101
|
Vogel E, Neyra M, Larsen DA, Zeng T. Target and Nontarget Screening to Support Capacity Scaling for Substance Use Assessment through a Statewide Wastewater Surveillance Network in New York. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8518-8530. [PMID: 38693060 PMCID: PMC11097395 DOI: 10.1021/acs.est.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Wastewater-based epidemiology (WBE) has been widely implemented around the world as a complementary tool to conventional surveillance techniques to inform and improve public health responses. Currently, wastewater surveillance programs in the U.S. are evaluating integrated approaches to address public health challenges across multiple domains, including substance abuse. In this work, we demonstrated the potential of online solid-phase extraction coupled with liquid chromatography-high-resolution mass spectrometry to support targeted quantification and nontargeted analysis of psychoactive and lifestyle substances as a step toward understanding the operational feasibility of a statewide wastewater surveillance program for substance use assessment in New York. Target screening confirmed 39 substances in influent samples collected from 10 wastewater treatment plants with varying sewershed characteristics and is anticipated to meet the throughput demands as the statewide program scales up to full capacity. Nontarget screening prioritized additional compounds for identification at three confidence levels, including psychoactive substances, such as opioid analgesics, phenethylamines, and cathinone derivatives. Consumption rates of 12 target substances detected in over 80% of wastewater samples were similar to those reported by previous U.S.-based WBE studies despite the uncertainty associated with back-calculations. For selected substances, the relative bias in consumption estimates was sensitive to variations in monitoring frequency, and factors beyond human excretion (e.g., as indicated by the parent-to-metabolite ratios) might also contribute to their prevalence at the sewershed scale. Overall, our study marks the initial phase of refining analytical workflows and data interpretation in preparation for the incorporation of substance use assessment into the statewide wastewater surveillance program in New York.
Collapse
|
102
|
Adelantado C, Lapizco-Encinas BH, Jordens J, Voorspoels S, Velimirovic M, Tirez K. Capillary Electrophoresis as a Complementary Analytical Tool for the Separation and Detection of Nanoplastic Particles. Anal Chem 2024; 96:7706-7713. [PMID: 38688471 PMCID: PMC11099890 DOI: 10.1021/acs.analchem.4c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Capillary electrophoresis (CE) is presented as a technique for the separation of polystyrene nanoparticles (NPs, particle diameters ranging from 30 to 300 nm) through a bare fused silica capillary and ultraviolet detection. The proposed strategy was also assessed for other types of nanoplastics, finding that stronger alkaline conditions, with an ammonium hydroxide buffer (7.5%, pH = 11.9), enabled the separation of poly(methyl methacrylate), polypropylene, and polyethylene NP for the first time by means of CE for particle diameters below 200 nm. Particle behavior has been investigated in terms of its effective electrophoretic mobility, showing an increasing absolute value of effective electrophoretic mobility from the smaller to the larger sizes. On the other hand, the absolute value of surface charge density decreased with increasing size of NPs. It was demonstrated and quantified that the separation mechanism was a combination of linear and nonlinear electrophoretic effects. This work is the first report on the quantification of nonlinear electrophoretic effects on nanoplastic particles in a CE system.
Collapse
|
103
|
Yang N, Yang S, Ma Q, Beltran C, Guan Y, Morsey M, Brown E, Fernando S, Holsen TM, Zhang W, Yang Y. Correction to "Solvent-Free Nonthermal Destruction of PFAS Chemicals and PFAS in Sediment by Piezoelectric Ball Milling". ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:492. [PMID: 38765462 PMCID: PMC11097624 DOI: 10.1021/acs.estlett.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024]
Abstract
[This corrects the article DOI: 10.1021/acs.estlett.2c00902.].
Collapse
|
104
|
Chen PJ, Cusumano AQ, Flesch KN, Strong CS, Goddard WA, Stoltz BM. Molecular Dynamics Investigations of Dienolate [4 + 2] Reactions. J Am Chem Soc 2024; 146:12758-12765. [PMID: 38682865 PMCID: PMC11082897 DOI: 10.1021/jacs.4c02681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
We report quantum mechanics calculations and quasiclassical trajectory simulations of [4 + 2] reactions using three common dienolate substrates: siloxy dienes, Li dienolates, and conjugated Pd enolates. Asynchronous transition structures and unequal bond formation were invariably found, with average time gaps of developing bonds ranging from 26.5 to >251.0 fs. The results display a spectrum of dynamically concerted and stepwise [4 + 2] reactions, offering insights into the origin of the stereochemical outcomes of such reactions.
Collapse
|
105
|
Çınar V, Zhang S, Happel EE, K Dewage NTS, Montemore MM, Sykes ECH. 100% selective cyclotrimerization of acetylene to benzene on Ag(111). Chem Sci 2024; 15:6716-6725. [PMID: 38725512 PMCID: PMC11077525 DOI: 10.1039/d4sc01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Benzene, a high-volume chemical, is produced from larger molecules by inefficient and environmentally harmful processes. Recent changes in hydrocarbon feedstocks from oil to gas motivate research into small molecule upgrading. For example, the cyclotrimerization of acetylene reaction has been demonstrated on Pd, Pd alloy, and Cu surfaces and catalysts, but they are not 100% selective to benzene. We discovered that acetylene can be converted to benzene with 100% selectivity on the Ag(111) surface. Our temperature programmed desorption experiments reveal a threshold acetylene surface coverage of ∼one monolayer, above which benzene is formed. Furthermore, additional layers of acetylene increase the amount of benzene produced while retaining 100% selectivity. Our scanning tunneling microscopy images show that acetylene prefers square packing on the Ag(111) surface at low coverages, which converts to hexagonal packing when acetylene multilayers are present. Within this denser layer, features consistent with the proposed C4 intermediates of the cyclotrimerization process are observed. Density functional theory calculations demonstrate that the barrier for forming the crucial C4 intermediate generally decreases as acetylene multilayers are formed because the multilayer interacts more strongly with the surface in the transition state than in the initial state. Given that acetylene desorbs from Ag(111) at ∼90 K, the C4 intermediate on the pathway to benzene must be formed below this temperature, implying that if Ag-based heterogeneous catalysts can be run at sufficiently high pressure and low enough temperature, efficient and selective trimerization of acetylene to benzene may be possible.
Collapse
|
106
|
Wasswa J, Perkins M, Matthews DA, Zeng T. Characterizing the Impact of Cyanobacterial Blooms on the Photoreactivity of Surface Waters from New York Lakes: A Combined Statewide Survey and Laboratory Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8020-8031. [PMID: 38629457 PMCID: PMC11080073 DOI: 10.1021/acs.est.3c09448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
Cyanobacterial blooms introduce autochthonous dissolved organic matter (DOM) into aquatic environments, but their impact on surface water photoreactivity has not been investigated through collaborative field sampling with comparative laboratory assessments. In this work, we quantified the apparent quantum yields (Φapp,RI) of reactive intermediates (RIs), including excited triplet states of dissolved organic matter (3DOM*), singlet oxygen (1O2), and hydroxyl radicals (•OH), for whole water samples collected by citizen volunteers from more than 100 New York lakes. Multiple comparisons tests and orthogonal partial least-squares analysis identified the level of cyanobacterial chlorophyll a as a key factor in explaining the enhanced photoreactivity of whole water samples sourced from bloom-impacted lakes. Laboratory recultivation of bloom samples in bloom-free lake water demonstrated that apparent increases in Φapp,RI during cyanobacterial growth were likely driven by the production of photoreactive moieties through the heterotrophic transformation of freshly produced labile bloom exudates. Cyanobacterial proliferation also altered the energy distribution of 3DOM* and contributed to the accelerated transformation of protriptyline, a model organic micropollutant susceptible to photosensitized reactions, under simulated sunlight conditions. Overall, our study provides insights into the relationship between the photoreactivity of surface waters and the limnological characteristics and trophic state of lakes and highlights the relevance of cyanobacterial abundance in predicting the photoreactivity of bloom-impacted surface waters.
Collapse
|
107
|
Sui Y, Scida AM, Li B, Chen C, Fu Y, Fang Y, Greaney PA, Osborn Popp TM, Jiang DE, Fang C, Ji X. The Influence of Ions on the Electrochemical Stability of Aqueous Electrolytes. Angew Chem Int Ed Engl 2024; 63:e202401555. [PMID: 38494454 DOI: 10.1002/anie.202401555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
The electrochemical stability window of water is known to vary with the type and concentration of dissolved salts. However, the underlying influence of ions on the thermodynamic stability of aqueous solutions has not been fully understood. Here, we investigated the electrolytic behaviors of aqueous electrolytes as a function of different ions. Our findings indicate that ions with high ionic potentials, i.e., charge density, promote the formation of their respective hydration structures, enhancing electrolytic reactions via an inductive effect, particularly for small cations. Conversely, ions with lower ionic potentials increase the proportion of free water molecules-those not engaged in hydration shells or hydrogen-bonding networks-leading to greater electrolytic stability. Furthermore, we observe that the chemical environment created by bulky ions with lower ionic potentials impedes electrolytic reactions by frustrating the solvation of protons and hydroxide ions, the products of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. We found that the solvation of protons plays a more substantial role than that of hydroxide, which explains a greater shift for OER than for HER, a puzzle that cannot be rationalized by the notion of varying O-H bond strengths of water. These insights will help the design of aqueous systems.
Collapse
|
108
|
Trzaskowski B, Martínez JP, Sarwa A, Szyszko B, Goddard WA. Argentophilic Interactions, Flexibility, and Dynamics of Pyrrole Cages Encapsulating Silver(I) Clusters. J Phys Chem A 2024; 128:3339-3350. [PMID: 38651289 PMCID: PMC11077489 DOI: 10.1021/acs.jpca.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Recently, pyrrole cages have been synthesized that encapsulate ion pairs and silver(I) clusters to form intricate supramolecular capsules. We report here a computational analysis of these structures using density functional theory combined with a semiempirical tight-binding approach. We find that for neutral pyrrole cages, the Gibbs free energies of formation provide reliable predictions for the ratio of bound ions. For charged pyrrole cages, we find strong argentophilic interactions between Ag ions on the basis of the calculated bond indices and molecular orbitals. For the cage with the Ag4 cluster, we find two minimum-geometry conformations that differ by only 6.5 kcal/mol, with an energy barrier <1 kcal/mol, suggesting a very flexible structure as indicated by molecular dynamics. The predicted energies of formation of [Agn⊂1]n-3+ (n = 1-5) cryptands provide low energy barriers of formation of 5-20 kcal/mol for all cases, which is consistent with the experimental data. Furthermore, we also examined the structural variability of mixed-valence silver clusters to test whether additional geometrical conformations inside the organic cage are thermodynamically accessible. In this context, we show that the time-dependent density functional theory UV-vis spectra may potentially serve as a diagnostic probe to characterize mixed-valence and geometrical configurations of silver clusters encapsulated into cryptands.
Collapse
|
109
|
Varghese N, Sykes TC, Quetzeri-Santiago MA, Castrejón-Pita AA, Castrejón-Pita JR. Effect of Surfactants on the Splashing Dynamics of Drops Impacting Smooth Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8781-8790. [PMID: 38444249 PMCID: PMC11064227 DOI: 10.1021/acs.langmuir.3c03248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
We present the results of a systematic study elucidating the role that dynamic surface tension has on the spreading and splashing dynamics of surfactant-laden droplets during the impact on hydrophobic substrates. Using four different surfactants at various concentrations, we generated a range of solutions whose dynamic surface tension were characterized to submillisecond timescales using maximum bubble-pressure tensiometry. Impact dynamics of these solutions were observed by high-speed imaging with subsequent quantitative image processing to determine the impact parameters (droplet size and speed) and dynamic wetting properties (dynamic contact angle). Droplets were slowly formed by dripping to allow the surfactants to achieve equilibrium at the free surface prior to impact. Our results indicate that while only the fastest surfactants appreciably affect the maximum spreading diameter, the droplet morphology during the initial stages of spreading is different to water for all surfactant solutions studied. Moreover, we show that surfactant-laden droplets splash more easily than pure liquid (water). Based on the association of the splashing ratio to our tensiometry measurements, we are able to predict the effective surface tension acting during splashing. These results suggest that droplet splashing characteristics are primarily defined by the stretching of the equilibrated droplet free surface.
Collapse
|
110
|
Zakaria FR, Chen CY, Li J, Wang S, Payne GF, Bentley WE. Redox active plant phenolic, acetosyringone, for electrogenetic signaling. Sci Rep 2024; 14:9666. [PMID: 38671069 PMCID: PMC11053109 DOI: 10.1038/s41598-024-60191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Redox is a unique, programmable modality capable of bridging communication between biology and electronics. Previous studies have shown that the E. coli redox-responsive OxyRS regulon can be re-wired to accept electrochemically generated hydrogen peroxide (H2O2) as an inducer of gene expression. Here we report that the redox-active phenolic plant signaling molecule acetosyringone (AS) can also induce gene expression from the OxyRS regulon. AS must be oxidized, however, as the reduced state present under normal conditions cannot induce gene expression. Thus, AS serves as a "pro-signaling molecule" that can be activated by its oxidation-in our case by application of oxidizing potential to an electrode. We show that the OxyRS regulon is not induced electrochemically if the imposed electrode potential is in the mid-physiological range. Electronically sliding the applied potential to either oxidative or reductive extremes induces this regulon but through different mechanisms: reduction of O2 to form H2O2 or oxidation of AS. Fundamentally, this work reinforces the emerging concept that redox signaling depends more on molecular activities than molecular structure. From an applications perspective, the creation of an electronically programmed "pro-signal" dramatically expands the toolbox for electronic control of biological responses in microbes, including in complex environments, cell-based materials, and biomanufacturing.
Collapse
|
111
|
Fernández C, Chapman O, Brown MA, Alvarez-Pugliese CE, Hatzell MC. Achieving Decentralized, Electrified, and Decarbonized Ammonia Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6964-6977. [PMID: 38602491 PMCID: PMC11044596 DOI: 10.1021/acs.est.3c10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
The rapid reduction in the cost of renewable energy has motivated the transition from carbon-intensive chemical manufacturing to renewable, electrified, and decarbonized technologies. Although electrified chemical manufacturing technologies differ greatly, the feasibility of each electrified approach is largely related to the energy efficiency and capital cost of the system. Here, we examine the feasibility of ammonia production systems driven by wind and photovoltaic energy. We identify the optimal regions where wind and photovoltaic electricity production may be able to meet the local demand for ammonia-based fertilizers and set technology targets for electrified ammonia production. To compete with the methane-fed Haber-Bosch process, electrified ammonia production must reach energy efficiencies of above 20% for high natural gas prices and 70% for low natural gas prices. To account for growing concerns regarding access to water, geospatial optimization considers water stress caused by new ammonia facilities, and recommendations ensure that the identified regions do not experience an increase in water stress. Reducing water stress by 99% increases costs by only 1.4%. Furthermore, a movement toward a more decentralized ammonia supply chain driven by wind and photovoltaic electricity can reduce the transportation distance for ammonia by up to 76% while increasing production costs by 18%.
Collapse
|
112
|
Lathrop P, Sun R, Beyer FL, Elabd YA. Highly Frustrated Poly(ionic liquid) ABC Triblock Terpolymers with Exceptionally High Morphology Factors. Macromolecules 2024; 57:3776-3797. [PMID: 38681059 PMCID: PMC11044597 DOI: 10.1021/acs.macromol.3c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In this work, we report the successful synthesis of 17 unique compositions of a poly(ionic liquid) (PIL) ABC triblock terpolymer, poly(S-b-VBMIm-TFSI-b-HA), where S is styrene, VBMIm-TFSI is vinylbenzyl methylimidazolium bis(trifluoromethanesulfonyl)imide, and HA is hexyl acrylate. Nine distinct morphologies were observed, including two-phase and three-phase disordered microphase separated (D2 and D3), two-phase hexagonally packed cylinders (C2), core-shell hexagonally packed cylinders (CCS), three-phase lamellae (L3), two-phase lamellae (L2), core-shell double gyroid (Q230), spheres-in-lamellae (LSI), and a three-phase hexagonal superlattice of cylinders (CSL). The LSI morphology was unambiguously confirmed using small-angle X-ray scattering and transmission electron microscopy. Morphology type significantly impacted the ion conductivity of the PIL ABC triblock terpolymers, where remarkable changes in morphology factor (normalized ion conductivity) were observed with only small changes in the conducting volume fraction, i.e., PIL block composition. An exceptionally high morphology factor of 2.0 was observed from the PIL ABC triblock terpolymer with a hexagonal superlattice morphology due to the three-dimensional narrow, continuous PIL nanodomains that accelerate ion conduction. Overall, this work demonstrates the first systematic study of highly frustrated single-ion conducting ABC triblock terpolymers with a diverse set of morphologies and exceptionally high morphology factors, enabling the exploration of transport-morphology relationships to guide the future design of highly conductive polymer electrolytes.
Collapse
|
113
|
Guo D, Wei Y, Zybin SV, Liu Y, Huang F, Goddard WA. Detonation Performance of Insensitive Nitrogen-Rich Nitroenamine Energetic Materials Predicted from First-Principles Reactive Molecular Dynamics Simulations. JACS AU 2024; 4:1605-1614. [PMID: 38665641 PMCID: PMC11040668 DOI: 10.1021/jacsau.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024]
Abstract
Because of the excellent combination of high detonation and low sensitivity properties of the 1,1-diamino-2,2-dinitroethylene (FOX-7) energetic material (EM), it is useful to explore new energetic derivatives that start with the FOX-7 structure. However, most such derivatives are highly sensitive, making them unsuitable for EM applications. An exception is the new nitroenamine EM, 1,1-diamino-2-tetrazole-2-nitroethene (FOX-7-T) (synthesized by replacing a nitro group with a tetrazole ring), which exhibits good stability. Unfortunately, FOX-7-T shows an unexpected much lower detonation performance than FOX-7, despite its higher nitrogen content. To achieve an atomistic understanding of the insensitivity and detonation performance of FOX-7 and FOX-7-T, we carried out reactive molecular dynamics (RxMD) using the ReaxFF reactive force field and combined quantum mechanics MD (QM-MD). We found that the functional group plays a significant role in the initial decomposition reaction. For FOX-7, the initial decomposition involves only simple hydrogen transfer reactions at high temperature, whereas for FOX-7-T, the initial reaction begins at much lower temperature with a tetrazole ring breaking to form N2, followed by many subsequent reactions. Our first-principles-based simulations predicted that FOX-7-T has 34% lower CJ pressure, 15% lower detonation velocity, and 45% lower CJ temperature than FOX-7. This is partly because a larger portion of the FOX-7-T mass gets trapped into condensed phase carbon clusters at the CJ point, suppressing generation of gaseous CO2 and N2 final products, leading to reduced energy delivery. Our findings suggest that the oxygen balance is an important factor to be considered in the design of the next generation of high-nitrogen-containing EMs.
Collapse
|
114
|
Rothschild LJ, Averesch NJH, Strychalski EA, Moser F, Glass JI, Cruz Perez R, Yekinni IO, Rothschild-Mancinelli B, Roberts Kingman GA, Wu F, Waeterschoot J, Ioannou IA, Jewett MC, Liu AP, Noireaux V, Sorenson C, Adamala KP. Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities. ACS Synth Biol 2024; 13:974-997. [PMID: 38530077 PMCID: PMC11037263 DOI: 10.1021/acssynbio.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.
Collapse
|
115
|
Abue P, Bhattacharyya N, Tang M, Jahn LG, Blomdahl D, Allen DT, Corsi RL, Novoselac A, Mistzal PK, Hildebrandt Ruiz L. Emissions from Hydrogen Peroxide Disinfection and Their Interaction with Mask Surfaces. ACS ENGINEERING AU 2024; 4:204-212. [PMID: 38646518 PMCID: PMC11027093 DOI: 10.1021/acsengineeringau.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 04/23/2024]
Abstract
A rise in the disinfection of spaces occurred as a result of the COVID-19 pandemic as well as an increase in people wearing facial coverings. Hydrogen peroxide was among the recommended disinfectants for use against the virus. Previous studies have investigated the emissions of hydrogen peroxide associated with the disinfection of spaces and masks; however, those studies did not focus on the emitted byproducts from these processes. Here, we simulate the disinfection of an indoor space with H2O2 while a person wearing a face mask is present in the space by using an environmental chamber with a thermal manikin wearing a face mask over its breathing zone. We injected hydrogen peroxide to disinfect the space and utilized a chemical ionization mass spectrometer (CIMS) to measure the primary disinfectant (H2O2) and a Vocus proton transfer reaction time-of-flight mass spectrometer (Vocus PTR-ToF-MS) to measure the byproducts from disinfection, comparing concentrations inside the chamber and behind the mask. Concentrations of the primary disinfectant and the byproducts inside the chamber and behind the mask remained elevated above background levels for 2-4 h after disinfection, indicating the possibility of extended exposure, especially when continuing to wear the mask. Overall, our results point toward the time-dependent impact of masks on concentrations of disinfectants and their byproducts and a need for regular mask change following exposure to high concentrations of chemical compounds.
Collapse
|
116
|
von Lersner A, Fernandes F, Ozawa PM, Jackson M, Masureel M, Ho H, Lima SM, Vagner T, Sung BH, Wehbe M, Franze K, Pua H, Wilson JT, Irish JM, Weaver AM, Di Vizio D, Zijlstra A. Multiparametric Single-Vesicle Flow Cytometry Resolves Extracellular Vesicle Heterogeneity and Reveals Selective Regulation of Biogenesis and Cargo Distribution. ACS NANO 2024; 18:10464-10484. [PMID: 38578701 PMCID: PMC11025123 DOI: 10.1021/acsnano.3c11561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024]
Abstract
Mammalian cells release a heterogeneous array of extracellular vesicles (EVs) that contribute to intercellular communication by means of the cargo that they carry. To resolve EV heterogeneity and determine if cargo is partitioned into select EV populations, we developed a method named "EV Fingerprinting" that discerns distinct vesicle populations using dimensional reduction of multiparametric data collected by quantitative single-EV flow cytometry. EV populations were found to be discernible by a combination of membrane order and EV size, both of which were obtained through multiparametric analysis of fluorescent features from the lipophilic dye Di-8-ANEPPS incorporated into the lipid bilayer. Molecular perturbation of EV secretion and biogenesis through respective ablation of the small GTPase Rab27a and overexpression of the EV-associated tetraspanin CD63 revealed distinct and selective alterations in EV populations, as well as cargo distribution. While Rab27a disproportionately affects all small EV populations with high membrane order, the overexpression of CD63 selectively increased the production of one small EV population of intermediate membrane order. Multiplexing experiments subsequently revealed that EV cargos have a distinct, nonrandom distribution with CD63 and CD81 selectively partitioning into smaller vs larger EVs, respectively. These studies not only present a method to probe EV biogenesis but also reveal how the selective partitioning of cargo contributes to EV heterogeneity.
Collapse
|
117
|
Johnson JL, Dodder NG, Mladenov N, Steinberg L, Richardot WH, Hoh E. Comparison of Trace Organic Chemical Removal Efficiencies between Aerobic and Anaerobic Membrane Bioreactors Treating Municipal Wastewater. ACS ES&T WATER 2024; 4:1381-1392. [PMID: 38633364 PMCID: PMC11019542 DOI: 10.1021/acsestwater.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Evaluating persistent trace organic chemicals (TOrCs) and transformation products (TPs) in membrane bioreactors (MBRs) is essential, given that MBRs are now widely implemented for wastewater treatment and water reuse. This research applied comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS)-based nontargeted analysis to compare the effectiveness of parallel aerobic and anaerobic MBRs (AeMBRs and AnMBRs, respectively), treating the same municipal wastewater. The average total chromatographic feature peak area abundances were significantly reduced by 84% and 72% from influent to membrane permeate in both the AeMBR and AnMBR (p < 0.05), respectively. However, the reduction of the average number of chromatographic features was significant for only AeMBR treatment (p = 0.006). A similar number of TPs were generated during both AeMBR and AnMBR treatments (165 vs 171 compounds, respectively). The overall results suggest that the AeMBR was more effective for reducing the diversity of TOrCs than the AnMBR, but both aerobic and anaerobic processes had a similar reduction of TOrC abundance. Suspect screening analysis using GC×GC/TOF-MS, which resulted in the tentative identification of 351 TOrCs, proved to be a powerful approach for uncovering compounds previously unreported in wastewater, including many fragrances and personal care products.
Collapse
|
118
|
Plata S, Childress AE, McCurry DL. Minimizing N-Nitrosodimethylamine Formation During Disinfection of Blended Seawater and Wastewater Effluent. ACS ES&T WATER 2024; 4:1498-1507. [PMID: 38633366 PMCID: PMC11019544 DOI: 10.1021/acsestwater.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 04/19/2024]
Abstract
Augmenting seawater with wastewater has the potential to reduce the energy demand and environmental impacts associated with seawater desalination. Alternatively, as wastewater reuse becomes more widespread, augmenting wastewater with seawater can increase the available water supply. However, the chemistry of disinfecting a blended stream has not been explored. Toxic byproducts, including N-nitrosodimethylamine (NDMA), are expected to form during disinfection, and the extent of formation will likely be a function of which stream is chlorinated and whether disinfection happens before or after blending. In this work, three blending-disinfection scenarios were modeled and experimentally evaluated in bench-scale systems treating synthetic and authentic waters. Modeling results suggested that chlorinating preblended wastewater and seawater would produce the most NDMA because it yielded the highest concentrations of bromochloramine, which was previously found to promote NDMA formation. However, chlorinating wastewater prior to blending with seawater, which modeling indicated would form the most dichloramine, produced the most NDMA in experiments. When seawater was disinfected prior to blending with wastewater, bromide likely converted most chlorine to free bromine. Bromamines formed after blending, however, did not lead to an elevated level of NDMA formation. Therefore, to minimize NDMA formation when disinfecting blended wastewater-seawater, seawater should be disinfected prior to introducing wastewater.
Collapse
|
119
|
Zhou W, Felvey N, Guo J, Hoffman AS, Bare SR, Kulkarni AR, Runnebaum RC, Kronawitter CX. Reduction of Cofed Carbon Dioxide Modifies the Local Coordination Environment of Zeolite-Supported, Atomically Dispersed Chromium to Promote Ethane Dehydrogenation. J Am Chem Soc 2024; 146:10060-10072. [PMID: 38551239 PMCID: PMC11009955 DOI: 10.1021/jacs.4c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
The reduction of CO2 is known to promote increased alkene yields from alkane dehydrogenations when the reactions are cocatalyzed. The mechanism of this promotion is not understood in the context of catalyst active-site environments because CO2 is amphoteric, and even general aspects of the chemistry, including the significance of competing side reactions, differ significantly across catalysts. Atomically dispersed chromium cations stabilized in highly siliceous MFI zeolite are shown here to enable the study of the role of parallel CO2 reduction during ethylene-selective ethane dehydrogenation. Based on infrared spectroscopy and X-ray absorption spectroscopy data interpreted through calculations using density functional theory (DFT), the synthesized catalyst contains atomically dispersed Cr cations stabilized by silanol nests in micropores. Reactor studies show that cofeeding CO2 increases stable ethylene-selective ethane dehydrogenation rates over a wide range of partial pressures. Operando X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) spectra indicate that during reaction at 650 °C the Cr cations maintain a nominal 2+ charge and a total Cr-O coordination number of approximately 2. However, CO2 reduction induces a change, correlated with the CO2 partial pressure, in the population of two distinct Cr-O scattering paths. This indicates that the promotional effect of parallel CO2 reduction can be attributed to a subtle change in Cr-O bond lengths in the local coordination environment of the active site. These insights are made possible by simultaneously fitting multiple EXAFS spectra recorded in different reaction conditions; this novel procedure is expected to be generally applicable for interpreting operando catalysis EXAFS data.
Collapse
|
120
|
Al Harraq A, Feng M, Gauri HM, Devireddy R, Gupta A, Sun Q, Bharti B. Magnetic Control of Nonmagnetic Living Organisms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17339-17346. [PMID: 38531044 PMCID: PMC11009914 DOI: 10.1021/acsami.4c02325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.
Collapse
|
121
|
Patel A, Arik M, Sarkar A. An Undergraduate Laboratory Module Integrating Organic Chemistry and Polymer Science. JOURNAL OF CHEMICAL EDUCATION 2024; 101:1686-1695. [PMID: 38617818 PMCID: PMC11008100 DOI: 10.1021/acs.jchemed.3c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Polymer science is receiving wider acceptance in the organic chemistry community; thus, it is imperative to include it in the undergraduate organic chemistry curriculum. Despite the ever-increasing popularity of the topic of polymer chemistry in undergraduate curricula, a comprehensive laboratory experiment module describing a polypeptide synthesis by ring-opening polymerization of N-carboxyanhydride (NCA ROP) and a homopolymer synthesis by activators-regenerated by electron-transfer for atom transfer radical polymerization (ARGET ATRP) has yet to be proposed. Herein, we report a semester-long, ten week undergraduate laboratory module focusing on the synthesis and analytical characterization of polyalanine and polystyrene for an advanced organic chemistry class. Students received hands-on-experiences in synthesizing polymers followed by their characterization via proton nuclear magnetic resonance (1H NMR) spectroscopy, electrospray ionization-mass spectrometry (ESI-MS), gel permeation chromatography (GPC), thermogravimetry (TGA), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM), which are not well-presented in the typical organic chemistry curricula. These engaging hands-on lessons in the newly designed laboratory module not only increase students' interests in an interdisciplinary environment of organic chemistry and polymer science but also cultivate their research interests and communication skills and promote critical thinking.
Collapse
|
122
|
Bever C, Coronella CJ. Carbon Sequestration Potential of Manure-Derived Hydrochar Aided by Secondary Stabilization. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:5705-5715. [PMID: 38606338 PMCID: PMC11005824 DOI: 10.1021/acssuschemeng.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Hydrothermal carbonization (HTC) is a process that produces a carbon-rich solid from wet organic materials through the application of heat and pressure. Carbonized solids, previously correlated to long-term soil stability, may be considered for carbon sequestration through incorporation into soil. Chars produced by pyrolysis are known for exceptional stability in soil, but pyrolysis is expensive when applied to wet biomass, such as manure. Chars produced from manure by HTC show considerably improved potential for carbon sequestration relative to untreated manure, although not as great as that of chars produced by pyrolysis. This study focuses on producing and evaluating chars by HTC paired with pyrolysis and different methods of chemical oxidation for long-term carbon sequestration in soil. It is shown that a two-step process of pyrolysis following HTC produces a char that outperforms those produced by either individual process (HTC or pyrolysis) in carbon yield, carbon content, and, more importantly, soil carbon sequestration potential. It was found that acid-catalyzed HTC followed by pyrolysis resulted in a char with a 13% increase in carbon yield, a 51% increase in carbon content, and an atomic O/C ratio 64% smaller than the char produced by conventional pyrolysis.
Collapse
|
123
|
Verma G, Hostert J, Summerville AA, Robang AS, Garcia Carcamo R, Paravastu AK, Getman RB, Duval CE, Renner J. Investigation of Rare Earth Element Binding to a Surface-Bound Affinity Peptide Derived from EF-Hand Loop I of Lanmodulin. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16912-16926. [PMID: 38527460 PMCID: PMC10995902 DOI: 10.1021/acsami.3c17565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
Bioinspired strategies have been given extensive attention for the recovery of rare earth elements (REEs) from waste streams because of their high selectivity, regeneration potential, and sustainability as well as low cost. Lanmodulin protein is an emerging biotechnology that is highly selective for REE binding. Mimicking lanmodulin with shorter peptides is advantageous because they are simpler and potentially easier to manipulate and optimize. Lanmodulin-derived peptides have been found to bind REEs, but their properties have not been explored when immobilized on solid substrates, which is required for many advanced separation technologies. Here, two peptides, LanM1 and scrambled LanM1, are designed from the EF-hand loop 1 of lanmodulin and investigated for their binding affinity toward different REEs when surface-bound. First, the ability of LanM1 to bind REEs was confirmed and characterized in solution using circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations for Ce(III) ions. Isothermal titration calorimetry (ITC) was used to further analyze the binding of the LanM1 to Ce(III), Nd(III), Eu(III), and Y(III) ions and in low-pH conditions. The performance of the immobilized peptides on a model gold surface was examined using a quartz crystal microbalance with dissipation (QCM-D). The studies show that the LanM1 peptide has a stronger REE binding affinity than that of scrambled LanM1 when in solution and when immobilized on a gold surface. QCM-D data were fit to the Langmuir adsorption model to estimate the surface-bound dissociation constant (Kd) of LanM1 with Ce(III) and Nd(III). The results indicate that LanM1 peptides maintain a high affinity for REEs when immobilized, and surface-bound LanM1 has no affinity for potential competitor calcium and copper ions. The utility of surface-bound LanM1 peptides was further demonstrated by immobilizing them to gold nanoparticles (GNPs) and capturing REEs from solution in experiments utilizing an Arsenazo III-based colorimetric dye displacement assay and ultraviolet-visible (UV-vis) spectrophotometry. The saturated adsorption capacity of GNPs was estimated to be around 3.5 μmol REE/g for Ce(III), Nd(III), Eu(III), and Y(III) ions, with no binding of non-REE Ca(II) ions observed.
Collapse
|
124
|
Ospina-Acevedo F, Albiter LA, Bailey KO, Godínez-Salomón JF, Rhodes CP, Balbuena PB. Catalytic Activity and Electrochemical Stability of Ru 1-xM xO 2 (M = Zr, Nb, Ta): Computational and Experimental Study of the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16373-16398. [PMID: 38502743 PMCID: PMC10995909 DOI: 10.1021/acsami.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
We use computations and experiments to determine the effect of substituting zirconium, niobium, and tantalum within rutile RuO2 on the structure, oxygen evolution reaction (OER) mechanism and activity, and electrochemical stability. Calculated electronic structures altered by Zr, Nb, and Ta show surface regions of electron density depletion and accumulation, along with anisotropic lattice parameter shifts dependent on the substitution site, substituent, and concentration. Consistent with theory, X-ray photoelectron spectroscopy experiments show shifts in binding energies of O-2s, O-2p, and Ru-4d peaks due to the substituents. Experimentally, the substituted materials showed the presence of two phases with a majority phase that contains the metal substituent within the rutile phase and a second, smaller-percentage RuO2 phase. Our experimental analysis of OER activity shows Zr, Nb, and Ta substituents at 12.5 atom % induce lower activity relative to RuO2, which agrees with computing the average of all sites; however, Zr and Ta substitution at specific sites yields higher theoretical OER activity than RuO2, with Zr substitution suggesting an alternative OER mechanism. Metal dissolution predictions show the involvement of cooperative interactions among multiple surface sites and the electrolyte. Zr substitution at specific sites increases activation barriers for Ru dissolution, however, with Zr surface dissolution rates comparable to those of Ru. Experimental OER stability analysis shows lower Ru dissolution from synthesized RuO2 and Zr-substituted RuO2 compared to commercial RuO2 and comparable amounts of Zr and Ru dissolved from Zr-substituted RuO2, aligned with our calculations.
Collapse
|
125
|
Klein D, Rivera ES, Caprioli RM, Spraggins JM. Imaging Mass Spectrometry of Isotopically Resolved Intact Proteins on a Trapped Ion-Mobility Quadrupole Time-of-Flight Mass Spectrometer. Anal Chem 2024; 96:5065-5070. [PMID: 38517028 PMCID: PMC10993197 DOI: 10.1021/acs.analchem.3c05252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
In this work, we demonstrate rapid, high spatial, and high spectral resolution imaging of intact proteins by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) on a hybrid quadrupole-reflectron time-of-flight (qTOF) mass spectrometer equipped with trapped ion mobility spectrometry (TIMS). Historically, untargeted MALDI IMS of proteins has been performed on TOF mass spectrometers. While advances in TOF instrumentation have enabled rapid, high spatial resolution IMS of intact proteins, TOF mass spectrometers generate relatively low-resolution mass spectra with limited mass accuracy. Conversely, the implementation of MALDI sources on high-resolving power Fourier transform (FT) mass spectrometers has allowed IMS experiments to be conducted with high spectral resolution with the caveat of increasingly long data acquisition times. As illustrated here, qTOF mass spectrometers enable protein imaging with the combined advantages of TOF and FT mass spectrometers. Protein isotope distributions were resolved for both a protein standard mixture and proteins detected from a whole-body mouse pup tissue section. Rapid (∼10 pixels/s) 10 μm lateral spatial resolution IMS was performed on a rat brain tissue section while maintaining isotopic spectral resolution. Lastly, proof-of-concept MALDI-TIMS data was acquired from a protein mixture to demonstrate the ability to differentiate charge states by ion mobility. These experiments highlight the advantages of qTOF and timsTOF platforms for resolving and interpreting complex protein spectra generated from tissue by IMS.
Collapse
|