All treatments were given orally. Volunteers were treated with an antimalarial on day 28, or when parasitaemic, as detected by thick blood smear (TBS) microscopy. The primary efficacy endpoint was time-to-parasitaemia, assessed by TBS. All participants receiving at least one dose of chemoprophylaxis or placebo were considered for safety, those receiving PfSPZ Challenge for efficacy analyses. Log-rank test was used to compare time-to-parasitemia between interventions. The trial was registered with ClinicalTrials.gov, number NCT02450578. FINDINGS 22 participants were enrolled between Oct 23, 2015, and Jan 18, 2016. Five participants received 400 mg DSM265 and two participants received placebo 1 day before CHMI (cohort 1A), six participants received daily atovaquone-proguanil 1 day before CHMI (cohort 1B), and six participants received 400 mg DSM265 and two participants received placebo 7 days before CHMI (cohort 2). Five of five participants receiving DSM265 1 day before CHMI and six of six in the atovaquone-proguanil cohort were protected, whereas placebo recipients (two of two) developed malaria on days 11 and 14. When given 7 days before CHMI, three of six volunteers receiving DSM265 became TBS positive on days 11, 13, and 24. The remaining three DSM265-treated, TBS-negative participants of cohort 2 developed transient submicroscopic parasitaemia. Both participants receiving placebo 7 days before CHMI became TBS positive on day 11. The only possible DSM265-related adverse event was a moderate transient elevation in serum bilirubin in one participant. INTERPRETATION A single dose of 400 mg DSM265 was well tolerated and had causal prophylactic activity when given 1 day before CHMI. Future trials are needed to investigate further the use of DSM265 for the prophylaxis of malaria. FUNDING Global Health Innovative Technology Fund, Wellcome Trust, Bill & Melinda Gates Foundation through Medicines for Malaria Venture, and the German Center for Infection Research.
Collapse
|
105
|
Mordmüller B, Surat G, Lagler H, Chakravarty S, Ishizuka AS, Lalremruata A, Gmeiner M, Campo JJ, Esen M, Ruben AJ, Held J, Calle CL, Mengue JB, Gebru T, Ibáñez J, Sulyok M, James ER, Billingsley PF, Natasha KC, Manoj A, Murshedkar T, Gunasekera A, Eappen AG, Li T, Stafford RE, Li M, Felgner PL, Seder RA, Richie TL, Sim BKL, Hoffman SL, Kremsner PG. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature 2017; 542:445-449. [PMID: 28199305 PMCID: PMC10906480 DOI: 10.1038/nature21060] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022]
Abstract
A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ ('PfSPZ Vaccine'); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ ('PfSPZ Challenge') to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac). Three doses of 5.12 × 104 PfSPZ of PfSPZ Challenge at 28-day intervals were well tolerated and safe, and prevented infection in 9 out of 9 (100%) volunteers who underwent controlled human malaria infection ten weeks after the last dose (group III). Protective efficacy was dependent on dose and regimen. Immunization with 3.2 × 103 (group I) or 1.28 × 104 (group II) PfSPZ protected 3 out of 9 (33%) or 6 out of 9 (67%) volunteers, respectively. Three doses of 5.12 × 104 PfSPZ at five-day intervals protected 5 out of 8 (63%) volunteers. The frequency of Pf-specific polyfunctional CD4 memory T cells was associated with protection. On a 7,455 peptide Pf proteome array, immune sera from at least 5 out of 9 group III vaccinees recognized each of 22 proteins. PfSPZ-CVac is a highly efficacious vaccine candidate; when we are able to optimize the immunization regimen (dose, interval between doses, and drug partner), this vaccine could be used for combination mass drug administration and a mass vaccination program approach to eliminate malaria from geographically defined areas.
Collapse
|
106
|
Epstein JE, Paolino KM, Richie TL, Sedegah M, Singer A, Ruben AJ, Chakravarty S, Stafford A, Ruck RC, Eappen AG, Li T, Billingsley PF, Manoj A, Silva JC, Moser K, Nielsen R, Tosh D, Cicatelli S, Ganeshan H, Case J, Padilla D, Davidson S, Garver L, Saverino E, Murshedkar T, Gunasekera A, Twomey PS, Reyes S, Moon JE, James ER, Kc N, Li M, Abot E, Belmonte A, Hauns K, Belmonte M, Huang J, Vasquez C, Remich S, Carrington M, Abebe Y, Tillman A, Hickey B, Regules J, Villasante E, Sim BKL, Hoffman SL. Protection against Plasmodium falciparum malaria by PfSPZ Vaccine. JCI Insight 2017; 2:e89154. [PMID: 28097230 DOI: 10.1172/jci.insight.89154] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND: A radiation-attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccine, PfSPZ Vaccine, protected 6 of 6 subjects (100%) against homologous Pf (same strain as in the vaccine) controlled human malaria infection (CHMI) 3 weeks after 5 doses administered intravenously. The next step was to assess protective efficacy against heterologous Pf (different from Pf in the vaccine), after fewer doses, and at 24 weeks. METHODS: The trial assessed tolerability, safety, immunogenicity, and protective efficacy of direct venous inoculation (DVI) of 3 or 5 doses of PfSPZ Vaccine in non-immune subjects. RESULTS: Three weeks after final immunization, 5 doses of 2.7 × 105 PfSPZ protected 12 of 13 recipients (92.3% [95% CI: 48.0, 99.8]) against homologous CHMI and 4 of 5 (80.0% [10.4, 99.5]) against heterologous CHMI; 3 doses of 4.5 × 105 PfSPZ protected 13 of 15 (86.7% [35.9, 98.3]) against homologous CHMI. Twenty-four weeks after final immunization, the 5-dose regimen protected 7 of 10 (70.0% [17.3, 93.3]) against homologous and 1 of 10 (10.0% [-35.8, 45.6]) against heterologous CHMI; the 3-dose regimen protected 8 of 14 (57.1% [21.5, 76.6]) against homologous CHMI. All 22 controls developed Pf parasitemia. PfSPZ Vaccine was well tolerated, safe, and easy to administer. No antibody or T cell responses correlated with protection. CONCLUSIONS: We have demonstrated for the first time to our knowledge that PfSPZ Vaccine can protect against a 3-week heterologous CHMI in a limited group of malaria-naive adult subjects. A 3-dose regimen protected against both 3-week and 24-week homologous CHMI (87% and 57%, respectively) in this population. These results provide a foundation for developing an optimized immunization regimen for preventing malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT02215707. FUNDING: Support was provided through the US Army Medical Research and Development Command, Military Infectious Diseases Research Program, and the Naval Medical Research Center's Advanced Medical Development Program.
Collapse
|
107
|
Hodgson SH, Llewellyn D, Silk SE, Milne KH, Elias SC, Miura K, Kamuyu G, Juma EA, Magiri C, Muia A, Jin J, Spencer AJ, Longley RJ, Mercier T, Decosterd L, Long CA, Osier FH, Hoffman SL, Ogutu B, Hill AVS, Marsh K, Draper SJ. Changes in Serological Immunology Measures in UK and Kenyan Adults Post-controlled Human Malaria Infection. Front Microbiol 2016; 7:1604. [PMID: 27790201 PMCID: PMC5061779 DOI: 10.3389/fmicb.2016.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/26/2016] [Indexed: 11/15/2022] Open
Abstract
Background: The timing of infection is closely determined in controlled human malaria infection (CHMI) studies, and as such they provide a unique opportunity to dissect changes in immunological responses before and after a single infection. The first Kenyan Challenge Study (KCS) (Pan African Clinical Trial Registry: PACTR20121100033272) was performed in 2013 with the aim of establishing the CHMI model in Kenya. This study used aseptic, cryopreserved, attenuated Plasmodium falciparum sporozoites administered by needle and syringe (PfSPZ Challenge) and was the first to evaluate parasite dynamics post-CHMI in individuals with varying degrees of prior exposure to malaria. Methods: We describe detailed serological and functional immunological responses pre- and post-CHMI for participants in the KCS and compare these with those from malaria-naïve UK volunteers who also underwent CHMI (VAC049) (ClinicalTrials.gov NCT01465048) using PfSPZ Challenge. We assessed antibody responses to three key blood-stage merozoite antigens [merozoite surface protein 1 (MSP1), apical membrane protein 1 (AMA1), and reticulocyte-binding protein homolog 5 (RH5)] and functional activity using two candidate measures of anti-merozoite immunity; the growth inhibition activity (GIA) assay and the antibody-dependent respiratory burst activity (ADRB) assay. Results:Clear serological differences were observed pre- and post-CHMI by ELISA between malaria-naïve UK volunteers in VAC049, and Kenyan volunteers who had prior malaria exposure. Antibodies to AMA1 and schizont extract correlated with parasite multiplication rate (PMR) post-CHMI in KCS. Serum from volunteer 110 in KCS, who demonstrated a dramatically reduced PMR in vivo, had no in vitro GIA prior to CHMI but the highest level of ADRB activity. A significant difference in ADRB activity was seen between KCS volunteers with minimal and definite prior exposure to malaria and significant increases were seen in ADRB activity post-CHMI in Kenyan volunteers. Quinine and atovaquone/proguanil, previously assumed to be removed by IgG purification, were identified as likely giving rise to aberrantly high in vitro GIA results. Conclusions: The ADRB activity assay is a promising functional assay that warrants further investigation as a measure of prior exposure to malaria and predictor of control of parasite growth. The CHMI model can be used to evaluate potential measures of naturally-acquired immunity to malaria.
Collapse
|
108
|
Hickey BW, Lumsden JM, Reyes S, Sedegah M, Hollingdale MR, Freilich DA, Luke TC, Charoenvit Y, Goh LM, Berzins MP, Bebris L, Sacci JB, De La Vega P, Wang R, Ganeshan H, Abot EN, Carucci DJ, Doolan DL, Brice GT, Kumar A, Aguiar J, Nutman TB, Leitman SF, Hoffman SL, Epstein JE, Richie TL. Mosquito bite immunization with radiation-attenuated Plasmodium falciparum sporozoites: safety, tolerability, protective efficacy and humoral immunogenicity. Malar J 2016; 15:377. [PMID: 27448805 PMCID: PMC4957371 DOI: 10.1186/s12936-016-1435-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this phase 1 clinical trial, healthy adult, malaria-naïve subjects were immunized with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) by mosquito bite and then underwent controlled human malaria infection (CHMI). The PfRAS model for immunization against malaria had previously induced >90 % sterile protection against homologous CHMI. This study was to further explore the safety, tolerability and protective efficacy of the PfRAS model and to provide biological specimens to characterize protective immune responses and identify protective antigens in support of malaria vaccine development. METHODS Fifty-seven subjects were screened, 41 enrolled and 30 received at least one immunization. The true-immunized subjects received PfRAS via mosquito bite and the mock-immunized subjects received mosquito bites from irradiated uninfected mosquitoes. Sera and peripheral blood mononuclear cells (PBMCs) were collected before and after PfRAS immunizations. RESULTS Immunization with PfRAS was generally safe and well tolerated, and repeated immunization via mosquito bite did not appear to increase the risk or severity of AEs. Local adverse events (AEs) of true-immunized and mock-immunized groups consisted of erythaema, papules, swelling, and induration and were consistent with reactions from mosquito bites seen in nature. Two subjects, one true- and one mock-immunized, developed large local reactions that completely resolved, were likely a result of mosquito salivary antigens, and were withdrawn from further participation as a safety precaution. Systemic AEs were generally rare and mild, consisting of headache, myalgia, nausea, and low-grade fevers. Two true-immunized subjects experienced fever, malaise, myalgia, nausea, and rigours approximately 16 h after immunization. These symptoms likely resulted from pre-formed antibodies interacting with mosquito salivary antigens. Ten subjects immunized with PfRAS underwent CHMI and five subjects (50 %) were sterilely protected and there was a significant delay to parasitaemia in the other five subjects. All ten subjects developed humoral immune responses to whole sporozoites and to the circumsporozoite protein prior to CHMI, although the differences between protected and non-protected subjects were not statistically significant for this small sample size. CONCLUSIONS The protective efficacy of this clinical trial (50 %) was notably less than previously reported (>90 %). This may be related to differences in host genetics or the inherent variability in mosquito biting behavior and numbers of sporozoites injected. Differences in trial procedures, such as the use of leukapheresis prior to CHMI and of a longer interval between the final immunization and CHMI in these subjects compared to earlier trials, may also have reduced protective efficacy. This trial has been retrospectively registered at ISRCTN ID 17372582, May 31, 2016.
Collapse
|
109
|
Dimonte S, Bruske EI, Hass J, Supan C, Salazar CL, Held J, Tschan S, Esen M, Flötenmeyer M, Koch I, Berger J, Bachmann A, Sim BKL, Hoffman SL, Kremsner PG, Mordmüller B, Frank M. Sporozoite Route of Infection Influences In Vitro var Gene Transcription of Plasmodium falciparum Parasites From Controlled Human Infections. J Infect Dis 2016; 214:884-94. [PMID: 27279526 DOI: 10.1093/infdis/jiw225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/19/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Antigenic variation in Plasmodium falciparum is mediated by the multicopy var gene family. Each parasite possesses about 60 var genes, and switching between active var loci results in antigenic variation. In the current study, the effect of mosquito and host passage on in vitro var gene transcription was investigated. METHODS Thirty malaria-naive individuals were inoculated by intradermal or intravenous injection with cryopreserved, isogenic NF54 P. falciparum sporozoites (PfSPZ) generated from 1 premosquito culture. Microscopic parasitemia developed in 22 individuals, and 21 in vitro cultures were established. The var gene transcript levels were determined in early and late postpatient cultures and in the premosquito culture. RESULTS At the early time point, all cultures preferentially transcribed 8 subtelomeric var genes. Intradermal infections had higher var gene transcript levels than intravenous infections and a significantly longer intrahost replication time (P = .03). At the late time point, 9 subtelomeric and 8 central var genes were transcribed at the same levels in almost all cultures. Premosquito and late postpatient cultures transcribed the same subtelomeric and central var genes, except for var2csa CONCLUSIONS The duration of intrahost replication influences in vitro var gene transcript patterns. Differences between premosquito and postpatient cultures decrease with prolonged in vitro growth.
Collapse
|
110
|
Ishizuka AS, Lyke KE, DeZure A, Berry AA, Richie TL, Mendoza FH, Enama ME, Gordon IJ, Chang LJ, Sarwar UN, Zephir KL, Holman LA, James ER, Billingsley PF, Gunasekera A, Chakravarty S, Manoj A, Li M, Ruben AJ, Li T, Eappen AG, Stafford RE, K C N, Murshedkar T, DeCederfelt H, Plummer SH, Hendel CS, Novik L, Costner PJM, Saunders JG, Laurens MB, Plowe CV, Flynn B, Whalen WR, Todd JP, Noor J, Rao S, Sierra-Davidson K, Lynn GM, Epstein JE, Kemp MA, Fahle GA, Mikolajczak SA, Fishbaugher M, Sack BK, Kappe SHI, Davidson SA, Garver LS, Björkström NK, Nason MC, Graham BS, Roederer M, Sim BKL, Hoffman SL, Ledgerwood JE, Seder RA. Corrigendum: Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat Med 2016; 22:692. [PMID: 27270781 DOI: 10.1038/nm0616-692c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
111
|
Ishizuka AS, Lyke KE, DeZure A, Berry AA, Richie TL, Mendoza FH, Enama ME, Gordon IJ, Chang LJ, Sarwar UN, Zephir KL, Holman LA, James ER, Billingsley PF, Gunasekera A, Chakravarty S, Manoj A, Li M, Ruben AJ, Li T, Eappen AG, Stafford RE, K C N, Murshedkar T, DeCederfelt H, Plummer SH, Hendel CS, Novik L, Costner PJM, Saunders JG, Laurens MB, Plowe CV, Flynn B, Whalen WR, Todd JP, Noor J, Rao S, Sierra-Davidson K, Lynn GM, Epstein JE, Kemp MA, Fahle GA, Mikolajczak SA, Fishbaugher M, Sack BK, Kappe SHI, Davidson SA, Garver LS, Björkström NK, Nason MC, Graham BS, Roederer M, Sim BKL, Hoffman SL, Ledgerwood JE, Seder RA. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat Med 2016; 22:614-23. [PMID: 27158907 PMCID: PMC11294733 DOI: 10.1038/nm.4110] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/15/2016] [Indexed: 02/07/2023]
Abstract
An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 10(5) PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21-25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks. To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-γ-producing CD8 T cells were present at ∼100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.
Collapse
|
112
|
Riedl J, Mordmüller B, Koder S, Pabinger I, Kremsner PG, Hoffman SL, Ramharter M, Ay C. Alterations of blood coagulation in controlled human malaria infection. Malar J 2016; 15:15. [PMID: 26743539 PMCID: PMC4705755 DOI: 10.1186/s12936-015-1079-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022] Open
Abstract
Background Alterations of blood coagulation are thought to be involved in malaria pathogenesis. This study had the aim to investigate changes of blood coagulation under the standardized conditions of controlled human malaria infection. Methods In a clinical trial aseptic, purified, cryopreserved Plasmodium falciparum sporozoites were intravenously (n = 24) or intradermally (n = 6) injected into 30 healthy volunteers. Twenty-two participants developed parasitaemia. Serial blood samples before and during prepatent period and at parasitaemia, diagnosed by microscopic assessment of thick blood smear, were obtained. Biomarkers of blood coagulation (thrombin generation potential, D-dimer, prothrombin fragment 1 + 2, von Willebrand factor, ADAMTS13 activity and soluble P-selectin) were determined. Results At first detection of P. falciparum parasitaemia, 72.7 % of volunteers had peak thrombin generation 10 % above their baseline. Overall, peak thrombin generation was 17.7 % higher at parasitaemia compared to baseline [median (25th–75th percentile): 225.4 nM (168.1–295.6) vs. 191.5 nM (138.2–231.9); p = 0.026]. There were no significant changes of other coagulation parameters. Conclusions The thrombin generation potential, an in vitro blood coagulation test, which reflects an individual´s global coagulation status, was increased by 17.7 % at very early stages of P. falciparum malaria, suggesting a hypercoagulable state may be induced, even when parasite density is low. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1079-3) contains supplementary material, which is available to authorized users.
Collapse
|
113
|
Bastiaens GJH, van Meer MPA, Scholzen A, Obiero JM, Vatanshenassan M, van Grinsven T, Kim Lee Sim B, Billingsley PF, James ER, Gunasekera A, Bijker EM, van Gemert GJ, van de Vegte-Bolmer M, Graumans W, Hermsen CC, de Mast Q, van der Ven AJAM, Hoffman SL, Sauerwein RW. Safety, Immunogenicity, and Protective Efficacy of Intradermal Immunization with Aseptic, Purified, Cryopreserved Plasmodium falciparum Sporozoites in Volunteers Under Chloroquine Prophylaxis: A Randomized Controlled Trial. Am J Trop Med Hyg 2015; 94:663-673. [PMID: 26711509 PMCID: PMC4775905 DOI: 10.4269/ajtmh.15-0621] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/23/2015] [Indexed: 11/16/2022] Open
Abstract
Immunization of volunteers under chloroquine prophylaxis by bites of Plasmodium falciparum sporozoite (PfSPZ)–infected mosquitoes induces > 90% protection against controlled human malaria infection (CHMI). We studied intradermal immunization with cryopreserved, infectious PfSPZ in volunteers taking chloroquine (PfSPZ chemoprophylaxis vaccine [CVac]). Vaccine groups 1 and 3 received 3× monthly immunizations with 7.5 × 104 PfSPZ. Control groups 2 and 4 received normal saline. Groups 1 and 2 underwent CHMI (#1) by mosquito bite 60 days after the third immunization. Groups 3 and 4 were boosted 168 days after the third immunization and underwent CHMI (#2) 137 days later. Vaccinees (11/20, 55%) and controls (6/10, 60%) had the same percentage of mild to moderate solicited adverse events. After CHMI #1, 8/10 vaccinees (group 1) and 5/5 controls (group 2) became parasitemic by microscopy; the two negatives were positive by quantitative real-time polymerase chain reaction (qPCR). After CHMI #2, all vaccinees in group 3 and controls in group 4 were parasitemic by qPCR. Vaccinees showed weak antibody and no detectable cellular immune responses. Intradermal immunization with up to 3 × 105 PfSPZ-CVac was safe, but induced only minimal immune responses and no sterile protection against Pf CHMI.
Collapse
|
114
|
Richie TL, Billingsley PF, Sim BKL, James ER, Chakravarty S, Epstein JE, Lyke KE, Mordmüller B, Alonso P, Duffy PE, Doumbo OK, Sauerwein RW, Tanner M, Abdulla S, Kremsner PG, Seder RA, Hoffman SL. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines. Vaccine 2015; 33:7452-61. [PMID: 26469720 PMCID: PMC5077156 DOI: 10.1016/j.vaccine.2015.09.096] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 12/04/2022]
Abstract
Sanaria Inc. has developed methods to manufacture, purify and cryopreserve aseptic Plasmodium falciparum (Pf) sporozoites (SPZ), and is using this platform technology to develop an injectable PfSPZ-based vaccine that provides high-grade, durable protection against infection with Pf malaria. Several candidate vaccines are being developed and tested, including PfSPZ Vaccine, in which the PfSPZ are attenuated by irradiation, PfSPZ-CVac, in which fully infectious PfSPZ are attenuated in vivo by concomitant administration of an anti-malarial drug, and PfSPZ-GA1, in which the PfSPZ are attenuated by gene knockout. Forty-three research groups in 15 countries, organized as the International PfSPZ Consortium (I-PfSPZ-C), are collaborating to advance this program by providing intellectual, clinical, and financial support. Fourteen clinical trials of these products have been completed in the USA, Europe and Africa, two are underway and at least 12 more are planned for 2015-2016 in the US (four trials), Germany (2 trials), Tanzania, Kenya, Mali, Burkina Faso, Ghana and Equatorial Guinea. Sanaria anticipates application to license a first generation product as early as late 2017, initially to protect adults, and a year later to protect all persons >6 months of age for at least six months. Improved vaccine candidates will be advanced as needed until the following requirements have been met: long-term protection against natural transmission, excellent safety and tolerability, and operational feasibility for population-wide administration. Here we describe the three most developed whole PfSPZ vaccine candidates, associated clinical trials, initial plans for licensure and deployment, and long-term objectives for a final product suitable for mass administration to achieve regional malaria elimination and eventual global eradication.
Collapse
|
115
|
Huang H, Li M, Gao L, Wu Y, Stafford RE, Xu R, Chakravarty S, Hoffman SL, Kopecko DJ, Kim Lee Sim B, James ER. Thermostabilization by foam drying of a recombinant anthrax vaccine. Cryobiology 2015. [DOI: 10.1016/j.cryobiol.2015.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
116
|
Lyke KE, Laurens MB, Strauss K, Adams M, Billingsley PF, James E, Manoj A, Chakravarty S, Plowe CV, Li ML, Ruben A, Edelman R, Green M, Dube TJ, Kim Lee Sim B, Hoffman SL. Optimizing Intradermal Administration of Cryopreserved Plasmodium falciparum Sporozoites in Controlled Human Malaria Infection. Am J Trop Med Hyg 2015; 93:1274-1284. [PMID: 26416102 PMCID: PMC4674246 DOI: 10.4269/ajtmh.15-0341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/30/2015] [Indexed: 01/06/2023] Open
Abstract
Controlled human malaria infection (CHMI) is a powerful tool to evaluate malaria vaccine and prophylactic drug efficacy. Until recently CHMI was only carried out by the bite of infected mosquitoes. A parenteral method of CHMI would standardize Plasmodium falciparum sporozoite (PfSPZ) administration, eliminate the need for expensive challenge facility infrastructure, and allow for use of many P. falciparum strains. Recently, intradermal (ID) injection of aseptic, purified, cryopreserved PfSPZ was shown to induce P. falciparum malaria; however, 100% infection rates were not achieved by ID injection. To optimize ID PfSPZ dosing so as to achieve 100% infection, 30 adults aged 18-45 years were randomized to one of six groups composed of five volunteers each. The parameters of dose (1 × 10(4) versus 5 × 10(4) PfSPZ total dose per volunteer), number of injections (two versus eight), and aliquot volume per ID injection (10 μL versus 50 μL) were studied. Three groups attained 100% infection: 1 × 10(4) PfSPZ in 50 μL/2 doses, 1 × 10(4) PfSPZ in 10 μL/2 doses, and 5 × 10(4) PfSPZ in 10 μL/8 doses. The group that received 5 × 10(4) PfSPZ total dose in eight 10 μL injections had a 100% infection rate and the shortest prepatent period (mean of 12.7 days), approaching the prepatent period for the current CHMI standard of five infected mosquitoes.
Collapse
|
117
|
Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Vaccine 2015; 33 Suppl 4:D13-23. [PMID: 26324116 DOI: 10.1016/j.vaccine.2015.07.091] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 01/14/2023]
Abstract
In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of malaria. Progress during the last few years has been significant, and a first generation malaria candidate vaccine, RTS,S/AS01, is under review by the European Medicines Agency (EMA) for its quality, safety and efficacy under article 58, which allows the EMA to give a scientific opinion about products intended exclusively for markets outside of the European Union. However, much work is in progress to optimize malaria vaccines in regard to magnitude and durability of protective efficacy and the financing and practicality of delivery. Thus, we are hopeful that anti-malaria vaccines will soon be important tools in the battle against malaria.
Collapse
|
118
|
Aguiar JC, Bolton J, Wanga J, Sacci JB, Iriko H, Mazeika JK, Han ET, Limbach K, Patterson NB, Sedegah M, Cruz AM, Tsuboi T, Hoffman SL, Carucci D, Hollingdale MR, Villasante ED, Richie TL. Discovery of Novel Plasmodium falciparum Pre-Erythrocytic Antigens for Vaccine Development. PLoS One 2015; 10:e0136109. [PMID: 26292257 PMCID: PMC4546230 DOI: 10.1371/journal.pone.0136109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023] Open
Abstract
Background Nearly 100% protection against malaria infection can be achieved in humans by immunization with P. falciparum radiation-attenuated sporozoites (RAS). Although it is thought that protection is mediated by T cell and antibody responses, only a few of the many pre-erythrocytic (sporozoite and liver stage) antigens that are targeted by these responses have been identified. Methodology Twenty seven P. falciparum pre-erythrocytic antigens were selected using bioinformatics analysis and expression databases and were expressed in a wheat germ cell-free protein expression system. Recombinant proteins were recognized by plasma from RAS-immunized subjects, and 21 induced detectable antibody responses in mice and rabbit and sera from these immunized animals were used to characterize these antigens. All 21 proteins localized to the sporozoite: five localized to the surface, seven localized to the micronemes, cytoplasm, endoplasmic reticulum or nucleus, two localized to the surface and cytoplasm, and seven remain undetermined. PBMC from RAS-immunized volunteers elicited positive ex vivo or cultured ELISpot responses against peptides from 20 of the 21 antigens. Conclusions These T cell and antibody responses support our approach of using reagents from RAS-immunized subjects to screen potential vaccine antigens, and have led to the identification of a panel of novel P. falciparum antigens. These results provide evidence to further evaluate these antigens as vaccine candidates. Trial Registration ClinicalTrials.gov NCT00870987 ClinicalTrials.gov NCT00392015
Collapse
|
119
|
Gómez-Pérez GP, Legarda A, Muñoz J, Sim BKL, Ballester MR, Dobaño C, Moncunill G, Campo JJ, Cisteró P, Jimenez A, Barrios D, Mordmüller B, Pardos J, Navarro M, Zita CJ, Nhamuave CA, García-Basteiro AL, Sanz A, Aldea M, Manoj A, Gunasekera A, Billingsley PF, Aponte JJ, James ER, Guinovart C, Antonijoan RM, Kremsner PG, Hoffman SL, Alonso PL. Controlled human malaria infection by intramuscular and direct venous inoculation of cryopreserved Plasmodium falciparum sporozoites in malaria-naïve volunteers: effect of injection volume and dose on infectivity rates. Malar J 2015; 14:306. [PMID: 26245196 PMCID: PMC4527105 DOI: 10.1186/s12936-015-0817-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/22/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Controlled human malaria infection (CHMI) by mosquito bite is a powerful tool for evaluation of vaccines and drugs against Plasmodium falciparum malaria. However, only a small number of research centres have the facilities required to perform such studies. CHMI by needle and syringe could help to accelerate the development of anti-malaria interventions by enabling centres worldwide to employ CHMI. METHODS An open-label CHMI study was performed with aseptic, purified, cryopreserved P. falciparum sporozoites (PfSPZ Challenge) in 36 malaria naïve volunteers. In part A, the effect of the inoculation volume was assessed: 18 participants were injected intramuscularly (IM) with a dose of 2,500 PfSPZ divided into two injections of 10 µL (n = 6), 50 µL (n = 6) or 250 µL (n = 6), respectively. In part B, the injection volume that resulted in highest infectivity rates in part A (10 µL) was used to formulate IM doses of 25,000 PfSPZ (n = 6) and 75,000 PfSPZ (n = 6) divided into two 10-µL injections. Results from a parallel trial led to the decision to add a positive control group (n = 6), each volunteer receiving 3,200 PfSPZ in a single 500-µL injection by direct venous inoculation (DVI). RESULTS Four/six participants in the 10-µL group, 1/6 in the 50-µL group and 2/6 in the 250-µL group developed parasitaemia. Geometric mean (GM) pre-patent periods were 13.9, 14.0 and 15.0 days, respectively. Six/six (100%) participants developed parasitaemia in the 25,000 and 75,000 PfSPZ IM and 3,200 PfSPZ DVI groups. GM pre-patent periods were 12.2, 11.4 and 11.4 days, respectively. Injection of PfSPZ Challenge was well tolerated and safe in all groups. CONCLUSIONS IM injection of 75,000 PfSPZ and DVI injection of 3,200 PfSPZ resulted in infection rates and pre-patent periods comparable to the bite of five PfSPZ-infected mosquitoes. Remarkably, it required 23.4-fold more PfSPZ administered IM than DVI to achieve the same parasite kinetics. These results allow for translation of CHMI from research to routine use, and inoculation of PfSPZ by IM and DVI regimens. TRIAL REGISTRATION ClinicalTrials.gov NCT01771848.
Collapse
|
120
|
Hodgson SH, Juma E, Salim A, Magiri C, Njenga D, Molyneux S, Njuguna P, Awuondo K, Lowe B, Billingsley PF, Cole AO, Ogwang C, Osier F, Chilengi R, Hoffman SL, Draper SJ, Ogutu B, Marsh K. Lessons learnt from the first controlled human malaria infection study conducted in Nairobi, Kenya. Malar J 2015; 14:182. [PMID: 25927522 PMCID: PMC4416324 DOI: 10.1186/s12936-015-0671-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/15/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Controlled human malaria infection (CHMI) studies, in which healthy volunteers are infected with Plasmodium falciparum to assess the efficacy of novel malaria vaccines and drugs, have become a vital tool to accelerate vaccine and drug development. CHMI studies provide a cost-effective and expeditious way to circumvent the use of large-scale field efficacy studies to deselect intervention candidates. However, to date few modern CHMI studies have been performed in malaria-endemic countries. METHODS An open-label, randomized pilot CHMI study was conducted using aseptic, purified, cryopreserved, infectious P. falciparum sporozoites (SPZ) (Sanaria® PfSPZ Challenge) administered intramuscularly (IM) to healthy Kenyan adults (n = 28) with varying degrees of prior exposure to P. falciparum. The purpose of the study was to establish the PfSPZ Challenge CHMI model in a Kenyan setting with the aim of increasing the international capacity for efficacy testing of malaria vaccines and drugs, and allowing earlier assessment of efficacy in a population for which interventions are being developed. This was part of the EDCTP-funded capacity development of the CHMI platform in Africa. DISCUSSION This paper discusses in detail lessons learnt from conducting the first CHMI study in Kenya. Issues pertinent to the African setting, including community sensitization, consent and recruitment are considered. Detailed reasoning regarding the study design (for example, dose and route of administration of PfSPZ Challenge, criteria for grouping volunteers according to prior exposure to malaria and duration of follow-up post CHMI) are given and changes other centres may want to consider for future studies are suggested. CONCLUSIONS Performing CHMI studies in an African setting presents unique but surmountable challenges and offers great opportunity for acceleration of malaria vaccine and drug development. The reflections in this paper aim to aid other centres and partners intending to use the CHMI model in Africa.
Collapse
|
121
|
Li T, Eappen AG, Richman AM, Billingsley PF, Abebe Y, Li M, Padilla D, Rodriguez-Barraquer I, Sim BKL, Hoffman SL. Robust, reproducible, industrialized, standard membrane feeding assay for assessing the transmission blocking activity of vaccines and drugs against Plasmodium falciparum. Malar J 2015; 14:150. [PMID: 25890243 PMCID: PMC4491417 DOI: 10.1186/s12936-015-0665-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/24/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A vaccine that interrupts malaria transmission (VIMT) would be a valuable tool for malaria control and elimination. One VIMT approach is to identify sexual erythrocytic and mosquito stage antigens of the malaria parasite that induce immune responses targeted at disrupting parasite development in the mosquito. The standard Plasmodium falciparum membrane-feeding assay (SMFA) is used to assess transmission-blocking activity (TBA) of antibodies against candidate immunogens and of drugs targeting the mosquito stages. To develop its P. falciparum sporozoite (SPZ) products, Sanaria has industrialized the production of P. falciparum-infected Anopheles stephensi mosquitoes, incorporating quantitative analyses of oocyst and P. falciparum SPZ infections as part of the manufacturing process. METHODS These capabilities were exploited to develop a robust, reliable, consistent SMFA that was used to assess 188 serum samples from animals immunized with the candidate vaccine immunogen, Pfs25, targeting P. falciparum mosquito stages. Seventy-four independent SMFAs were performed. Infection intensity (number of oocysts/mosquito) and infection prevalence (percentage of mosquitoes infected with oocysts) were compared between mosquitoes fed cultured gametocytes plus normal human O(+) serum (negative control), anti-Pfs25 polyclonal antisera (MRA39 or MRA38, at a final dilution in the blood meal of 1:54 as positive control), and test sera from animals immunized with Pfs25 (at a final dilution in the blood meal of 1:9). RESULTS SMFA negative controls consistently yielded high infection intensity (mean = 46.1 oocysts/midgut, range of positives 3.7-135.6) and infection prevalence (mean = 94.2%, range 71.4-100.0) and in positive controls, infection intensity was reduced by 81.6% (anti-Pfs25 MRA39) and 97.0% (anti-Pfs25 MRA38), and infection prevalence was reduced by 12.9 and 63.5%, respectively. A range of TBAs was detected among the 188 test samples assayed in duplicate. Consistent administration of infectious gametocytes to mosquitoes within and between assays was achieved, and the TBA of anti-Pfs25 control antibodies was highly reproducible. CONCLUSIONS These results demonstrate a robust capacity to perform the SMFA in a medium-to-high throughput format, suitable for assessing large numbers of experimental samples of candidate antibodies or drugs.
Collapse
|
122
|
Stanisic DI, Liu XQ, De SL, Batzloff MR, Forbes T, Davis CB, Sekuloski S, Chavchich M, Chung W, Trenholme K, McCarthy JS, Li T, Sim BKL, Hoffman SL, Good MF. Development of cultured Plasmodium falciparum blood-stage malaria cell banks for early phase in vivo clinical trial assessment of anti-malaria drugs and vaccines. Malar J 2015; 14:143. [PMID: 25890156 PMCID: PMC4392471 DOI: 10.1186/s12936-015-0663-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/24/2015] [Indexed: 11/18/2022] Open
Abstract
Background The ability to undertake controlled human malaria infection (CHMI) studies for preliminary evaluation of malaria vaccine candidates and anti-malaria drug efficacy has been limited by the need for access to sporozoite infected mosquitoes, aseptic, purified, cryopreserved sporozoites or blood-stage malaria parasites derived ex vivo from malaria infected individuals. Three different strategies are described for the manufacture of clinical grade cultured malaria cell banks suitable for use in CHMI studies. Methods Good Manufacturing Practices (GMP)-grade Plasmodium falciparum NF54, clinically isolated 3D7, and research-grade P. falciparum 7G8 blood-stage malaria parasites were cultured separately in GMP-compliant facilities using screened blood components and then cryopreserved to produce three P. falciparum blood-stage malaria cell banks. These cell banks were evaluated according to specific criteria (parasitaemia, identity, viability, sterility, presence of endotoxin, presence of mycoplasma or other viral agents and in vitro anti-malarial drug sensitivity of the cell bank malaria parasites) to ensure they met the criteria to permit product release according to GMP requirements. Results The P. falciparum NF54, 3D7 and 7G8 cell banks consisted of >78% ring stage parasites with a ring stage parasitaemia of >1.4%. Parasites were viable in vitro following thawing. The cell banks were free from contamination with bacteria, mycoplasma and a broad panel of viruses. The P. falciparum NF54, 3D7 and 7G8 parasites exhibited differential anti-malarial drug susceptibilities. The P. falciparum NF54 and 3D7 parasites were susceptible to all anti-malaria compounds tested, whereas the P. falciparum 7G8 parasites were resistant/had decreased susceptibility to four compounds. Following testing, all defined release criteria were met and the P. falciparum cell banks were deemed suitable for release. Ethical approval has been obtained for administration to human volunteers. Conclusions The production of cultured P. falciparum blood-stage malaria cell banks represents a suitable approach for the generation of material suitable for CHMI studies. A key feature of this culture-based approach is the ability to take research-grade material through to a product suitable for administration in clinical trials. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0663-x) contains supplementary material, which is available to authorized users.
Collapse
|
123
|
Mordmüller B, Supan C, Sim KL, Gómez-Pérez GP, Ospina Salazar CL, Held J, Bolte S, Esen M, Tschan S, Joanny F, Lamsfus Calle C, Löhr SJZ, Lalremruata A, Gunasekera A, James ER, Billingsley PF, Richman A, Chakravarty S, Legarda A, Muñoz J, Antonijoan RM, Ballester MR, Hoffman SL, Alonso PL, Kremsner PG. Direct venous inoculation of Plasmodium falciparum sporozoites for controlled human malaria infection: a dose-finding trial in two centres. Malar J 2015; 14:117. [PMID: 25889522 PMCID: PMC4371633 DOI: 10.1186/s12936-015-0628-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/01/2015] [Indexed: 11/12/2022] Open
Abstract
Background Controlled human malaria infection (CHMI) accelerates development of anti-malarial interventions. So far, CHMI is done by exposure of volunteers to bites of five mosquitoes carrying Plasmodium falciparum sporozoites (PfSPZ), a technique available in only a few centres worldwide. Mosquito-mediated CHMI is logistically complex, exact PfSPZ dosage is impossible and live mosquito-based interventions are not suitable for further clinical development. Methods An open-labelled, randomized, dose-finding study in 18–45 year old, healthy, malaria-naïve volunteers was performed to assess if intravenous (IV) injection of 50 to 3,200 aseptic, purified, cryopreserved PfSPZ is safe and achieves infection kinetics comparable to published data of mosquito-mediated CHMI. An independent study site verified the fully infectious dose using direct venous inoculation of PfSPZ. Parasite kinetics were assessed by thick blood smear microscopy and quantitative real time PCR. Results IV inoculation with 50, 200, 800, or 3,200 PfSPZ led to parasitaemia in 1/3, 1/3, 7/9, and 9/9 volunteers, respectively. The geometric mean pre-patent period (GMPPP) was 11.2 days (range 10.5–12.5) in the 3,200 PfSPZ IV group. Subsequently, six volunteers received 3,200 PfSPZ by direct venous inoculation at an independent investigational site. All six developed parasitaemia (GMPPP: 11.4 days, range: 10.4–12.3). Inoculation of PfSPZ was safe. Infection rate and pre-patent period depended on dose, and injection of 3,200 PfSPZ led to a GMPPP similar to CHMI with five PfSPZ-infected mosquitoes. The infectious dose of PfSPZ predicted dosage of radiation-attenuated PfSPZ required for successful vaccination. Conclusions IV inoculation of PfSPZ is safe, well tolerated and highly reproducible. It shall further accelerate development of anti-malarial interventions through standardization and facilitation of CHMI. Beyond this, rational dose selection for whole PfSPZ-based immunization and complex study designs are now possible. Trial registration ClinicalTrials.gov NCT01624961 and NCT01771848.
Collapse
|
124
|
Hodgson SH, Douglas AD, Edwards NJ, Kimani D, Elias SC, Chang M, Daza G, Seilie AM, Magiri C, Muia A, Juma EA, Cole AO, Rampling TW, Anagnostou NA, Gilbert SC, Hoffman SL, Draper SJ, Bejon P, Ogutu B, Marsh K, Hill AVS, Murphy SC. Increased sample volume and use of quantitative reverse-transcription PCR can improve prediction of liver-to-blood inoculum size in controlled human malaria infection studies. Malar J 2015; 14:33. [PMID: 25627033 PMCID: PMC4318195 DOI: 10.1186/s12936-015-0541-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/05/2015] [Indexed: 01/08/2023] Open
Abstract
Background Controlled human malaria infection (CHMI) studies increasingly rely on nucleic acid test (NAT) methods to detect and quantify parasites in the blood of infected participants. The lower limits of detection and quantification vary amongst the assays used throughout the world, which may affect the ability of mathematical models to accurately estimate the liver-to-blood inoculum (LBI) values that are used to judge the efficacy of pre-erythrocytic vaccine and drug candidates. Methods Samples were collected around the time of onset of pre-patent parasitaemia from subjects who enrolled in two different CHMI clinical trials. Blood samples were tested for Plasmodium falciparum 18S rRNA and/or rDNA targets by different NAT methods and results were compared. Methods included an ultrasensitive, large volume modification of an established quantitative reverse transcription PCR (qRT-PCR) assay that achieves detection of as little as one parasite/mL of whole blood. Results Large volume qRT-PCR at the University of Washington was the most sensitive test and generated quantifiable data more often than any other NAT methodology. Standard quantitative PCR (qPCR) performed at the University of Oxford and standard volume qRT-PCR performed at the University of Washington were less sensitive than the large volume qRT-PCR, especially at 6.5 days after CHMI. In these trials, the proportion of participants for whom LBI could be accurately quantified using parasite density value greater than or equal to the lower limit of quantification was increased. A greater improvement would be expected in trials in which numerous subjects receive a lower LBI or low dose challenge. Conclusions Standard qPCR and qRT-PCR methods with analytical sensitivities of ~20 parasites/mL probably suffice for most CHMI purposes, but the newly developed large volume qRT-PCR may be able to answer specific questions when more analytical sensitivity is required.
Collapse
|
125
|
Hodgson SH, Juma E, Salim A, Magiri C, Kimani D, Njenga D, Muia A, Cole AO, Ogwang C, Awuondo K, Lowe B, Munene M, Billingsley PF, James ER, Gunasekera A, Sim BKL, Njuguna P, Rampling TW, Richman A, Abebe Y, Kamuyu G, Muthui M, Elias SC, Molyneux S, Gerry S, Macharia A, Williams TN, Bull PC, Hill AVS, Osier FH, Draper SJ, Bejon P, Hoffman SL, Ogutu B, Marsh K. Evaluating controlled human malaria infection in Kenyan adults with varying degrees of prior exposure to Plasmodium falciparum using sporozoites administered by intramuscular injection. Front Microbiol 2014; 5:686. [PMID: 25566206 PMCID: PMC4264479 DOI: 10.3389/fmicb.2014.00686] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/14/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Controlled human malaria infection (CHMI) studies are a vital tool to accelerate vaccine and drug development. As CHMI trials are performed in a controlled environment, they allow unprecedented, detailed evaluation of parasite growth dynamics (PGD) and immunological responses. However, CHMI studies have not been routinely performed in malaria-endemic countries or used to investigate mechanisms of naturally-acquired immunity (NAI) to Plasmodium falciparum. METHODS We conducted an open-label, randomized CHMI pilot-study using aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge) to evaluate safety, infectivity and PGD in Kenyan adults with low to moderate prior exposure to P. falciparum (Pan African Clinical Trial Registry: PACTR20121100033272). RESULTS All participants developed blood-stage infection confirmed by quantitative polymerase chain reaction (qPCR). However one volunteer (110) remained asymptomatic and blood-film negative until day 21 post-injection of PfSPZ Challenge. This volunteer had a reduced parasite multiplication rate (PMR) (1.3) in comparison to the other 27 volunteers (median 11.1). A significant correlation was seen between PMR and screening anti-schizont Enzyme Linked Immunosorbent Assays (ELISA) OD (p = 0.044, R = -0.384) but not when volunteer 110 was excluded from the analysis (p = 0.112, R = -0.313). CONCLUSIONS PfSPZ Challenge is safe and infectious in malaria-endemic populations and could be used to assess the efficacy of malaria vaccines and drugs in African populations. Whilst our findings are limited by sample size, our pilot study has demonstrated for the first time that NAI may impact on PMR post-CHMI in a detectable fashion, an important finding that should be evaluated in further CHMI studies.
Collapse
|