101
|
Zhang C, Li D, Ge T, Han J, Qi Y, Huang D. 2,4-Dichlorophenol induces feminization of zebrafish (Danio rerio) via DNA methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135084. [PMID: 31780173 DOI: 10.1016/j.scitotenv.2019.135084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 05/10/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is a ubiquitous contaminant of aquatic environments with an estrogenic effect on fish. However, the molecular mechanism underlying this effect remains elusive. To this end, the present study aimed to explore the effect of 2,4-DCP on sex differentiation and its relevant mechanism in zebrafish (Danio rerio). The results showed that a female-biased sex ratio was induced after exposing larval zebrafish to 2,4-DCP (0-160 μg/L) from 20 to 50 days post fertilization (dpf). The feminization of zebrafish was accompanied by decreased expression of male-related genes (sox9a, amh and dmrt1) under 2,4-DCP from 20 to 50 dpf. However, the expression of female-related genes (cyp19a1a, foxl2 and esr1) was also suppressed. Nevertheless, it is noteworthy that the methylation level of sox9a promoter was significantly increased, which may result in the significantly decreased expression of sox9a and ultimately the feminization effect of 2,4-DCP on zebrafish. In addition, 5-aza-2'-deoxycytidine (5-AZA), a methyltransferase inhibitor, significantly reduced the methylation level, increased the expression of sox9a, and partly impaired the feminization effect caused by 2,4-DCP, which further confirmed the importance of DNA methylation of sox9a in 2,4-DCP-induced feminization. These findings provide novel insights into the epigenetic mechanisms of DCP-induced estrogenic effect in fish.
Collapse
|
102
|
Shen F, Long Y, Li F, Ge G, Song G, Li Q, Qiao Z, Cui Z. De novo transcriptome assembly and sex-biased gene expression in the gonads of Amur catfish (Silurus asotus). Genomics 2020; 112:2603-2614. [PMID: 32109564 DOI: 10.1016/j.ygeno.2020.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 11/28/2022]
Abstract
Amur catfish is extensively distributed and cultured in Asian countries. Despite of economic importance, the genomic information of this species remains limited. A reference transcriptome of Amur catfish was assembled and the sex-biased gene expression in the gonads was characterized using RNA-sequencing. The assembled transcriptome of Amur catfish consisted of 74,840 transcripts. The N50, mean length and max length of transcripts are 1970, 1235 and 16,748 bp. Putative sex-specific transcripts were identified and sex-specific expression of the representative genes was verified by RT-PCR. Differential expression analysis identified 5401 ovary-biased and 5618 testis-biased genes. The ovary-biased genes were mainly enriched in pathways such as RNA transport and ribosome biogenesis in eukaryotes. The testis-biased genes were enriched in calcium signaling and cytokine-cytokine receptor interaction, etc. Our data provide a valuable genomic resource for further investigating the genetic basis of sex determination, sex differentiation and sexual dimorphism of catfish.
Collapse
|
103
|
Wu K, Song W, Zhang Z, Ge W. Disruption of dmrt1 rescues the all-male phenotype of the cyp19a1a mutant in zebrafish - a novel insight into the roles of aromatase/estrogens in gonadal differentiation and early folliculogenesis. Development 2020; 147:dev.182758. [PMID: 32001440 DOI: 10.1242/dev.182758] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/20/2020] [Indexed: 12/27/2022]
Abstract
Sex determination and differentiation are complex processes controlled by many different factors; however, the relationships among these factors are poorly understood. Zebrafish gonadal differentiation exhibits high plasticity involving multiple factors and pathways, which provides an excellent model for investigating the interactions between them. Ovarian aromatase (cyp19a1a) and dmrt1 are key factors in directing vertebrate ovary and testis differentiation, respectively. Knockout of zebrafish cyp19a1a leads to all-male offspring, whereas the loss of dmrt1 results in a female-biased sex ratio. In the present study, we established dmrt1-/- ;cyp19a1a-/- double mutant zebrafish and discovered that the introduction of the dmrt1 mutation into the cyp19a1a mutant could rescue the all-male phenotype of the latter. Interestingly, despite the lack of aromatase/estrogens, the follicles in the ovary of the rescued cyp19a1a mutant could develop normally up to the previtellogenic stage. Further evidence suggested the ovarian aromatase directed ovarian differentiation by suppressing dmrt1 expression via nuclear estrogen receptors (nERs). Our results provide solid evidence for an interaction between cyp19a1a and dmrt1 in zebrafish gonadal differentiation, and for the dispensability of estrogens in controlling early folliculogenesis.
Collapse
|
104
|
Lobo IKC, Nascimento ÁRD, Yamagishi MEB, Guiguen Y, Silva GFD, Severac D, Amaral ADC, Reis VR, Almeida FLD. Transcriptome of tambaqui Colossoma macropomum during gonad differentiation: Different molecular signals leading to sex identity. Genomics 2020; 112:2478-2488. [PMID: 32027957 DOI: 10.1016/j.ygeno.2020.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Tambaqui (Colossoma macropomum) is the major native species in Brazilian aquaculture, and we have shown that females exhibit a higher growth compared to males, opening up the possibility for the production of all-female population. To date, there is no information on the sex determination and differentiation molecular mechanisms of tambaqui. In the present study, transcriptome sequencing of juvenile trunks was performed to understand the molecular network involved in the gonadal sex differentiation. The results showed that before differentiation, components of the Wnt/β-catenin pathway, fox and fst genes imprint female sex development, whereas antagonistic pathways (gsk3b, wt1 and fgfr2), sox9 and genes for androgen synthesis indicate male differentiation. Hence, in undifferentiated tambaqui, the Wnt/β-catenin exerts a role on sex differentiation, either upregulated in female-like individuals, or antagonized in male-like individuals.
Collapse
|
105
|
Yuan C, Zhang C, Qi Y, Li D, Hu Y, Huang D. 2,4-Dichlorophenol induced feminization of zebrafish by down-regulating male-related genes through DNA methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110042. [PMID: 31816500 DOI: 10.1016/j.ecoenv.2019.110042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is ubiquitous in aquatic environment and has potential estrogenic effect on fish. However, the effect of 2,4-DCP on sex differentiation of zebrafish (Danio rerio) and the underlying mechanism are largely unknown. To address these questions, zebrafish larvae at 20 or 30 days post fertilization (dpf) were exposed to 2,4-DCP (0, 80 and 160 μg L-1) with/without 5-aza-2'-deoxycytidine (5AZA, 50 μg L-1) for 10 days. The sex ratios and the expressions of male-related genes including amh, gata4, nr5a1a, nr5a2 and sox9a were analyzed. In addition, the DNA methylation levels of amh, nr5a2 and sox9a were examined. The results showed that 2,4-DCP exposure resulted in significant increase of female ratios both in 20-30 and 30-40 dpf groups. Correspondingly, the expressions of gata4, nr5a1a, nr5a2 and sox9a were decreased by 2,4-DCP exposure in two treatment periods. However, the transcript of amh was decreased by 2,4-DCP exposure only from 30 to 40 dpf. The DNA methylation levels of amh, nr5a2 and sox9a were increased following 2,4-DCP exposure. Moreover, the addition of 5AZA could counteract the effects including feminization, disturbance of gene expression and DNA hypermethylation caused by 2,4-DCP. These results indicated that the feminizing effect of 2,4-DCP was accomplished by regulating the expression of male-related genes through DNA methylation.
Collapse
|
106
|
Chen L, Wang L, Cheng Q, Tu YX, Yang Z, Li RZ, Luo ZH, Chen ZX. Anti-masculinization induced by aromatase inhibitors in adult female zebrafish. BMC Genomics 2020; 21:22. [PMID: 31910818 PMCID: PMC6947999 DOI: 10.1186/s12864-019-6437-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/29/2019] [Indexed: 01/03/2023] Open
Abstract
Background Early sex differentiation genes of zebrafish remain an unsolved mystery due to the difficulty to distinguish the sex of juvenile zebrafish. However, aromatase inhibitors (AIs) could direct juvenile zebrafish sex differentiation to male and even induce ovary-to-testis reversal in adult zebrafish. Results In order to determine the transcriptomic changes of sex differentiation in juvenile zebrafish and early sex-reversal in adult zebrafish, we sequenced the transcriptomes of juvenile and adult zebrafish treated with AI exemestane (EM) for 32 days, when juvenile zebrafish sex differentiation finished. EM treatment in females up-regulated the expression of genes involved in estrogen metabolic process, female gamete generation and oogenesis, including gsdf, macf1a and paqr5a, while down-regulated the expression of vitellogenin (vtg) genes, including vtg6, vtg2, vtg4, and vtg7 due to the lower level of Estradiol (E2). Furthermore, EM-juveniles showed up-regulation in genes related to cell death and apoptosis, such as bcl2l16 and anax1c, while the control-juveniles exhibited up-regulation of genes involved in positive regulation of reproductive process and oocyte differentiation such as zar1 and zpcx. Moreover, EM-females showed higher enrichment than control females in genes involved in VEGF signaling pathway, glycosaminoglycan degradation, hedgehog signaling pathway, GnRH signaling pathway and steroid hormone biosynthesis. Conclusions Our study shows anti-masculinization in EM-treated adult females but not in EM-treated juveniles. This may be responsible for the lower sex plasticity in adults than juveniles.
Collapse
|
107
|
Zhang W, Liu Z, Tang S, Li D, Jiang Q, Zhang T. Transcriptional response provides insights into the effect of chronic polystyrene nanoplastic exposure on Daphnia pulex. CHEMOSPHERE 2020; 238:124563. [PMID: 31454744 DOI: 10.1016/j.chemosphere.2019.124563] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Nanoplastic pollution is widespread and persistent across global water systems and can cause a negative effect on aquatic organisms, especially the zooplankter which is the keystone of the food chain. The present study uses RNA sequencing to assess the global change in gene expression caused by 21 days of exposure to 75 nm polystyrene (PS) nanoplastics on Daphnia pulex, a model organism for ecotoxicity. With the threshold value at P value < 0.05 and fold change >2, 244 differentially expressed genes were obtained. Combined with real-time PCR validation of several selected genes, our results indicated that a distinct expression profile of key genes, including downregulated trehalose transporter, trehalose 6-phosphate synthase/phosphatase, chitinase and cathepsin-L as well as upregulated doublesex 1 and doublesex and mab-3 related transcription factor-like protein, contributed to the toxic effects of chronic nanoplastic exposure on Daphnia, such as slowed growth, subdued reproductive ability and reproductive pattern shifting. Our study also showed that chronic exposure to nanoplastic changed the sex ratio of D. pulex neonates. By integrating the gene expression pattern in an important model organism, this study gained insight into the molecular mechanisms of the toxic effect of chronic PS nanoplastic exposure on D. pulex, which may also extend to other nanoplastics or aquatic animals.
Collapse
|
108
|
Abstract
Sex disparities within the field of stroke, including subarachnoid hemorrhages (SAHs), have been in focus during the last 2 decades. It is clear that stroke incidence is higher in men, and also that men have their first stroke earlier than women. On the other hand, women have more severe strokes, mainly because cardioembolic strokes are more common in women. This leads to higher case fatality and worse functional outcome in women. It has often been pointed out that women more often have nontraditional stroke symptoms, and therefore may seek medical help later. After discharge from the hospital, female stroke survivors live alone in many cases and are dependent on external care. Therefore, these women frequently rate their quality of life (QoL) lower than men do. Female spouses more often provide help to their male stroke survivors than the reverse, and they accept a heavier burden. These caregivers are at high risk for depression, low QoL, and low psychologic wellbeing. SAH is a special form of stroke, often caused by a ruptured aneurysm. It is about 20% more common in women. The case fatality is high, but does not differ between the sexes.
Collapse
|
109
|
Sahoo L, Sahoo S, Mohanty M, Sankar M, Dixit S, Das P, Rasal KD, Rather MA, Sundaray JK. Molecular characterization, computational analysis and expression profiling of Dmrt1 gene in Indian major carp, Labeo rohita (Hamilton 1822). Anim Biotechnol 2019; 32:413-426. [PMID: 31880491 DOI: 10.1080/10495398.2019.1707683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sexual dimorphism of fish morphology, physiology and behavior is diverse and complex in nature. Doublesex and mab-3 related transcription factor (Dmrt) is a large protein family whose function is sexual development and differentiation in vertebrates. Here, we report a full-length cDNA sequence of Labeo rohita (rohu) Dmrt1 of 907 bp length having 798 bp of open reading frame encoding 265 amino acids. The molecular weight of rohu DMRT1 protein was found to be 28.74 KDa and isoelectric point was 7.53. DMRT1 protein contains 23 positively and 24 negatively charged amino acids with a GRAVY score of -0.618. A characteristic DM domain was found in DMRT1 protein, which is a novel DNA-binding domain. Phylogenetic analysis showed maximum similarity with Cyprinus carpio when compared with DMRT1 of other vertebrates. Molecular docking study identified active sites to be targeted for drug designing. Rohu DMRT1 was observed to interact with other proteins such as FOXL2, CYP19a1a, AMH and SOX9a. Differential expression study revealed higher expression in testis tissue implying its role in male sex differentiation and testicular development. The information generated in the present work could facilitate further research to resolve the issues related to gonadal maturation and reproduction of commercially important aquaculture species.
Collapse
|
110
|
Xin GL, Liu JQ, Liu J, Ren XL, Du XM, Liu WZ. Anatomy and RNA-Seq reveal important gene pathways regulating sex differentiation in a functionally Androdioecious tree, Tapiscia sinensis. BMC PLANT BIOLOGY 2019; 19:554. [PMID: 31842763 PMCID: PMC6915933 DOI: 10.1186/s12870-019-2081-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/16/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Gametogenesis is a key step in the production of ovules or pollen in higher plants. The sex-determination aspects of gametogenesis have been well characterized in the model plant Arabidopsis. However, little is known about this process in androdioecious plants. Tapiscia sinensis Oliv. is a functionally androdioecious tree, with both male and hermaphroditic individuals. Hermaphroditic flowers (HFs) are female-fertile flowers that can produce functional pollen and set fruits. However, compared with male flowers (MFs), the pollen viability and number of pollen grains per flower are markedly reduced in HFs. MFs are female-sterile flowers that fail to set fruit and that eventually drop. RESULTS Compared with HF, a notable cause of MF female sterility in T. sinensis is when the early gynoecium meristem is disrupted. During the early stage of HF development (stage 6), the ring meristem begins to form as a ridge around the center of the flower. At this stage, the internal fourth-whorl organ is stem-like rather than carpelloid in MF. A total of 52,945 unigenes were identified as transcribed in MF and HF. A number of differentially expressed genes (DEGs) and metabolic pathways were detected as involved in the development of the gynoecium, especially the ovule, carpel and style. At the early gynoecium development stage, DEGs were shown to function in the metabolic pathways regulating ethylene biosynthesis and signal transduction (upstream regulator), auxin, cytokinin transport and signalling, and sex determination (or flower meristem identity). CONCLUSIONS Pathways for the female sterility model were initially proposed to shed light on the molecular mechanisms of gynoecium development at early stages in T. sinensis.
Collapse
|
111
|
Zerpa-Catanho D, Wai J, Wang ML, Yu L, Nguyen J, Ming R. Differential gene expression among three sex types reveals a MALE STERILITY 1 (CpMS1) for sex differentiation in papaya. BMC PLANT BIOLOGY 2019; 19:545. [PMID: 31818257 PMCID: PMC6902354 DOI: 10.1186/s12870-019-2169-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Carica papaya is a trioecious plant species with a genetic sex-determination system defined by sex chromosomes. Under unfavorable environmental conditions male and hermaphrodite exhibit sex-reversal. Previous genomic research revealed few candidate genes for sex differentiation in this species. Nevertheless, more analysis is still needed to identify the mechanism responsible for sex flower organ development in papaya. RESULTS The aim of this study was to identify differentially expressed genes among male, female and hermaphrodite flowers in papaya during early (pre-meiosis) and later (post-meiosis) stages of flower development. RNA-seq was used to evaluate the expression of differentially expressed genes and RT-qPCR was used to verify the results. Putative functions of these genes were analyzed based on their homology with orthologs in other plant species and their expression patterns. We identified a Male Sterility 1 gene (CpMS1) highly up-regulated in male and hermaphrodite flower buds compared to female flower buds, which expresses in small male flower buds (3-8 mm), and that might be playing an important role in male flower organ development due to its homology to MS1 genes previously identified in other plants. This is the first study in which the sex-biased expression of genes related to tapetum development in the anther developmental pathway is being reported in papaya. Besides important transcription factors related to flower organ development and flowering time regulation, we identified differential expression of genes that are known to participate in ABA, ROS and auxin signaling pathways (ABA-8-hydroxylases, AIL5, UPBEAT 1, VAN3-binding protein). CONCLUSIONS CpMS1 was expressed in papaya male and hermaphrodite flowers at early stages, suggesting that this gene might participate in male flower organ development processes, nevertheless, this gene cannot be considered a sex-determination gene. Due to its homology with other plant MS1 proteins and its expression pattern, we hypothesize that this gene participates in anther development processes, like tapetum and pollen development, downstream gender specification. Further gene functional characterization studies in papaya are required to confirm this hypothesis. The role of ABA and ROS signaling pathways in papaya flower development needs to be further explored as well.
Collapse
|
112
|
Bertotto LB, Bruce R, Li S, Richards J, Sikder R, Baljkas L, Giroux M, Gan J, Schlenk D. Effects of bifenthrin on sex differentiation in Japanese Medaka (Oryzias latipes). ENVIRONMENTAL RESEARCH 2019; 177:108564. [PMID: 31306987 DOI: 10.1016/j.envres.2019.108564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/13/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Bifenthrin (BF) is a pyrethroid insecticide used in urban and agricultural applications. Previous studies in early life stages of fish have indicated anti-estrogenic activity; however, estrogenic activity has been observed in adults. To test the hypothesis that BF impairs sex differentiation, larval Japanese Medaka were exposed to BF during a critical developmental window for phenotypic sexual differentiation. Fish were exposed to environmentally relevant concentrations of BF (0.15 μg/L and 1.5 μg/L), a single concentration (0.3 mg/L) of an estrogen receptor (ER) antagonist (ICI 182,780), and an ER agonist (0.2 ug/L) (17β-estradiol). Fish were exposed at 8 days post hatch (dph) larvae for 30 days. Phenotypic sex, secondary sexual characteristics (SSC) and genotypic sex were investigated at sexual maturity (8 weeks). A trend towards masculinization (p = 0.06) based on the presence of papillary processes in anal fin rays of Japanese Medaka was observed in fish exposed to the lowest concentration of BF. However, genotypic gender ratios were not altered. These results show sex differentiation was not significantly altered by larval exposure to BF in Japanese medaka.
Collapse
|
113
|
Matsushima D, Kasahara R, Matsuno K, Aoki F, Suzuki MG. Involvement of Ecdysone Signaling in the Expression of the doublesex Gene during Embryonic Development in the Silkworm, Bombyx mori. Sex Dev 2019; 13:151-163. [PMID: 31487710 DOI: 10.1159/000502361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2019] [Indexed: 01/09/2023] Open
Abstract
Steroid hormones, represented by estrogen and testosterone, act as sex hormones that play an essential role in the sexual differentiation of vertebrates. However, it remains unclear whether ecdysteroids, typical steroid hormones in insects, function as sex hormones. In this study, we investigated whether ecdysteroids or ecdysone signals are involved in the sexual differentiation of the silkworm (Bombyx mori) embryo. Quantitative analysis using LC-MS/MS demonstrated that there was no significant difference in the 20-hydroxyecdysone (20E) titer between sexes during embryonic development. Consistent with this result, expression levels of 2 genes encoding ecdysteroid-phosphate phosphatase (EPPase) and ecdysone 20-hydroxylase (E20OHase), which are essential for the biosynthesis of ecdysone and 20E in eggs, did not show a significant difference between male and female embryos. Expression levels of ecdysone receptor (EcR) and E75, which is one of a small set of genes induced directly by 20E, were also similar between the 2 sexes. However, knockdown of EPPase and one isoform of EcR (EcR-A) resulted in decreased expression of Bombyx doublesex (Bmdsx), a master regulatory gene for sexual differentiation of the silkworm in both male and female embryos. In vitro analysis with cultured testes revealed that expression levels of Bmdsx were increased in a dose-dependent manner of the ecdysone analog, ponasterone A. These results suggest that ecdysone signaling may play a role in indirectly regulating the expression of some genes involved in sexual differentiation through inducing expression of Bmdsx in the silkworm.
Collapse
|
114
|
Jiang YX, Shi WJ, Ma DD, Zhang JN, Ying GG, Zhang H, Ong CN. Male-biased zebrafish sex differentiation and metabolomics profile changes caused by dydrogesterone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105242. [PMID: 31319296 DOI: 10.1016/j.aquatox.2019.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Some progestins, including the widely used dydrogesterone (DDG), have been shown to cause male-biased sex ratio in teleost. However, there is a gap to fully understand the mechanisms of the sex differentiation disturbance by progestins, particularly from the metabolic aspect. We thus aimed to examine the sex changes by exposing zebrafish embryos to 4.4 (L), 44 (M) and 440 (H) ng/L DDG for up to 140 days, and investigated metabolomic profile changes during the critical period of sex differentiation at fry stage (35 dpf). DDG increased the percentage of male zebrafish in a dose-dependent manner, with 98% male fish in the high concentration group. In zebrafish fry, DDG increased the levels of some free fatty acids, monoglycerides, acylcarnitines, organic acids, free amino acids, while decreased lysophospholipids, uric acid and bile acids. DDG exposure also decreased the nucleoside monophosphates and UDP-sugars while increased nucleosides and their bases. These metabolite changes, namely increase in n-3 PUFAs (polyunsaturated fatty acids), myo-inositol, taurine, palmitoleic acid, oleic acid, lactic acid, fumaric acid, and uracil, and decrease in uric acid and bile acids, might account for the male-biased sex ratio in zebrafish. It appears that many of these metabolites could inhibit several pathways that regulate zebrafish gonad differentiation, including NF-κB/COX-2 and Wnt/β-catenin pathways, and activate p53 pathway. Thus we proposed a hypothesis that DDG might induce oocytes apoptosis through the above pathways and finally lead to female-to-male sex reversal. The results from this study suggest that DDG at environmentally relevant concentrations could affect zebrafish metabolomic profiles and finally disturb fish sex differentiation.
Collapse
|
115
|
Mawaribuchi S, Ito Y, Ito M. Independent evolution for sex determination and differentiation in the DMRT family in animals. Biol Open 2019; 8:8/8/bio041962. [PMID: 31399444 PMCID: PMC6737965 DOI: 10.1242/bio.041962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Some DMRT family genes including arthropod dsx, nematode mab-3, and vertebrate dmrt1 are involved in sex determination and/or differentiation in bilaterian animals. Although there have been some reports about evolutionary analyses of the family by using its phylogenetic trees, it is still undecided as to whether these three sex determination-related genes share orthologous relationships or not. To clarify this question, we analyzed evolutional relationships among the family members in various bilaterians by using not only phylogenetic tree analysis, but also synteny analysis. We found that only four genes, dmrt2a/2b, dmrt3, dmrt4/5 and dmrt93B were commonly present in invertebrate bilateria. The syntenies of dmrt2a/2b-dmrt3 and dmrt4/5-dmrt93B are conserved before and after two rounds of whole genome duplication in the ancestral vertebrate. Importantly, this indicates that dmrt1 must have appeared in the common vertebrate ancestor. In addition, dmrt1, dsx, or mab-3 formed each different cluster at a distance in our phylogenetic tree. From these findings, we concluded that the three sex determination-related genes, dmrt1, dsx, and mab-3 have no orthologous relationships, and suggested independent evolution for sex determination and differentiation in the DMRT gene family. Our results may supply clues about why sex-determining systems have diverged during animal evolution. Summary: Three DMRT family genes, vertebrate dmrt1, arthropod dsx and nematode mab-3, involved in sex determination and primary sex differentiation have no orthologous relationships, indicating independent evolution in bilaterian animals.
Collapse
|
116
|
van Zoest M, Bijker EM, Kortmann BBM, Kempers M, van Herwaarden AE, van der Velden J, Claahsen-van der Grinten HL. Sex Assignment and Diagnostics in Infants with Ambiguous Genitalia - A Single-Center Retrospective Study. Sex Dev 2019; 13:109-117. [PMID: 31466074 DOI: 10.1159/000502074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Ambiguous genitalia affect 1 in 5,000 live births. Diagnostic procedures can be time-consuming, and often the etiology cannot be established in this group of individuals with differences/disorders of sex development (DSD). We aimed to evaluate the clinical presentation, sex assignment, and diagnostic workup in these patients. In this retrospective observational study, we included infants who presented with ambiguous genitalia from 2006 to 2016 at the Radboudumc (Radboud University Medical Center) DSD expert center. Relevant data were collected from patient records. Sixty-two 46,XY and fourteen 46,XX individuals were included. Sex was assigned in the first days of life and based on the combination of presence or absence of a uterus on ultrasound, AMH level, palpable gonads, and the karyotype (corresponded in 96% of the patients). In 86% of the 46,XX DSD subjects, a diagnosis was made, whereas in only 15/62 (24%) of the 46,XY DSD individuals, etiology was determined. In 52 individuals, genetic testing was performed resulting in a diagnosis in 24 patients (46%). AMH, hCG-stimulated testosterone, and dihydrotestosterone levels contributed to determining etiology, whilst basal testosterone and basal dihydrotestosterone did not. Establishing a diagnosis in infants with ambiguous genitalia is complex and challenging; this study aids to enhance this process and improve current practice.
Collapse
|
117
|
Huynh TB, Fairgrieve WT, Hayman ES, Lee JSF, Luckenbach JA. Inhibition of ovarian development and instances of sex reversal in genotypic female sablefish (Anoplopoma fimbria) exposed to elevated water temperature. Gen Comp Endocrinol 2019; 279:88-98. [PMID: 30594588 DOI: 10.1016/j.ygcen.2018.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
This study determined high temperature effects on ovarian development in a marine groundfish species, sablefish (Anoplopoma fimbria), with potential application in sex reversal or sterilization for aquaculture. Monosex female (XX-genotype) sablefish larvae (∼30 mm) were randomly divided into three groups and exposed to control (15.6 °C ± 0.8 °C), moderate (20.4 °C ± 0.5 °C), or high (21.7 °C ± 0.5 °C) temperatures for 19 weeks. Treated fish were then tagged and transferred to ambient seawater (11.2 °C ± 2.3 °C) for one year to determine whether temperature effects on reproductive development were maintained post-treatment. Fish were periodically sampled for gonadal histology, gene expression and plasma 17β-estradiol (E2) analyses to assess gonadal development. Short-term (4-week) exposure to elevated temperatures had only minor effects, whereas longer exposure (12-19 weeks) markedly inhibited ovarian development. Fish from the moderate and high treatment groups had significantly less developed ovaries relative to controls, and mRNA levels for germ cell (vasa, zpc) and apoptosis-associated genes (p53, casp8) generally indicated gonadal degeneration. The high treatment group also had significantly reduced plasma E2 levels and elevated gonadal amh gene expression. After one year at ambient temperatures, however, ovaries of moderate and high treatment fish exhibited compensatory recovery and were indistinguishable from controls. Two genotypic females possessing immature testes (neomales) were observed in the high treatment group, indicating sex reversal had occurred (6% rate). These results demonstrate that extreme elevated temperatures may inhibit ovarian development or trigger sex reversal. High temperature treatment is likely not an effective sterilization method but may be preferable for sablefish neomale broodstock production.
Collapse
|
118
|
Shi WJ, Ma DD, Jiang YX, Xie L, Zhang JN, Huang GY, Chen HX, Hou LP, Liu YS, Ying GG. Medroxyprogesterone acetate affects sex differentiation and spermatogenesis in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:70-76. [PMID: 31077968 DOI: 10.1016/j.aquatox.2019.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Medroxyprogesterone acetate (MPA) is a widely used synthetic progestin and it has been frequently detected in aquatic environments. However, its effects on aquatic organisms remain largely unknown. Here we investigated the chronic effects of MPA on sex differentiation and gonad development in zebrafish. Zebrafish larvae at 20 days post fertilization (dpf) were exposed to 4.32, 42.0, and 424 ng L-1 of MPA until they reached 140 dpf. The results showed that chronic exposure to 42.0 ng L-1 of MPA caused 60% proportion of males as well as significant up-regulation of dmrt1 (˜1.79 fold) and hsd17b3 (˜1.92 fold). Histological analysis showed MPA significantly increased the frequency of immature spermatocytes accompanied with the increased transcription of dmrt1 (˜2.06 fold) and ar (˜1.73 fold) in the testes. Meanwhile, MPA exposure significantly increased the transcription of lhb at all exposure concentrations in the males. In contrast, it significantly suppressed the transcription of lhb (˜-8.06-fold) and fshb (˜-6.35-fold) at 42.0 ng L-1 in the females. Collectively our results demonstrated that MPA had androgenic activity, and could affect sex differentiation and spermatogenesis in zebrafish at environmentally relevant concentrations. The findings from this study suggest that MPA in the aquatic environment may pose potential androgenic risks to fish populations.
Collapse
|
119
|
Wilson CA, Titus T, Batzel P, Postlethwait JH, Raman R. A Search for Sex-Linked Loci in the Agamid Lizard, Calotes versicolor. Sex Dev 2019; 13:143-150. [PMID: 31247625 DOI: 10.1159/000500465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 11/19/2022] Open
Abstract
The Indian garden lizard, Calotes versicolor, lacks cytologically recognizable sex chromosomes, and its mechanism of sex determination is unclear. We evaluated genotype-to-sex-phenotype association using RAD-seq in wild-caught males and females, 30 of each sex. Of 210,736 unique, 96-nt long RAD-tags, 48% contained polymorphisms, 23% of which were present in at least 40 of 60 individuals. Twenty one RAD-tags neared, but none achieved, the inclusion criteria for sex enrichment, as expected if C. versicolor lacks highly differentiated sex chromosomes. Three RAD-tags with alleles most strongly associated with sex tended to be heterozygous in females and to lack male-specific alleles, suggesting a ZW female/ZZ male system. Putative female alleles, however, were present in some males and lacking from some females, suggesting either recombination between these markers and the sex locus or sex reversal due to environmental or genetic factors. Paired-end, 250-nt reads from 1 male provided a fragmented draft genome assembly. Four sex-associated RAD-tags were identical to portions of 4 unique C. versicolor genomic contigs rather than linked to a single putative sex-linked region. The lack of strongly sex-linked loci coupled with weak evidence for temperature-associated sex determination intensifies the need for further investigation of the puzzling sex determination mechanism in C. versicolor.
Collapse
|
120
|
Gonadal sex differentiation and development during early ontogenesis in the breeding kisslip cuttlefish ( Sepia lycidas). Heliyon 2019; 5:e01948. [PMID: 31338455 PMCID: PMC6606992 DOI: 10.1016/j.heliyon.2019.e01948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
To understand and obtain basic information on sex differentiation in the kisslip cuttlefish (Sepia lycidas), the gonadal sex differentiation process was investigated histologically. An undifferentiated gonad consisting of germ cells and somatic cells was found to form at a caudal site in the space between the internal yolk sacks of cuttlefish embryos at 14 and 21 days after spawning (DAS). Sexual dimorphism in the gonad was first detected at around 28 DAS. Meiotic oocytes were observed as the first visible morphological characteristic of ovaries in the gonads of some cuttlefish embryos at 28 DAS. In other individuals, neither meiotic germ cells, nor the appearance of a testicular structure, were observed in the gonad even after 10 days post hatching (DPH). Seminiferous tubules, consisting of a small number of spermatogonia and a surrounding basement membrane, were the first visible morphological characteristic of the testis in the male gonad, detected at around 20 DPH. This is the third report on the gonadal sex differentiation process in cephalopods.
Collapse
|
121
|
Waiho K, Fazhan H, Zhang Y, Zhang Y, Li S, Zheng H, Liu W, Ikhwanuddin M, Ma H. Gonadal microRNA Expression Profiles and Their Potential Role in Sex Differentiation and Gonadal Maturation of Mud Crab Scylla paramamosain. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:320-334. [PMID: 30835008 DOI: 10.1007/s10126-019-09882-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Although the sexual dimorphism in terms of gonadal development and gametogenesis of mud crab has been described, the internal regulating mechanism and sex differentiation process remain unclear. A comparative gonadal miRNA transcriptomic study was conducted to identify miRNAs that are differentially expressed between testes and ovaries, and potentially uncover miRNAs that might be involved in sex differentiation and gonadal maturation mechanisms of mud crabs (Scylla paramamosain). A total of 10 known miRNAs and 130 novel miRNAs were identified, among which 54 were differentially expressed. Target gene prediction revealed a significant enrichment in 30 KEGG pathways, including some reproduction-related pathways, e.g. phosphatidylinositol signalling system and inositol phosphate metabolism pathways. Further analysis on six differentially expressed known miRNAs, six differentially expressed novel miRNAs and their reproduction-related putative target genes shows that both miRNAs and putative target genes showed stage-specific expression during gonadal maturation, suggesting their potential regulatory roles in sex differentiation and reproductive development. This study reveals the sex-biased miRNA profile and establishes a solid foundation for understanding the sex differentiation and gonadal maturation mechanisms of S. paramamosain.
Collapse
|
122
|
Li S, Sun Q, Wu Q, Gui W, Zhu G, Schlenk D. Endocrine disrupting effects of tebuconazole on different life stages of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:1049-1059. [PMID: 31146311 DOI: 10.1016/j.envpol.2019.03.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/23/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Tebuconazole is a widely used fungicide that has been detected in water ecosystems, of which the concentrations may affect the endocrine function of aquatic organisms. At present study, tissue-specific bioaccumulation of tebuconazole was found in ovary of adult zebrafish, indicating a potential risk of endocrine disruption. In order to evaluate the potential endocrine disrupting effects, three life stages (2 hpf (hours post-fertilization) -60 dpf (days post-fertilization), Stage I; 60-120 dpf, Stage II; 180-208 dpf, Stage III) of zebrafish (Danio rerio) were chronically exposed to tebuconazole at the concentrations ranging from 0.05 mg/L to 1.84 mg/L. Result showed that exposed to tebuconazole could lead to a male-biased sex differentiation in juvenile zebrafish and significant decrease of the percentage of germ cells in sexually-mature zebrafish. Egg production was significantly inhibited by 57.8% and 19.2% after Stage II- and Stage III-exposures, respectively. The contents of 17β-estradiol in gonad decreased by 63.5% when exposed to 0.20 mg/L tebuconazole at Stage II and by 49.5% after exposed to 0.18 mg/L tebuconazole at Stage III, respectively. For all stages exposure, reductions in 17β-estradiol/testosterone ratio were observed, indicating an imbalance in steroids synthesis. Additionally, tebuconazole reduced the expression of cyp19a, which was consistent with the decrease of E2 level. In overall, the present findings indicated that, playing as an anti-estrogen-like chemical, tebuconazole inhibited the expression of Cyp19, thereby impairing steroid hormones biosynthesis, leading to a diminished fecundity of zebrafish.
Collapse
|
123
|
Ribas L, Crespo B, Sánchez-Baizán N, Xavier D, Kuhl H, Rodríguez JM, Díaz N, Boltañá S, MacKenzie S, Morán F, Zanuy S, Gómez A, Piferrer F. Characterization of the European Sea Bass (Dicentrarchus labrax) Gonadal Transcriptome During Sexual Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:359-373. [PMID: 30919121 DOI: 10.1007/s10126-019-09886-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The European sea bass is one of the most important cultured fish in Europe and has a marked sexual growth dimorphism in favor of females. It is a gonochoristic species with polygenic sex determination, where a combination between still undifferentiated genetic factors and environmental temperature determines sex ratios. The molecular mechanisms responsible for gonadal sex differentiation are still unknown. Here, we sampled fish during the gonadal developmental period (110 to 350 days post fertilization, dpf), and performed a comprehensive transcriptomic study by using a species-specific microarray. This analysis uncovered sex-specific gonadal transcriptomic profiles at each stage of development, identifying larger number of differentially expressed genes in ovaries when compared to testis. The expression patterns of 54 reproduction-related genes were analyzed. We found that hsd17β10 is a reliable marker of early ovarian differentiation. Further, three genes, pdgfb, snx1, and nfy, not previously related to fish sex differentiation, were tightly associated with testis development in the sea bass. Regarding signaling pathways, lysine degradation, bladder cancer, and NOD-like receptor signaling were enriched for ovarian development while eight pathways including basal transcription factors and steroid biosynthesis were enriched for testis development. Analysis of the transcription factor abundance showed an earlier increase in females than in males. Our results show that, although many players in the sex differentiation pathways are conserved among species, there are peculiarities in gene expression worth exploring. The genes identified in this study illustrate the diversity of players involved in fish sex differentiation and can become potential biomarkers for the management of sex ratios in the European sea bass and perhaps other cultured species.
Collapse
|
124
|
Abstract
Primordial germ cells (PGCs) must complete a complex and dynamic developmental program during embryogenesis to establish the germline. This process is highly conserved and involves a diverse array of tasks required of PGCs, including migration, survival, sex differentiation, and extensive epigenetic reprogramming. A common theme across many organisms is that PGC success is heterogeneous: only a portion of all PGCs complete all these steps while many other PGCs are eliminated from further germline contribution. The differences that distinguish successful PGCs as a population are not well understood. Here, we examine variation that exists in PGCs as they navigate the many stages of this developmental journey. We explore potential sources of PGC heterogeneity and their potential implications in affecting germ cell behaviors. Lastly, we discuss the potential for PGC development to function as a multistage selection process that assesses heterogeneity in PGCs to refine germline quality.
Collapse
|
125
|
Galindo-Torres P, Ventura-López C, Llera-Herrera R, Ibarra AM. A natural antisense transcript of the fem-1 gene was found expressed in female gonads during the characterization, expression profile, and cellular localization of the fem-1 gene in Pacific white shrimp Penaeus vannamei. Gene 2019; 706:19-31. [PMID: 31028869 DOI: 10.1016/j.gene.2019.04.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
Abstract
The fem-1 gene in Caenorhabditis elegans is involved in sex differentiation; it is specifically required for all aspects of male development. In this study, the full-length cDNA of the fem-1 (Pvfem-1) gene was isolated from the Pacific whiteleg shrimp Penaeus vannamei. The Pvfem-1 transcript is 3778 nt long and encodes a putative protein (PvFEM-1) of 638 amino acids that presented eight ankyrin repeats. The translated protein showed a significant (P < 0.05) structural similitude by superposition with C. elegans FEM-1 protein. Pvfem-1 expression was evaluated by qPCR and in situ hybridization (ISH) during embryogenesis, larval development, and gonads of both genders in subadult and adult life stages. Pvfem-1 was found expressed in brain, intestine, hepatopancreas, and in the gonads of both genders in subadults and adults when quantified by RT-qPCR. A significant finding was the discovery of a natural antisense transcript (NAT) of Pvfem-1 by ISH. It was present in the oocyte nucleus of subadult female shrimp gonads but was not seen within oocytes from adult females, although it was detected in follicular cells, suggesting a possible post-transcriptional regulation of Pvfem-1 in female gonad. Conversely, in males, no NAT was observed, and Pvfem-1 was found expressed in spermatogonia of both, subadult and adult shrimps indicating a function in male sexual differentiation and gametes generation. This study represents the first step for future functional analysis that is expected to contribute to clarifying the role of Pvfem-1 in sex differentiation and determination.
Collapse
|