101
|
Leekrajang M, Sae-Ung P, Vilaivan T, Hoven VP. Filter paper grafted with epoxide-based copolymer brushes for activation-free peptide nucleic acid conjugation and its application for colorimetric DNA detection. Colloids Surf B Biointerfaces 2018; 173:851-859. [PMID: 30551301 DOI: 10.1016/j.colsurfb.2018.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/07/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
Epoxide-bearing filter paper was first prepared by surface-initiated reversible addition-fragmentation chain transfer (RAFT) copolymerization of glycidyl methacrylate (GMA) and poly(ethylene glycol)methacrylate (PEGMA). Without the need for activation step, the capture peptide nucleic acid (PNA) probes carrying a C-terminal lysine modification can be directly immobilized on the surface-grafted poly[glycidyl methacrylate-ran-poly(ethylene glycol)methacrylate] (P(GMA-ran-PEGMA)) through ring-opening of epoxide groups in the GMA repeating units by amino groups in the PNA's structure. The success of P(GMA-ran-PEGMA) grafting on the filter paper and subsequent PNA immobilization was confirmed by fluorescence microscopy, Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy. Colorimetric detection with signal amplification upon DNA hybridization relies on sandwich-hybridization assay employing another biotinylated PNA strand as a reporter probe together with streptavidin-horseradish peroxidase conjugate (SA-HRP) and o-phenylenediamine (OPD) substrate. It was found that increasing ionic strength during the DNA hybridization step by addition of NaCl can increase the signal intensity, which can be visualized by naked eye. The sensing platform showed the best performance in preventing non-specific adsorption from the non-complementary DNA and discriminating between complementary and single-mismatched targets of at least 50 fmol without the requirement for stringent hybridization or washing condition. This superior ability to suppress non-specific adsorption of non-target DNA as well as other non-DNA components may be explained as a result of hydrophilic PEGMA repeating units in the surface-grafted copolymer.
Collapse
|
102
|
Veerbeek J, Steen R, Vijselaar W, Rurup WF, Korom S, Rozzi A, Corradini R, Segerink L, Huskens J. Selective Functionalization with PNA of Silicon Nanowires on Silicon Oxide Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11395-11404. [PMID: 30179484 PMCID: PMC6158678 DOI: 10.1021/acs.langmuir.8b02401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/29/2018] [Indexed: 06/02/2023]
Abstract
Silicon nanowire chips can function as sensors for cancer DNA detection, whereby selective functionalization of the Si sensing areas over the surrounding silicon oxide would prevent loss of analyte and thus increase the sensitivity. The thermal hydrosilylation of unsaturated carbon-carbon bonds onto H-terminated Si has been studied here to selectively functionalize the Si nanowires with a monolayer of 1,8-nonadiyne. The silicon oxide areas, however, appeared to be functionalized as well. The selectivity toward the Si-H regions was increased by introducing an extra HF treatment after the 1,8-nonadiyne monolayer formation. This step (partly) removed the monolayer from the silicon oxide regions, whereas the Si-C bonds at the Si areas remained intact. The alkyne headgroups of immobilized 1,8-nonadiyne were functionalized with PNA probes by coupling azido-PNA and thiol-PNA by click chemistry and thiol-yne chemistry, respectively. Although both functionalization routes were successful, hybridization could only be detected on the samples with thiol-PNA. No fluorescence was observed when introducing dye-labeled noncomplementary DNA, which indicates specific DNA hybridization. These results open up the possibilities for creating Si nanowire-based DNA sensors with improved selectivity and sensitivity.
Collapse
|
103
|
Yu Z, Hsieh WC, Asamitsu S, Hashiya K, Bando T, Ly DH, Sugiyama H. Orthogonal γPNA Dimerization Domains Empower DNA Binders with Cooperativity and Versatility Mimicking that of Transcription Factor Pairs. Chemistry 2018; 24:14183-14188. [PMID: 30003621 PMCID: PMC9724550 DOI: 10.1002/chem.201801961] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Synthetic molecules capable of DNA binding and mimicking cooperation of transcription factor (TF) pairs have long been considered a promising tool for manipulating gene expression. Our previously reported Pip-HoGu system, a programmable DNA binder pyrrole-imidazole polyamides (PIPs) conjugated to host-guest moiety, defined a general framework for mimicking cooperative TF pair-DNA interactions. Here, we supplanted the cooperation modules with left-handed (LH) γPNA modules: i.e., PIPs conjugated with nucleic acid-based cooperation system (Pip-NaCo). LH γPNA was chosen because of its bioorthogonality, sequence-specific interaction, and high binding affinity toward the partner strand. From the results of the Pip-NaCo system, cooperativity is highly comparable to the natural TF pair-DNA system, with a minimum energetics of cooperation of -3.27 kcal mol-1 . Moreover, through changing the linker conjugation site, binding mode, and the length of γPNAs sequence, the cooperative energetics of Pip-NaCo can be tuned independently and rationally. The current Pip-NaCo platform might also have the potential for precise manipulation of biological processes through the construction of triple to multiple heterobinding systems.
Collapse
|
104
|
Patil KM, Toh DFK, Yuan Z, Meng Z, Shu Z, Zhang H, Ong A, Krishna MS, Lu L, Lu Y, Chen G. Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs. Nucleic Acids Res 2018; 46:7506-7521. [PMID: 30011039 PMCID: PMC6125629 DOI: 10.1093/nar/gky631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023] Open
Abstract
Double-stranded RNA (dsRNA) structures form triplexes and RNA-protein complexes through binding to single-stranded RNA (ssRNA) regions and proteins, respectively, for diverse biological functions. Hence, targeting dsRNAs through major-groove triplex formation is a promising strategy for the development of chemical probes and potential therapeutics. Short (e.g., 6-10 mer) chemically-modified Peptide Nucleic Acids (PNAs) have been developed that bind to dsRNAs sequence specifically at physiological conditions. For example, a PNA incorporating a modified base thio-pseudoisocytosine (L) has an enhanced recognition of a G-C pair in an RNA duplex through major-groove L·G-C base triple formation at physiological pH, with reduced pH dependence as observed for C+·G-C base triple formation. Currently, an unmodified T base is often incorporated into PNAs to recognize a Watson-Crick A-U pair through major-groove T·A-U base triple formation. A substitution of the 5-methyl group in T by hydrogen and halogen atoms (F, Cl, Br, and I) causes a decrease of the pKa of N3 nitrogen atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions. Here, we synthesized a series of PNAs incorporating uracil and halouracils, followed by binding studies by non-denaturing polyacrylamide gel electrophoresis, circular dichroism, and thermal melting. Our results suggest that replacing T with uracil and halouracils may enhance the recognition of an A-U pair by PNA·RNA2 triplex formation in a sequence-dependent manner, underscoring the importance of local stacking interactions. Incorporating bromouracils and chlorouracils into a PNA results in a significantly reduced pH dependence of triplex formation even for PNAs containing C bases, likely due to an upshift of the apparent pKa of N3 atoms of C bases. Thus, halogenation and other chemical modifications may be utilized to enhance hydrogen bonding of the adjacent base triples and thus triplex formation. Furthermore, our experimental and computational modelling data suggest that PNA·RNA2 triplexes may be stabilized by incorporating a BrUL step but not an LBrU step, in dsRNA-binding PNAs.
Collapse
|
105
|
Corradini R. Special Issue: Molecular Properties and the Applications of Peptide Nucleic Acids. Molecules 2018; 23:molecules23081977. [PMID: 30096770 PMCID: PMC6222498 DOI: 10.3390/molecules23081977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023] Open
|
106
|
Koo B, Yorita AM, Schmidt JJ, Monbouquette HG. Amplification-free, sequence-specific 16S rRNA detection at 1 aM. LAB ON A CHIP 2018; 18:2291-2299. [PMID: 29987290 DOI: 10.1039/c8lc00452h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A nucleic acid amplification-free, optics-free platform has been demonstrated for sequence-specific detection of Escherichia coli (E. coli) 16S rRNA at 1 aM (10-18 M) against a 106-fold (1 pM) background of Pseudomonas putida (P. putida) RNA. This work was driven by the need for simple, rapid, and low cost means for species-specific bacterial detection at low concentration. Our simple, conductometric sensing device functioned by detecting blockage of a nanopore fabricated in a sub-micron-thick glass membrane. Upon sequence-specific binding of target 16S rRNA, otherwise charge-neutral, PNA oligonucleotide probe-polystyrene bead conjugates become electrophoretically mobile and are driven to the glass nanopore of lesser diameter, which is blocked, thereby generating a large, sustained and readily observable step decrease in ionic current. No false positive signals were observed with P. putida RNA when this device was configured to detect E. coli 16S rRNA. Also, when a universal PNA probe complementary to the 16S rRNA of both E. coli and P. putida was conjugated to beads, a positive response to rRNA of both bacterial species was observed. Finally, the device readily detected E. coli at 10 CFU mL-1 in a 1 mL sample, also against a million-fold background of viable P. putida. These results suggest that this new device may serve as the basis for small, portable, low power, and low-cost systems for rapid detection of specific bacterial species in clinical samples, food, and water.
Collapse
|
107
|
Abstract
The formation of ordered nanostructures by molecular self-assembly of proteins and peptides represents one of the principal directions in nanotechnology. Indeed, polyamides provide superior features as materials with diverse physical properties. A reductionist approach allowed the identification of extremely short peptide sequences, as short as dipeptides, which could form well-ordered amyloid-like β-sheet-rich assemblies comparable to supramolecular structures made of much larger proteins. Some of the peptide assemblies show remarkable mechanical, optical, and electrical characteristics. Another direction of reductionism utilized a natural noncoded amino acid, α-aminoisobutryic acid, to form short superhelical assemblies. The use of this exceptional helix inducer motif allowed the fabrication of single heptad repeats used in various biointerfaces, including their use as surfactants and DNA-binding agents. Two additional directions of the reductionist approach include the use of peptide nucleic acids (PNAs) and coassembly techniques. The diversified accomplishments of the reductionist approach, as well as the exciting future advances it bears, are discussed.
Collapse
|
108
|
Abstract
RNA interference (RNAi) is a fundamental cellular process for the posttranscriptional regulation of gene expression. RNAi can exogenously be modulated by small RNA oligonucleotides, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), or by antisense oligonucleotides. These small oligonucleotides provided the scientific community with powerful and versatile tools to turn off the expression of genes of interest, and hold out the promise of new therapeutic solutions against a wide range of gene-associated pathologies. However, unmodified nucleic acids are highly instable in biological systems, and their weak interaction with plasma proteins confers an unfavorable pharmacokinetics. In this review, we first provide an overview of the most efficient chemical strategies that, over the past 30 years, have been used to significantly improve the therapeutic potential of oligonucleotides. Oligonucleotides targeting and delivery technologies are then presented, including covalent conjugates between oligonucleotides and targeting ligand, and noncovalent association with lipid or polymer nanoparticles. Finally, we specifically focus on the endosomal escape step, which represents a major stumbling block for the effective use of oligonucleotides as therapeutic agents. The need for approaches to quantitatively measure endosomal escape and cytosolic arrival of biomolecules is discussed in the context of the development of efficient oligonucleotide targeting and delivery vectors.
Collapse
|
109
|
Tomassi S, Ieranò C, Mercurio ME, Nigro E, Daniele A, Russo R, Chambery A, Baglivo I, Pedone PV, Rea G, Napolitano M, Scala S, Cosconati S, Marinelli L, Novellino E, Messere A, Di Maro S. Cationic nucleopeptides as novel non-covalent carriers for the delivery of peptide nucleic acid (PNA) and RNA oligomers. Bioorg Med Chem 2018; 26:2539-2550. [PMID: 29656988 DOI: 10.1016/j.bmc.2018.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Cationic nucleopeptides belong to a family of synthetic oligomers composed by amino acids and nucleobases. Their capability to recognize nucleic acid targets and to cross cellular membranes provided the basis for considering them as novel non-covalent delivery agents for nucleic acid pharmaceuticals. Herein, starting from a 12-mer nucleopeptide model, the number of cationic residues was modulated in order to obtain new nucleopeptides endowed with high solubility in acqueous medium, acceptable bio-stability, low cytotoxicity and good capability to bind nucleic acid. Two candidates were selected to further investigate their potential as nucleic acid carriers, showing higher efficiency to deliver PNA in comparison with RNA. Noteworthy, this study encourages the development of nucleopeptides as new carriers to extend the known strategies for those nucleic acid analogues, especially PNA, that still remain difficult to drive into the cells.
Collapse
|
110
|
Quijano E, Bahal R, Ricciardi A, Saltzman WM, Glazer PM. Therapeutic Peptide Nucleic Acids: Principles, Limitations, and Opportunities. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:583-598. [PMID: 29259523 PMCID: PMC5733847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Since their invention in 1991, peptide nucleic acids (PNAs) have been used in a myriad of chemical and biological assays. More recently, peptide nucleic acids have also been demonstrated to hold great potential as therapeutic agents because of their physiological stability, affinity for target nucleic acids, and versatility. While recent modifications in their design have further improved their potency, their preclinical development has reached new heights due to their combination with recent advancements in drug delivery. This review focuses on recent advances in PNA therapeutic applications, in which chemical modifications are made to improve PNA function and nanoparticles are used to enhance PNA delivery.
Collapse
|
111
|
Pirtskhalava M, Egoyan A, Mirtskhulava M, Roviello G. A COMPUTER MODELING STUDY OF BINDING PROPERTIES OF CHIRAL NUCLEOPEPTIDE FOR BIOMEDICAL APPLICATIONS. GEORGIAN MEDICAL NEWS 2017:1123-1128. [PMID: 29328044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nucleopeptides often show interesting properties of molecular binding that render them good candidates for development of innovative drugs for anticancer and antiviral therapies. In this work we present results of computer modeling of interactions between the molecules of hexathymine nucleopeptide (T6) and poly rA RNA (A18). The results of geometry optimization calculated using Hyperchem software and our own computer program for molecular docking show that molecules establish stable complexes due to the complementary-nucleobase interaction and the electrostatic interaction between the negative phosphate group of poly rA and the positively-charged residues present in the cationic nucleopeptide structure. Computer modeling makes it possible to find the optimal binding configuration of the molecules of a nucleopeptide and poly rA RNA and to estimate the binding energy between the molecules.
Collapse
|
112
|
Elskens J, Manicardi A, Costi V, Madder A, Corradini R. Synthesis and Improved Cross-Linking Properties of C5-Modified Furan Bearing PNAs. Molecules 2017; 22:molecules22112010. [PMID: 29156637 PMCID: PMC6150320 DOI: 10.3390/molecules22112010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022] Open
Abstract
Over the past decades, peptide nucleic acid/DNA (PNA:DNA) duplex stability has been improved via backbone modification, often achieved via introducing an amino acid side chain at the α- or γ-position in the PNA sequence. It was previously shown that interstrand cross-linking can further enhance the binding event. In this work, we combined both strategies to fine-tune PNA crosslinking towards single stranded DNA sequences using a furan oxidation-based crosslinking method; for this purpose, γ-l-lysine and γ-l-arginine furan-PNA monomers were synthesized and incorporated in PNA sequences via solid phase synthesis. It was shown that the l-lysine γ-modification had a beneficial effect on crosslink efficiency due to pre-organization of the PNA helix and a favorable electrostatic interaction between the positively-charged lysine and the negatively-charged DNA backbone. Moreover, the crosslink yield could be optimized by carefully choosing the type of furan PNA monomer. This work is the first to describe a selective and biocompatible furan crosslinking strategy for crosslinking of γ-modified PNA sequences towards single-stranded DNA.
Collapse
|
113
|
Usui K, Okada A, Sakashita S, Shimooka M, Tsuruoka T, Nakano SI, Miyoshi D, Mashima T, Katahira M, Hamada Y. DNA G-Wire Formation Using an Artificial Peptide is Controlled by Protease Activity. Molecules 2017; 22:E1991. [PMID: 29144399 PMCID: PMC6150327 DOI: 10.3390/molecules22111991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 01/23/2023] Open
Abstract
The development of a switching system for guanine nanowire (G-wire) formation by external signals is important for nanobiotechnological applications. Here, we demonstrate a DNA nanostructural switch (G-wire <--> particles) using a designed peptide and a protease. The peptide consists of a PNA sequence for inducing DNA to form DNA-PNA hybrid G-quadruplex structures, and a protease substrate sequence acting as a switching module that is dependent on the activity of a particular protease. Micro-scale analyses via TEM and AFM showed that G-rich DNA alone forms G-wires in the presence of Ca2+, and that the peptide disrupted this formation, resulting in the formation of particles. The addition of the protease and digestion of the peptide regenerated the G-wires. Macro-scale analyses by DLS, zeta potential, CD, and gel filtration were in agreement with the microscopic observations. These results imply that the secondary structure change (DNA G-quadruplex <--> DNA/PNA hybrid structure) induces a change in the well-formed nanostructure (G-wire <--> particles). Our findings demonstrate a control system for forming DNA G-wire structures dependent on protease activity using designed peptides. Such systems hold promise for regulating the formation of nanowire for various applications, including electronic circuits for use in nanobiotechnologies.
Collapse
|
114
|
D'Agata R, Giuffrida MC, Spoto G. Peptide Nucleic Acid-Based Biosensors for Cancer Diagnosis. Molecules 2017; 22:E1951. [PMID: 29137122 PMCID: PMC6150339 DOI: 10.3390/molecules22111951] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022] Open
Abstract
The monitoring of DNA and RNA biomarkers freely circulating in the blood constitutes the basis of innovative cancer detection methods based on liquid biopsy. Such methods are expected to provide new opportunities for a better understanding of cancer disease at the molecular level, thus contributing to improved patient outcomes. Advanced biosensors can advance possibilities for cancer-related nucleic acid biomarkers detection. In this context, peptide nucleic acids (PNAs) play an important role in the fabrication of highly sensitive biosensors. This review provides an overview of recently described PNA-based biosensors for cancer biomarker detection. One of the most striking features of the described detection approaches is represented by the possibility to detect target nucleic acids at the ultra-low concentration with the capability to identify single-base mutations.
Collapse
|
115
|
Novosjolova I, Kennedy SD, Rozners E. 2-Methoxypyridine as a Thymidine Mimic in Watson-Crick Base Pairs of DNA and PNA: Synthesis, Thermal Stability, and NMR Structural Studies. Chembiochem 2017; 18:2165-2170. [PMID: 28858428 PMCID: PMC5920655 DOI: 10.1002/cbic.201700400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 12/21/2022]
Abstract
The development of nucleic acid base-pair analogues that use new modes of molecular recognition is important both for fundamental research and practical applications. The goal of this study was to evaluate 2-methoxypyridine as a cationic thymidine mimic in the A-T base pair. The hypothesis was that including protonation in the Watson-Crick base pairing scheme would enhance the thermal stability of the DNA double helix without compromising the sequence selectivity. DNA and peptide nucleic acid (PNA) sequences containing the new 2-methoxypyridine nucleobase (P) were synthesized and studied by using UV thermal melting and NMR spectroscopy. Introduction of P nucleobase caused a loss of thermal stability of ≈10 °C in DNA-DNA duplexes and ≈20 °C in PNA-DNA duplexes over a range of mildly acidic to neutral pH. Despite the decrease in thermal stability, the NMR structural studies showed that P-A formed the expected protonated base pair at pH 4.3. Our study demonstrates the feasibility of cationic unnatural base pairs; however, future optimization of such analogues will be required.
Collapse
|
116
|
Lo FS, Chen TL, Chiou CC. Detection of Rare Somatic GNAS Mutation in McCune-Albright Syndrome Using a Novel Peptide Nucleic Acid Probe in a Single Tube. Molecules 2017; 22:E1874. [PMID: 29104223 PMCID: PMC6150203 DOI: 10.3390/molecules22111874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
McCune-Albright syndrome (MAS) is characterized by the triad of precocious puberty, café au lait pigmentation, and polyostotic fibrous dysplasia (FD) of bone, and is caused by post-zygotic somatic mutations-R201H or R201C-in the guanine nucleotide binding protein, alpha stimulating (GNAS) gene. In the present study, a novel peptide nucleic acid (PNA) probe with fluorescent labeling was designed to detect trace amounts of somatic mutant GNAS in a single tube reaction. The method was applied to screen GNAS mutations in six patients with MAS/FD. The results showed that the PNA probe assay could detect low abundant mutants in 200-fold excess of wild-type alleles. The GNAS mutation was found in three patients with severe disease (MAS) by using the assay. The other three patients with mild disease (having only FD) showed a wild-type result. This study has provided a simple method to detect trace amounts of GNAS mutants with high sensitivity in large amounts of wild-type DNA.
Collapse
|
117
|
Murtola M, Ghidini A, Virta P, Strömberg R. Zinc Ion-Dependent Peptide Nucleic Acid-Based Artificial Enzyme that Cleaves RNA-Bulge Size and Sequence Dependence. Molecules 2017; 22:molecules22111856. [PMID: 29109368 PMCID: PMC6150328 DOI: 10.3390/molecules22111856] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 11/17/2022] Open
Abstract
In this report, we investigate the efficiency and selectivity of a Zn2+-dependent peptide nucleic acid-based artificial ribonuclease (PNAzyme) that cleaves RNA target sequences. The target RNAs are varied to form different sizes (3 and 4 nucleotides, nt) and sequences in the bulge formed upon binding to the PNAzyme. PNAzyme-promoted cleavage of the target RNAs was observed and variation of the substrate showed a clear dependence on the sequence and size of the bulge. For targets that form 4-nt bulges, we identified systems with an improved efficacy (an estimated half-life of ca 7–8 h as compared to 11–12 h for sequences studied earlier) as well as systems with an improved site selectivity (up to over 70% cleavage at a single site as compared to 50–60% with previous targets sequences). For targets forming 3-nt bulges, the enhancement compared to previous systems was even more pronounced. Compared to a starting point of targets forming 3-nt AAA bulges (half-lives of ca 21–24 h), we could identify target sequences that were cleaved with half-lives three times lower (ca 7–8 h), i.e., at rates similar to those found for the fastest 4-nt bulge system. In addition, with the 3-nt bulge RNA target site selectivity was improved even further to reach well over 80% cleavage at a specific site.
Collapse
|
118
|
Sawada S, Takao T, Kato N, Kaihatsu K. Design of Tail-Clamp Peptide Nucleic Acid Tethered with Azobenzene Linker for Sequence-Specific Detection of Homopurine DNA. Molecules 2017; 22:molecules22111840. [PMID: 29077023 PMCID: PMC6150319 DOI: 10.3390/molecules22111840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 11/18/2022] Open
Abstract
DNA carries genetic information in its sequence of bases. Synthetic oligonucleotides that can sequence-specifically recognize a target gene sequence are a useful tool for regulating gene expression or detecting target genes. Among the many synthetic oligonucleotides, tail-clamp peptide nucleic acid (TC-PNA) offers advantages since it has two homopyrimidine PNA strands connected via a flexible ethylene glycol-type linker that can recognize complementary homopurine sequences via Watson-Crick and Hoogsteen base pairings and form thermally-stable PNA/PNA/DNA triplex structures. Here, we synthesized a series of TC-PNAs that can possess different lengths of azobenzene-containing linkers and studied their binding behaviours to homopurine single-stranded DNA. Introduction of azobenzene at the N-terminus amine of PNA increased the thermal stability of PNA-DNA duplexes. Further extension of the homopyrimidine PNA strand at the N-terminus of PNA-AZO further increased the binding stability of the PNA/DNA/PNA triplex to the target homopurine sequence; however, it induced TC-PNA/DNA/TC-PNA complex formation. Among these TC-PNAs, 9W5H-C4-AZO consisting of nine Watson-Crick bases and five Hoogsteen bases tethered with a beta-alanine conjugated azobenzene linker gave a stable 1:1 TC-PNA/ssDNA complex and exhibited good mismatch recognition. Our design for TC-PNA-AZO can be utilized for detecting homopurine sequences in various genes.
Collapse
|
119
|
Równicki M, Wojciechowska M, Wierzba AJ, Czarnecki J, Bartosik D, Gryko D, Trylska J. Vitamin B 12 as a carrier of peptide nucleic acid (PNA) into bacterial cells. Sci Rep 2017; 7:7644. [PMID: 28794451 PMCID: PMC5550456 DOI: 10.1038/s41598-017-08032-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/06/2017] [Indexed: 01/02/2023] Open
Abstract
Short modified oligonucleotides targeted at bacterial DNA or RNA could serve as antibacterial agents provided that they are efficiently taken up by bacterial cells. However, the uptake of such oligonucleotides is hindered by the bacterial cell wall. To overcome this problem, oligomers have been attached to cell-penetrating peptides, but the efficiency of delivery remains poor. Thus, we have investigated the ability of vitamin B12 to transport peptide nucleic acid (PNA) oligomers into cells of Escherichia coli and Salmonella Typhimurium. Vitamin B12 was covalently linked to a PNA oligomer targeted at the mRNA of a reporter gene expressing Red Fluorescent Protein. Cu-catalyzed 1,3-dipolar cycloaddition was employed for the synthesis of PNA-vitamin B12 conjugates; namely the vitamin B12 azide was reacted with PNA possessing the terminal alkyne group. Different types of linkers and spacers between vitamin B12 and PNA were tested, including a disulfide bond. We found that vitamin B12 transports antisense PNA into E. coli cells more efficiently than the most widely used cell-penetrating peptide (KFF)3K. We also determined that the structure of the linker impacts the antisense effect. The results of this study provide the foundation for developing vitamin B12 as a carrier of PNA oligonucleotides into bacterial cells.
Collapse
|
120
|
Sugiyama T, Hasegawa G, Niikura C, Kuwata K, Imamura Y, Demizu Y, Kurihara M, Kittaka A. PNA monomers fully compatible with standard Fmoc-based solid-phase synthesis of pseudocomplementary PNA. Bioorg Med Chem Lett 2017; 27:3337-3341. [PMID: 28610975 DOI: 10.1016/j.bmcl.2017.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 11/18/2022]
Abstract
Here we report the synthesis of new PNA monomers for pseudocomplementary PNA (pcPNA) that are fully compatible with standard Fmoc chemistry. The thiocarbonyl group of the 2-thiouracil (sU) monomer was protected with the 4-methoxy-2-methybenzyl group (MMPM), while the exocyclic amino groups of diaminopurine (D) were protected with Boc groups. The newly synthesized monomers were incorporated into a 10-mer PNA oligomer using standard Fmoc chemistry for solid-phase synthesis. Oligomerization proceeded smoothly and the HPLC and MALDI-TOF MS analyses indicated that there was no remaining MMPM on the sU nucleobase. The new PNA monomers reported here would facilitate a wide range of applications, such as antigene PNAs and DNA nanotechnologies.
Collapse
|
121
|
Abraham P, Maliekal TT. Single cell biology beyond the era of antibodies: relevance, challenges, and promises in biomedical research. Cell Mol Life Sci 2017; 74:1177-1189. [PMID: 27714408 PMCID: PMC11107591 DOI: 10.1007/s00018-016-2382-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 01/05/2023]
Abstract
Research of the past two decades has proved the relevance of single cell biology in basic research and translational medicine. Successful detection and isolation of specific subsets is the key to understand their functional heterogeneity. Antibodies are conventionally used for this purpose, but their relevance in certain contexts is limited. In this review, we discuss some of these contexts, posing bottle neck for different fields of biology including biomedical research. With the advancement of chemistry, several methods have been introduced to overcome these problems. Even though microfluidics and microraft array are newer techniques exploited for single cell biology, fluorescence-activated cell sorting (FACS) remains the gold standard technique for isolation of cells for many biomedical applications, like stem cell therapy. Here, we present a comprehensive and comparative account of some of the probes that are useful in FACS. Further, we illustrate how these techniques could be applied in biomedical research. It is postulated that intracellular molecular markers like nucleostemin (GNL3), alkaline phosphatase (ALPL) and HIRA can be used for improving the outcome of cardiac as well as bone regeneration. Another field that could utilize intracellular markers is diagnostics, and we propose the use of specific peptide nucleic acid probes (PNPs) against certain miRNAs for cancer surgical margin prediction. The newer techniques for single cell biology, based on intracellular molecules, will immensely enhance the repertoire of possible markers for the isolation of cell types useful in biomedical research.
Collapse
|
122
|
Mejia‐Ariza R, Rosselli J, Breukers C, Manicardi A, Terstappen LWMM, Corradini R, Huskens J. DNA Detection by Flow Cytometry using PNA-Modified Metal-Organic Framework Particles. Chemistry 2017; 23:4180-4186. [PMID: 28139850 PMCID: PMC5396136 DOI: 10.1002/chem.201605803] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 01/10/2023]
Abstract
A DNA-sensing platform is developed by exploiting the easy surface functionalization of metal-organic framework (MOF) particles and their highly parallelized fluorescence detection by flow cytometry. Two strategies were employed to functionalize the surface of MIL-88A, using either covalent or non-covalent interactions, resulting in alkyne-modified and biotin-modified MIL-88A, respectively. Covalent surface coupling of an azide-dye and the alkyne-MIL-88A was achieved by means of a click reaction. Non-covalent streptavidin-biotin interactions were employed to link biotin-PNA to biotin-MIL-88A particles mediated by streptavidin. Characterization by confocal imaging and flow cytometry demonstrated that DNA can be bound selectively to the MOF surface. Flow cytometry provided quantitative data of the interaction with DNA. Making use of the large numbers of particles that can be simultaneously processed by flow cytometry, this MOF platform was able to discriminate between fully complementary, single-base mismatched, and randomized DNA targets.
Collapse
|
123
|
Hardy L, Jespers V, Van den Bulck M, Buyze J, Mwambarangwe L, Musengamana V, Vaneechoutte M, Crucitti T. The presence of the putative Gardnerella vaginalis sialidase A gene in vaginal specimens is associated with bacterial vaginosis biofilm. PLoS One 2017; 12:e0172522. [PMID: 28241058 PMCID: PMC5328246 DOI: 10.1371/journal.pone.0172522] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022] Open
Abstract
Bacterial vaginosis (BV) is a difficult-to-treat recurrent condition in which health-associated lactobacilli are outnumbered by other anaerobic bacteria, such as Gardnerella vaginalis. Certain genotypes of G. vaginalis can produce sialidase, while others cannot. Sialidase is known to facilitate the destruction of the protective mucus layer on the vaginal epithelium by hydrolysis of sialic acid on the glycans of mucous membranes. This process possibly facilitates adhesion of bacterial cells on the epithelium since it has been linked with the development of biofilm in other pathogenic conditions. Although it has not been demonstrated yet, it is probable that G. vaginalis benefits from this mechanism by attaching to the vaginal epithelium to initiate biofilm development. In this study, using vaginal specimens of 120 women enrolled in the Ring Plus study, we assessed the association between the putative G. vaginalis sialidase A gene by quantitative polymerase chain reaction (qPCR), the diagnosis of BV according to Nugent score, and the occurrence of a BV-associated biofilm dominated by G. vaginalis by fluorescence in situ hybridisation (FISH). We detected the putative sialidase A gene in 75% of the G. vaginalis-positive vaginal specimens and found a strong association (p<0.001) between the presence of a G. vaginalis biofilm, the diagnosis of BV according to Nugent and the detection of high loads of the G. vaginalis sialidase A gene in the vaginal specimens. These results could redefine diagnosis of BV, and in addition might guide research for new treatment.
Collapse
|
124
|
Verona MD, Verdolino V, Palazzesi F, Corradini R. Focus on PNA Flexibility and RNA Binding using Molecular Dynamics and Metadynamics. Sci Rep 2017; 7:42799. [PMID: 28211525 PMCID: PMC5314342 DOI: 10.1038/srep42799] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Peptide Nucleic Acids (PNAs) can efficiently target DNA or RNA acting as chemical tools for gene regulation. Their backbone modification and functionalization is often used to increase the affinity for a particular sequence improving selectivity. The understanding of the trading forces that lead the single strand PNA to bind the DNA or RNA sequence is preparatory for any further rational design, but a clear and unique description of this process is still not complete. In this paper we report further insights into this subject, by a computational investigation aiming at the characterization of the conformations of a single strand PNA and how these can be correlated to its capability in binding DNA/RNA. Employing Metadynamics we were able to better define conformational pre-organizations of the single strand PNA and γ-modified PNA otherwise unrevealed through classical molecular dynamics. Our simulations driven on backbone modified PNAs lead to the conclusion that this γ-functionalization affects the single strand preorganization and targeting properties to the DNA/RNA, in agreement with circular dichroism (CD) spectra obtained for this class of compounds. MD simulations on PNA:RNA dissociation and association mechanisms allowed to reveal the critical role of central bases and preorganization in the binding process.
Collapse
|
125
|
Toh DFK, Devi G, Patil KM, Qu Q, Maraswami M, Xiao Y, Loh TP, Zhao Y, Chen G. Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine-purine inversion site of an RNA duplex. Nucleic Acids Res 2016; 44:9071-9082. [PMID: 27596599 PMCID: PMC5100590 DOI: 10.1093/nar/gkw778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
RNA duplex regions are often involved in tertiary interactions and protein binding and thus there is great potential in developing ligands that sequence-specifically bind to RNA duplexes. We have developed a convenient synthesis method for a modified peptide nucleic acid (PNA) monomer with a guanidine-modified 5-methyl cytosine base. We demonstrated by gel electrophoresis, fluorescence and thermal melting experiments that short PNAs incorporating the modified residue show high binding affinity and sequence specificity in the recognition of an RNA duplex containing an internal inverted Watson-Crick C-G base pair. Remarkably, the relatively short PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. The attached guanidine group stabilizes the base triple through hydrogen bonding with the G base in a C-G pair. Selective binding towards an RNA duplex over a single-stranded RNA can be rationalized by the fact that alkylation of the amine of a 5-methyl C base blocks the Watson-Crick edge. PNAs incorporating multiple guanidine-modified cytosine residues are able to enter HeLa cells without any transfection agent.
Collapse
|