126
|
Xu C, Craig R, Tobacman L, Horowitz R, Lehman W. Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy. Biophys J 1999; 77:985-92. [PMID: 10423443 PMCID: PMC1300389 DOI: 10.1016/s0006-3495(99)76949-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Past attempts to detect tropomyosin in electron micrograph images of frozen-hydrated troponin-regulated thin filaments under relaxing conditions have not been successful. This raised the possibility that tropomyosin may be disordered on filaments in the off-state, a possibility at odds with the steric blocking model of muscle regulation. By using cryoelectron microscopy and helical image reconstruction we have now resolved the location of tropomyosin in both relaxing and activating conditions. In the off-state, tropomyosin adopts a position on the outer domain of actin with a binding site virtually identical to that determined previously by negative staining, although at a radius of 3.8 nm, slightly higher than found in stained filaments. Molecular fitting to the atomic model of F-actin shows that tropomyosin is localized over sites on actin subdomain 1 required for myosin binding. Restricting access to these sites would inhibit the myosin-cross-bridge cycle, and hence contraction. Under high Ca(2+) activating conditions, tropomyosin moved azimuthally, away from its blocking position to the same site on the inner domain of actin previously determined by negative staining, also at 3.8 nm radius. These results provide strong support for operation of the steric mechanism of muscle regulation under near-native solution conditions and also validate the use of negative staining in investigations of muscle thin filament structure.
Collapse
|
127
|
Hanein D, Volkmann N, Goldsmith S, Michon AM, Lehman W, Craig R, DeRosier D, Almo S, Matsudaira P. An atomic model of fimbrin binding to F-actin and its implications for filament crosslinking and regulation. NATURE STRUCTURAL BIOLOGY 1998; 5:787-92. [PMID: 9731773 DOI: 10.1038/1828] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Using a new procedure that combines electron-density correlation with biochemical information, we have fitted the crystal structure of the N-terminal actin-binding domain of human T-fimbrin to helical reconstructions of fimbrin-decorated actin filaments. The map locates the N-terminal calcium-binding domain and identifies actin-binding site residues on the two calponin-homology domains of fimbrin. Based on this map, we propose a model of a fimbrin crosslink in an actin bundle and its regulation by calcium.
Collapse
|
128
|
Abstract
Caldesmon, a narrow, elongated actin-binding protein, is found in both nonmuscle and smooth muscle cells. It inhibits actomyosin ATPase and filament severing in vitro, and is thus a putative regulatory protein. To elucidate its function, we have used electron microscopy and three-dimensional image reconstruction to reveal the location of caldesmon on isolated smooth muscle thin filaments. Caldesmon density was clearly delineated in reconstructions and found to occur peripherally, on the extreme outer edge of actin subdomains-1 and 2, without making obvious contacts with tropomyosin strands on the inner domains of actin. When the reconstructions were fitted to the atomic model of F-actin, caldesmon appeared to cover potentially weak sites of myosin interaction with actin, while, together with tropomyosin, it flanked strong sites of myosin interaction, without covering them. These interactions are unlike those of troponin-tropomyosin and therefore inhibition of actomyosin ATPase by caldesmon-tropomyosin and by troponin-tropomyosin cannot occur in the same way. The location of caldesmon would allow it to compete with a number of cellular actin-binding proteins, including those known to sever or sequester actin.
Collapse
|
129
|
Hodgkinson JL, el-Mezgueldi M, Craig R, Vibert P, Marston SB, Lehman W. 3-D image reconstruction of reconstituted smooth muscle thin filaments containing calponin: visualization of interactions between F-actin and calponin. J Mol Biol 1997; 273:150-9. [PMID: 9367753 DOI: 10.1006/jmbi.1997.1307] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calponin is a putative thin filament regulatory protein of smooth muscle that inhibits actomyosin ATPase in vitro. We have used electron microscopy and three-dimensional reconstruction to elucidate the structural organization of calponin on actin and actin-tropomyosin filaments. Calponin density was clearly delineated in the reconstructions and found to occur peripherally along the long-pitch actin-helix. The main calponin mass was located over sub-domain 2 of actin, and connected axially adjacent actin monomers by binding to the "upper" and "lower" edges of sub-domains 1 of each actin. When the reconstructions were fitted to the atomic model of F-actin, calponin appeared to contact actin near the N terminus and at residues 349 to 352 close to the C terminus of sub-domain 1 on one monomer. It also touched residues 92 to 95 of sub-domain 1 on the axially neighboring actin and continued up the side of this monomer as far as residues 43 to 48 of sub-domain 2. These positions are consensus binding sites for a number of actin-associated proteins and are also near to sites of weak myosin interaction. Calponin did not appear to block strong myosin binding sites on actin. In contrast to the calponin mass which appeared monomeric in reconstructions, tropomyosin formed a continuous strand of added density along F-actin. When added to tropomyosin-containing filaments, calponin caused a shift of tropomyosin away from sub-domain 1 towards sub-domain 3 of actin, exposing strong myosin-binding sites that were previously covered by tropomyosin. This structural effect is unlike that of troponin and therefore inhibition of actomyosin ATPase by calponin and troponin cannot be strictly analogous. The location of calponin would allow it to directly compete or interact with a number of actin-binding proteins.
Collapse
|
130
|
Wang P, Koval KJ, Lehman W, Strongwater A, Grant A, Zuckerman JD. Salter-Harris type III fracture-dislocation of the proximal humerus. J Pediatr Orthop B 1997; 6:219-22. [PMID: 9260654 DOI: 10.1097/01202412-199707000-00013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Salter-Harris type III fractures of the proximal humerus are rare injuries. We report a Salter-Harris type III anterior fracture-dislocation of the proximal humerus in a 10-year-old boy that was open reduced and internally stabilized. A bone scan performed during the initial hospitalization and at 2-year follow-up revealed devascularization and subsequent revascularization of the humeral head. At 2-year follow-up, the patient had full motion of the shoulder, no pain, and arm strength equal to that of the contralateral side. Four cases of Salter-Harris type III fractures of the proximal humerus have been previously reported; good early clinical outcomes were obtained in all. Despite devascularization of the epiphyseal fragment, excellent clinical outcomes may result.
Collapse
|
131
|
Hodgkinson JL, Marston SB, Craig R, Vibert P, Lehman W. Three-dimensional image reconstruction of reconstituted smooth muscle thin filaments: effects of caldesmon. Biophys J 1997; 72:2398-404. [PMID: 9168017 PMCID: PMC1184439 DOI: 10.1016/s0006-3495(97)78885-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Caldesmon inhibits actomyosin ATPase and filament sliding in vitro, and therefore may play a role in modulating smooth and non-muscle motile activities. A bacterially expressed caldesmon fragment, 606C, which consists of the C-terminal 150 amino acids of the intact molecule, possesses the same inhibitory properties as full-length caldesmon and was used in our structural studies to examine caldesmon function. Three-dimensional image reconstruction was carried out from electron micrographs of negatively stained, reconstituted thin filaments consisting of actin and smooth muscle tropomyosin both with and without added 606C. Helically arranged actin monomers and tropomyosin strands were observed in both cases. In the absence of 606C, tropomyosin adopted a position on the inner edge of the outer domain of actin monomers, with an apparent connection to sub-domain 1 of actin. In 606C-containing filaments that inhibited acto-HMM ATPase activity, tropomyosin was found in a different position, in association with the inner domain of actin, away from the majority of strong myosin binding sites. The effect of caldesmon on tropomyosin position therefore differs from that of troponin on skeletal muscle filaments, implying that caldesmon and troponin act by different structural mechanisms.
Collapse
|
132
|
Abstract
The structural basis of thin filament-linked regulation of muscle contraction is not yet understood. Here we have used electron microscopy and three-dimensional image reconstruction to observe the effects of Ca2+ and myosin head binding on thin filament structure, especially on the position of tropomyosin. Thin filaments isolated in EGTA were treated with Ca2+ or myosin heads (S-1) and negatively stained. Tropomyosin strands were directly visualized in electron micrographs, and distinct EGTA, Ca2+ and S-1-dependent positions were apparent in reconstructions. By fitting reconstructions to the atomic model of F-actin, clusters of amino acids on actin lying beneath tropomyosin were defined under each set of conditions. In the presence of Ca2+, tropomyosin moved 25 degrees away from its low Ca2+ position, exposing most, but not all, of the previously blocked myosin-binding sites. Saturation of filaments with myosin heads produced a further 10 degrees shift in tropomyosin position, thereby exposing the entire myosin-binding site. Our results thus suggest that full switching-on of thin filaments by reversal of steric-blocking requires both Ca2+ and the binding of myosin heads, acting in sequence. By using filaments which were partially decorated with heads, tropomyosin movement was shown to be cooperative, and the size of the actin-tropomyosin cooperative unit was estimated directly. Our results provide direct structural support for previous models of thin filament activation based on kinetics of actin-myosin interaction.
Collapse
|
133
|
Lehman W, Vibert P, Uman P, Craig R. Steric-blocking by tropomyosin visualized in relaxed vertebrate muscle thin filaments. J Mol Biol 1995; 251:191-6. [PMID: 7643394 DOI: 10.1006/jmbi.1995.0425] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although widely accepted, the steric-blocking model of vertebrate skeletal muscle regulation has not been confirmed. Previous attempts to directly visualize tropomyosin in relaxed skeletal muscle and demonstrate that it interferes with the crossbridge-thin filament contractile cycle were unsuccessful. In the work reported here, tropomyosin was resolved in electron micrographs of native thin filaments isolated from relaxed vertebrate striated muscle. Three-dimensional helical reconstructions of these filaments showed continuous narrow strands of density, representing tropomyosin, which followed the outer domains of successive actin monomers. The results obtained from fitting the atomic model of filamentous actin to these reconstructions illustrate, and are consistent with, the mechanism of steric-blocking, since tropomyosin was found to be positioned on the actin surface of thin filaments over clusters of identifiable amino acids required for myosin crossbridge docking.
Collapse
|
134
|
Lehman W, Craig R, Vibert P. Ca(2+)-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 1994; 368:65-7. [PMID: 8107884 DOI: 10.1038/368065a0] [Citation(s) in RCA: 264] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The steric model of muscle regulation holds that tropomyosin strands running along thin filaments move away from myosin-binding sites on actin when muscle is activated. Exposing these sites would permit actomyosin interaction and contraction to proceed. This compelling and widely cited model is based on changes observed in X-ray diffraction patterns of skeletal muscle following activation. Although analysis of X-ray patterns can suggest models of filament structure, unambiguous interpretation is not possible. In contrast, three-dimensional reconstruction of thin-filament electron micrographs could, in principle, offer direct confirmation of the predicted tropomyosin movement, but so far tropomyosin in skeletal muscle has been resolved definitively only in the 'on' state but not in the 'off' state. Thin filaments from the arthropod Limulus have a similar composition to those from vertebrate skeletal muscle, and troponin-tropomyosin is distributed in both species with the same characteristic 38-nm periodicity. Limulus thin filaments activate skeletal muscle myosin ATPase at micromolar Ca2+ concentrations and confer a high calcium dependence on the enzyme. Arthropod and vertebrate troponin subunits form functional hybrids in vitro and the respective tropomyosins are functionally interchangeable, arguing for a common mechanism of thin-filament-linked regulation in the two phyla. Here we report that tropomyosin is readily resolved in native filaments of troponin-regulated Limulus muscle in both the 'on' and 'off' states, and demonstrate tropomyosin movement, providing support for the importance of steric effects in muscle activation.
Collapse
|
135
|
Lehman W, Denault D, Marston S. The caldesmon content of vertebrate smooth muscle. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1203:53-9. [PMID: 8218392 DOI: 10.1016/0167-4838(93)90035-p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Caldesmon and tropomyosin can be selectively and quantitatively extracted from vascular and visceral smooth muscle following heat treatment; all other smooth muscle proteins are precipitated by this procedure. Estimates of the caldesmon/tropomyosin molar ratio in heat-extracts determined by SDS-PAGE densitometry are 1 caldesmon:5.1-5.3 tropomyosin for rabbit and sheep aorta, and 1 caldesmon:5.9 tropomyosin for rabbit stomach and chicken gizzard. If the assumption is made that tropomyosin serves as a true reference of thin-filament content in intact muscle, it follows that the relative caldesmon contents in the above tissues are similar to each other. Caldesmon in heat extracts was identified by Western blotting, by its anomalous migration on several different SDS-PAGE systems and by its position on two-dimensional PAGE. Values of caldesmon contents in unfractionated total tissue homogenates were found to be similar to those cited above. Smooth muscles contain different thin-filament classes and only one type appears to possess caldesmon. By comparing values for the molar composition of caldesmon-specific filaments (1 caldesmon:2 tropomyosin:14 actin) with the values above determined for intact tissue, we conclude that the caldesmon filaments account for approx. 35-45% of the total thin-filament pool in arterial smooth muscle and slightly less in visceral muscles.
Collapse
|
136
|
Vibert P, Craig R, Lehman W. Three-dimensional reconstruction of caldesmon-containing smooth muscle thin filaments. J Cell Biol 1993; 123:313-21. [PMID: 8408215 PMCID: PMC2119844 DOI: 10.1083/jcb.123.2.313] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Caldesmon is known to inhibit actomyosin ATPase and filament sliding in vitro, and may play a role in modulating smooth muscle contraction as well as in diverse cellular processes including cytokinesis and exocytosis. However, the structural basis of caldesmon action has not previously been apparent. We have recorded electron microscope images of negatively stained thin filaments containing caldesmon and tropomyosin which were isolated from chicken gizzard smooth muscle in EGTA. Three-dimensional helical reconstructions of these filaments show actin monomers whose bilobed shape and connectivity are very similar to those previously seen in reconstructions of frozen-hydrated skeletal muscle thin filaments. In addition, a continuous thin strand of density follows the long-pitch actin helices, in contact with the inner domain of each actin monomer. Gizzard thin filaments treated with Ca2+/calmodulin, which dissociated caldesmon but not tropomyosin, have also been reconstructed. Under these conditions, reconstructions also reveal a bilobed actin monomer, as well as a continuous surface strand that appears to have moved to a position closer to the outer domain of actin. The strands seen in both EGTA- and Ca2+/calmodulin-treated filaments thus presumably represent tropomyosin. It appears that caldesmon can fix tropomyosin in a particular position on actin in the absence of calcium. An influence of caldesmon on tropomyosin position might, in principle, account for caldesmon's ability to modulate actomyosin interaction in both smooth muscles and non-muscle cells.
Collapse
|
137
|
Graceffa P, Adam LP, Lehman W. Disulphide cross-linking of smooth-muscle and non-muscle caldesmon to the C-terminus of actin in reconstituted and native thin filaments. Biochem J 1993; 294 ( Pt 1):63-7. [PMID: 8363587 PMCID: PMC1134566 DOI: 10.1042/bj2940063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It was reported that chicken gizzard smooth-muscle caldesmon Cys-580 can be disulphide-cross-linked to the C-terminal pen-ultimate residue (Cys-374) of actin, indicating that these residues are close in the protein complex [Graceffa, P. and Jancso, A. (1991) J. Biol. Chem. 266, 20305-20310]. Since the possibility that the cross-link involves a cysteine residue other than actin Cys-374 was not absolutely excluded, more direct evidence was sought for the identify of the cysteine residues involved in the cross-link. We show here that caldesmon could not be disulphide-cross-linked to actin which had Cys-374 removed by carboxypeptidase A digestion, providing direct support for the participation of actin Cys-374 in the cross-link to caldesmon. In order to assign the caldesmon cysteine residue involved in the cross-link, use was made of caldesmon from porcine stomach muscle, which is shown to contain one cysteine residue close to, or at, position 580, in contrast with chicken gizzard caldesmon, which has an additional cysteine residue at position 153. The porcine stomach caldesmon also formed a disulphide-cross-link to actin, further supporting the original conclusion that Cys-580 of the chicken gizzard caldesmon had been cross-linked to actin. Disulphide-cross-linking with similar yield was also observed in native chicken gizzard muscle thin filaments, indicating that the interaction between actin and the C-terminal domain of caldesmon is the same in native and reconstituted thin filaments. The much smaller non-muscle isoform of caldesmon, from rabbit liver, could be similarly cross-linked to actin, consistent with the sequence similarity between the C-terminal domain of muscle and non-muscle caldesmon. The ability to cross-link caldesmon Cys-580 to actin Cys-374 suggests the possibility that the Cys-580 region of caldesmon and the C-terminus of actin form part of the actin-caldesmon binding interface.
Collapse
|
138
|
|
139
|
Lehman W. The future of electronic billing. PATIENT ACCOUNTS 1992; 15:2-3. [PMID: 10117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A comprehensive patient accounting system is vital to achieving timely reimbursement. Industry-wide standardization of intermediary requirements can further aid the process.
Collapse
|
140
|
Abstract
Proteus syndrome is a rare congenital disorder that is characterized by a wide variety of deformities including macrodactyly. Skin and soft tissue lesions are common; they may increase in size as the child develops and may assume tremendous proportions. The syndrome is often mistaken for other more commonly recognized conditions such as neurofibromatosis. Unlike neurofibromatosis, the soft tissue masses in Proteus syndrome are not nerve tumors but, rather, are hamartomas composed primarily of lipomatous tissue. The hand surgeon should be aware of this condition when evaluating a child with macrodactyly.
Collapse
|
141
|
|
142
|
Lehman W, Moody C, Craig R. Caldesmon and the structure of vertebrate smooth muscle thin filaments. A minireview. Ann N Y Acad Sci 1990; 599:75-84. [PMID: 2221678 DOI: 10.1111/j.1749-6632.1990.tb42366.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
143
|
Moody C, Lehman W, Craig R. Caldesmon and the structure of smooth muscle thin filaments: electron microscopy of isolated thin filaments. J Muscle Res Cell Motil 1990; 11:176-85. [PMID: 2351755 DOI: 10.1007/bf01766496] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Native and synthetic vertebrate smooth muscle thin filaments have been examined by electron microscopy in order to determine the arrangement of the regulatory protein caldesmon. In synthetic filaments of actin-caldesmon, long slender molecules were sometimes seen running along the thin filament, suggesting that caldesmon can associate with actin along its length, while at other times lateral projections were observed. In native filaments, containing actin, caldesmon and tropomyosin, we found no evidence for lateral projections extending from the filaments, suggesting that caldesmon does not act as a crosslinking protein in vivo. In contrast, elongated molecules were clearly seen following the long pitch actin helices. We suggest that these may represent an association of caldesmon and tropomyosin. Antibodies developed against an N-terminal fragment of caldesmon caused thin filaments to aggregate laterally into arrays displaying approximately 35-38 nm repeats; thin filament aggregates with this periodicity were obtained previously (Lehman et al., 1989) using antibodies to the C-terminal segment of caldesmon. These results suggest that both ends of caldesmon are closely associated with the shaft of the thin filament, supporting a model in which the elongated caldesmon molecule runs along the filament, possibly interacting with tropomyosin, following the long pitch actin helices.
Collapse
|
144
|
Grant AD, Strongwater A, Lehman W, Nelson J, Atar D. Neck metaphyseal angle guidance in proximal femoral varus osteotomy. J Pediatr Orthop 1990; 10:9-13. [PMID: 2298902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An angle within the femoral arch is defined, and its line is described in selecting the osteotomy site and the position of the fixation device in performing a femoral varus osteotomy. This neck metaphyseal angle was measured with varying degrees of rotation on seven pediatric femurs; it was also studied on 283 randomly selected hip radiographs. The angle varied 25-40 degrees in 90% of the patients and was not age related. The angle is stable within 5 degrees as long as the landmarks, base of the great trochanter, and medial metaphysis of the femoral neck are definable (0-30 degrees of rotation).
Collapse
|
145
|
Abstract
To determine the significance of the global structure of the regulatory proteins in the mechanism of the Ca2+-switch in cardiac and skeletal muscle contractions, the properties of a family of Ca2+-binding proteins with 4 or 3 EF-hand motifs have been studied with desensitized skinned fiber preparations. Proteins with 4 EF hands (such as troponins C - TnCs) are dumb-bell shaped, those with 3 EF hands (parvalbumin) being ellipsoidal. The number of active sites varied between four and two. We find that the ability to anchor in the fiber is limited to proteins with 4 EF hands and, at least, two active Ca2+-binding sites, one each in the N- and C-termini. The results suggest that the dumb-bell shaped global structure is critical for the switching action in muscular contraction, and a trigger site in the N-terminus and a structural site in the C-terminus need to be active in order to regulate contractility.
Collapse
|
146
|
Lehman W. 35 kDa proteins are not components of vertebrate smooth muscle thin filaments. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 996:57-61. [PMID: 2736259 DOI: 10.1016/0167-4838(89)90094-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A 35 kDa protein present in vertebrate smooth muscle and capable of binding to purified actin does not appear to be a constituent of smooth-muscle thin filaments in vivo; instead, it is more likely to be a component easily solubilized from particulate material which then spuriously interacts with actin.
Collapse
|
147
|
Lehman W, Craig R, Lui J, Moody C. Caldesmon and the structure of smooth muscle thin filaments: immunolocalization of caldesmon on thin filaments. J Muscle Res Cell Motil 1989; 10:101-12. [PMID: 2760189 DOI: 10.1007/bf01739966] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antibodies reacting with chicken gizzard caldesmon were used to determine the distribution of caldesmon on smooth muscle thin filaments. Antibodies developed against both the intact caldesmon molecule and a 40 kilodalton proteolytic fragment cause thin filaments to aggregate laterally. Aggregates produced with the latter antibody display regular periodic labelling with a repeat of approximately 38 nm, a distribution characteristic of proteins associated with tropomyosin on thin filaments. The stoichiometry of caldesmon on thin filaments has been critically reevaluated and alternative models of caldesmon distribution on thin filaments are proposed.
Collapse
|
148
|
Manore MM, Vaughan LA, Lehman W. Development and testing of a statistical and graphics-enhanced nutrient analysis program. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/s0002-8223(21)02104-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
149
|
Manore MM, Vaughan LA, Lehman W. Development and testing of a statistical and graphics-enhanced nutrient analysis program. JOURNAL OF THE AMERICAN DIETETIC ASSOCIATION 1989; 89:246-50. [PMID: 2915097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The authors have developed and tested a nutrient analysis program that will compute and present graphically summary statistics of population and population subgroup nutrient intakes. The program analyzes for 44 nutrients from 5,800 separate food items. Capabilities of the program include: storage of large numbers of diet records and evaluations of their nutrients; calculation of nutrient means and standard deviations; data sorting based on subject characteristics, such as age, sex, and supplement use; and generation of bar graphs and line plots for individual and/or group data. To test this computerized nutrient analysis program, two sets of 3-day diet records from 200 elderly individuals were analyzed. The program was then used to generate means, differences between means, and distribution frequencies of designated nutrients for various population subgroups (e.g., men greater than or equal to 65 years vs. men greater than or equal to 80 years) as well as comparisons with individual files (e.g., Mr. Smith vs. all men greater than or equal to 65 years). The statistical and graphics capabilities also function within the context of recipe analysis and menu planning, which enhances the application of this program in institutional and community nutrition settings.
Collapse
|
150
|
Marston SB, Redwood CS, Lehman W. Reversal of caldesmon function by anti-caldesmon antibodies confirms its role in the calcium regulation of vascular smooth muscle thin filaments. Biochem Biophys Res Commun 1988; 155:197-202. [PMID: 2970847 DOI: 10.1016/s0006-291x(88)81068-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Direct evidence that caldesmon is the Ca2+-regulated inhibitory component of native smooth muscle thin filaments is provided by studies using caldesmon-specific antibodies as antagonists. The antibodies reverse caldesmon inhibition of actomyosin ATPase and abolish Ca2+-regulation of native aorta thin filament activation of myosin ATPase. This effect is a result of antibody binding to the caldesmon on the filament thereby inactivating it and not due to antibody-induced caldesmon dissociation from the filament. The antibodies, however, neutralise caldesmon only in systems using skeletal muscle myosin and not in those using smooth muscle myosin; this implies that smooth muscle myosin prevents appropriate antibody binding to caldesmon perhaps because smooth muscle myosin binds to caldesmon thus preventing access of antibody to antigenic sites.
Collapse
|