1
|
Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000; 103:843-52. [PMID: 11136970 DOI: 10.1016/s0092-8674(00)00188-4] [Citation(s) in RCA: 1331] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Many cofactors bind the hormone-activated estrogen receptor (ER), yet the specific regulators of endogenous ER-mediated gene transcription are unknown. Using chromatin immunoprecipitation (ChIP), we find that ER and a number of coactivators rapidly associate with estrogen responsive promoters following estrogen treatment in a cyclic fashion that is not predicted by current models of hormone activation. Cycles of ER complex assembly are followed by transcription. In contrast, the anti-estrogen tamoxifen (TAM) recruits corepressors but not coactivators. Using a genetic approach, we show that recruitment of the p160 class of coactivators is sufficient for gene activation and for the growth stimulatory actions of estrogen in breast cancer supporting a model in which ER cofactors play unique roles in estrogen signaling.
Collapse
|
|
25 |
1331 |
2
|
Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 1995; 26:627-34; discussion 635. [PMID: 7709410 DOI: 10.1161/01.str.26.4.627] [Citation(s) in RCA: 1149] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Occluding a large intracranial artery in rats produces a brain lesion that grows in terms of an increase in both surface area and number of necrotic neurons. The present study investigated whether reperfusing the ischemic territory 30 to 60 minutes after the arterial occlusion would have a beneficial effect on either the clinical or the histological outcome of the lesion. METHODS One hundred four adult rats (including appropriate controls) were used; 97 had a middle cerebral artery occluded by inserting a nylon monofilament via the right external carotid artery. The arterial occlusion was transient in two groups and permanent in another; survival times were comparable for all groups. Control animals were subjected to a sham operation during which the artery was occluded for less than 1 minute. The outcome was evaluated by measuring the extent of the neurological deficit and the severity of the histological injury. RESULTS Mean neurological score and mean number of necrotic neurons in the cortex were more favorable after transient (30- to 60-minute) compared with permanent arterial occlusion (P < .005). Moreover, the correlation between mean neurological score and mean number of necrotic neurons was highly significant: r = .951; P < .001. CONCLUSIONS The histological effects of an intracranial arterial occlusion in the adult rat can be predicted on day 1 by the neurological score described in this report. Significant improvement can be obtained in these animals by reestablishing arterial flow 60 minutes or sooner after the ictus. The pattern of cortical pannecrosis observed after permanent occlusion (> or = 72 hours) was transformed into incomplete ischemic injury in most instances of transient occlusion.
Collapse
|
|
30 |
1149 |
3
|
Cardoso F, Paluch-Shimon S, Senkus E, Curigliano G, Aapro MS, André F, Barrios CH, Bergh J, Bhattacharyya GS, Biganzoli L, Boyle F, Cardoso MJ, Carey LA, Cortés J, El Saghir NS, Elzayat M, Eniu A, Fallowfield L, Francis PA, Gelmon K, Gligorov J, Haidinger R, Harbeck N, Hu X, Kaufman B, Kaur R, Kiely BE, Kim SB, Lin NU, Mertz SA, Neciosup S, Offersen BV, Ohno S, Pagani O, Prat A, Penault-Llorca F, Rugo HS, Sledge GW, Thomssen C, Vorobiof DA, Wiseman T, Xu B, Norton L, Costa A, Winer EP. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol 2020; 31:1623-1649. [PMID: 32979513 PMCID: PMC7510449 DOI: 10.1016/j.annonc.2020.09.010] [Citation(s) in RCA: 846] [Impact Index Per Article: 169.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/09/2023] Open
|
Practice Guideline |
5 |
846 |
4
|
Koepke J, Hu X, Muenke C, Schulten K, Michel H. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 1996; 4:581-97. [PMID: 8736556 DOI: 10.1016/s0969-2126(96)00063-9] [Citation(s) in RCA: 768] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The light-harvesting complexes II (LH-2s) are integral membrane proteins that form ring-like structures, oligomers of alpha beta-heterodimers, in the photosynthetic membranes of purple bacteria. They contain a large number of chromophores organized optimally for light absorption and rapid light energy migration. Recently, the structure of the nonameric LH-2 of Rhodopseudomonas acidophila has been determined; we report here the crystal structure of the octameric LH-2 from Rhodospirillum molischianum. The unveiling of similarities and differences in the architecture of these proteins may provide valuable insight into the efficient energy transfer mechanisms of bacterial photosynthesis. RESULTS The crystal structure of LH-2 from Rs. molischianum has been determined by molecular replacement at 2.4 A resolution using X-ray diffraction. The crystal structure displays two concentric cylinders of sixteen membrane-spanning helical subunits, containing two rings of bacteriochlorophyll-a (BChl-a) molecules. One ring comprises sixteen B850 BChl-as perpendicular to the membrane plane and the other eight B800 BChl-as that are nearly parallel to the membrane plane; eight membrane-spanning lycopenes (the major carotenoid in this complex) stretch out between the B800 and B850 BChl-as. The B800 BChl-as exhibit a different ligation from that of Rps. acidophila (aspartate is the Mg ligand as opposed to formyl-methionine in Rps. acidophila). CONCLUSIONS The light-harvesting complexes from different bacteria assume various ring sizes. In LH-2 of Rs. molischianum, the Qy transition dipole moments of neighbouring B850 and B800 BChl-as are nearly parallel to each other, that is, they are optimally aligned for Föster exciton transfer. Dexter energy transfer between these chlorophylls is also possible through interactions mediated by lycopenes and B850 BChl-a phytyl tails; the B800 BChl-a and one of the two B850 BChl-as associated with each heterodimeric unit are in van der Waals distance to a lycopene, such that singlet and triplet energy transfer between lycopene and the BChl-as can occur by the Dexter mechanism. The ring structure of the B850 BChl-as is optimal for light energy transfer in that it samples all spatial absorption and emission characteristics and places all oscillator strength into energetically low lying, thermally accessible exciton states.
Collapse
|
|
29 |
768 |
5
|
Hudson TJ, Stein LD, Gerety SS, Ma J, Castle AB, Silva J, Slonim DK, Baptista R, Kruglyak L, Xu SH, Hu X, Colbert AM, Rosenberg C, Reeve-Daly MP, Rozen S, Hui L, Wu X, Vestergaard C, Wilson KM, Bae JS, Maitra S, Ganiatsas S, Evans CA, DeAngelis MM, Ingalls KA, Nahf RW, Horton LT, Anderson MO, Collymore AJ, Ye W, Kouyoumjian V, Zemsteva IS, Tam J, Devine R, Courtney DF, Renaud MT, Nguyen H, O'Connor TJ, Fizames C, Fauré S, Gyapay G, Dib C, Morissette J, Orlin JB, Birren BW, Goodman N, Weissenbach J, Hawkins TL, Foote S, Page DC, Lander ES. An STS-based map of the human genome. Science 1995; 270:1945-54. [PMID: 8533086 DOI: 10.1126/science.270.5244.1945] [Citation(s) in RCA: 565] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A physical map has been constructed of the human genome containing 15,086 sequence-tagged sites (STSs), with an average spacing of 199 kilobases. The project involved assembly of a radiation hybrid map of the human genome containing 6193 loci and incorporated a genetic linkage map of the human genome containing 5264 loci. This information was combined with the results of STS-content screening of 10,850 loci against a yeast artificial chromosome library to produce an integrated map, anchored by the radiation hybrid and genetic maps. The map provides radiation hybrid coverage of 99 percent and physical coverage of 94 percent of the human genome. The map also represents an early step in an international project to generate a transcript map of the human genome, with more than 3235 expressed sequences localized. The STSs in the map provide a scaffold for initiating large-scale sequencing of the human genome.
Collapse
|
|
30 |
565 |
6
|
Hu X, Lazar MA. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 1999; 402:93-6. [PMID: 10573424 DOI: 10.1038/47069] [Citation(s) in RCA: 472] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
N-CoR and SMRT are transcriptional corepressors that associate with nuclear hormone receptors (NRs) in the absence of ligand. This interaction is the molecular target of differentiation therapy for acute promyelocytic leukaemia, wherein retinoic acid dissociates corepressor from leukaemogenic receptor fusion proteins. Binding of ligand to NRs induces a conformation that attracts coactivator proteins containing an Leu-x-x-Leu-Leu motif (the 'NR box'). Here we show that N-CoR and SMRT contain sequences that are similar to the NR box and are repeated in each of two NR interaction domains. We show that this CoRNR ('corner') box is required for NR interaction, and that CoRNR box peptides specifically block corepressor interaction in vitro and repression in vivo. Sequences flanking the CoRNR box determine NR specificity. Thus, the key feature of hormone action, differential recognition of unliganded and liganded NRs by coactivators and corepressors, is due to very subtle differences between CoRNR and NR boxes. The molecular mechanisms of repression and activation by NRs are thus linked in an unexpected manner.
Collapse
|
|
26 |
472 |
7
|
Liang S, Wang T, Hu X, Luo J, Li W, Wu X, Duan Y, Jin F. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 2015; 310:561-77. [PMID: 26408987 DOI: 10.1016/j.neuroscience.2015.09.033] [Citation(s) in RCA: 451] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023]
Abstract
Increasing numbers of studies have suggested that the gut microbiota is involved in the pathophysiology of stress-related disorders. Chronic stress can cause behavioral, cognitive, biochemical, and gut microbiota aberrations. Gut bacteria can communicate with the host through the microbiota-gut-brain axis (which mainly includes the immune, neuroendocrine, and neural pathways) to influence brain and behavior. It is hypothesized that administration of probiotics can improve chronic-stress-induced depression. In order to examine this hypothesis, the chronic restraint stress depression model was established in this study. Adult specific pathogen free (SPF) Sprague-Dawley rats were subjected to 21 days of restraint stress followed by behavioral testing (including the sucrose preference test (SPT), elevated-plus maze test, open-field test (OFT), object recognition test (ORT), and object placement test (OPT)) and biochemical analysis. Supplemental Lactobacillus helveticus NS8 was provided every day during stress until the end of experiment, and selective serotonin reuptake inhibitor (SSRI) citalopram (CIT) served as a positive control. Results showed that L. helveticus NS8 improved chronic restraint stress-induced behavioral (anxiety and depression) and cognitive dysfunction, showing an effect similar to and better than that of CIT. L. helveticus NS8 also resulted in lower plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels, higher plasma interleukin-10 (IL-10) levels, restored hippocampal serotonin (5-HT) and norepinephrine (NE) levels, and more hippocampal brain-derived neurotrophic factor (BDNF) mRNA expression than in chronic stress rats. Taken together, these results indicate an anti-depressant effect of L. helveticus NS8 in rats subjected to chronic restraint stress depression and that this effect could be due to the microbiota-gut-brain axis. They also suggest the therapeutic potential of L. helveticus NS8 in stress-related and possibly other kinds of depression.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
451 |
8
|
Felger JC, Li Z, Haroon E, Woolwine BJ, Jung MY, Hu X, Miller AH. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry 2016; 21:1358-65. [PMID: 26552591 PMCID: PMC4862934 DOI: 10.1038/mp.2015.168] [Citation(s) in RCA: 448] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/26/2022]
Abstract
Depression is associated with alterations in corticostriatal reward circuitry. One pathophysiological pathway that may drive these changes is inflammation. Biomarkers of inflammation (for example, cytokines and C-reactive protein (CRP)) are reliably elevated in depressed patients. Moreover, administration of inflammatory stimuli reduces neural activity and dopamine release in reward-related brain regions in association with reduced motivation and anhedonia. Accordingly, we examined whether increased inflammation in depression affects corticostriatal reward circuitry to lead to deficits in motivation and goal-directed motor behavior. Resting-state functional magnetic resonance imaging was conducted on 48 medically stable, unmedicated outpatients with major depression. Whole-brain, voxel-wise functional connectivity was examined as a function of CRP using seeds for subdivisions of the ventral and dorsal striatum associated with motivation and motor control. Increased CRP was associated with decreased connectivity between ventral striatum and ventromedial prefrontal cortex (vmPFC) (corrected P<0.05), which in turn correlated with increased anhedonia (R=-0.47, P=0.001). Increased CRP similarly predicted decreased dorsal striatal to vmPFC and presupplementary motor area connectivity, which correlated with decreased motor speed (R=0.31 to 0.45, P<0.05) and increased psychomotor slowing (R=-0.35, P=0.015). Of note, mediation analyses revealed that these effects of CRP on connectivity mediated significant relationships between CRP and anhedonia and motor slowing. Finally, connectivity between striatum and vmPFC was associated with increased plasma interleukin (IL)-6, IL-1beta and IL-1 receptor antagonist (R=-0.33 to -0.36, P<0.05). These findings suggest that decreased corticostriatal connectivity may serve as a target for anti-inflammatory or pro-dopaminergic treatment strategies to improve motivational and motor deficits in patients with increased inflammation, including depression.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
448 |
9
|
Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X. Imaging brain function in humans at 7 Tesla. Magn Reson Med 2001; 45:588-94. [PMID: 11283986 DOI: 10.1002/mrm.1080] [Citation(s) in RCA: 330] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This article describes experimental studies performed to demonstrate the feasibility of BOLD fMRI using echo-planar imaging (EPI) at 7 T and to characterize the BOLD response in humans at this ultrahigh magnetic field. Visual stimulation studies were performed in normal subjects using high-resolution multishot EPI sequences. Changes in R(*)(2) arising from visual stimulation were experimentally determined using fMRI measurements obtained at multiple echo times. The results obtained at 7 T were compared to those at 4 T. Experimental data indicate that fMRI can be reliably performed at 7 T and that at this field strength both the sensitivity and spatial specificity of the BOLD response are increased. This study suggests that ultrahigh field MR systems are advantageous for functional mapping in humans. Magn Reson Med 45:588-594, 2001.
Collapse
|
|
24 |
330 |
10
|
Hu X, Le TH, Parrish T, Erhard P. Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 1995; 34:201-12. [PMID: 7476079 DOI: 10.1002/mrm.1910340211] [Citation(s) in RCA: 329] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Image-to-image fluctuation due to physiological motion is a major limitation to the accurate detection of neuronal activity with functional MRI. In this paper, a new and general technique for the estimation and compensation of the physiological effects is presented. By simultaneously monitoring the respiration and heart beat during the acquisition of imaging data, and retrospectively synchronizing the imaging data with physiological activity, physiological effects are estimated and removed. This technique does not rely on the periodicity of the respiration or the heart beat, does not affect the signal changes arising from neuronal activation, and is beneficial to images acquired with any speed. Experimental studies performed with FLASH and EPI sequences have demonstrated that the new technique is effective in reducing physiological fluctuation and improving the sensitivity of functional MRI and is generally applicable.
Collapse
|
|
30 |
329 |
11
|
Victor TW, Hu X, Campbell JC, Buse DC, Lipton RB. Migraine prevalence by age and sex in the United States: a life-span study. Cephalalgia 2010; 30:1065-72. [PMID: 20713557 DOI: 10.1177/0333102409355601] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study assessed age- and sex-specific patterns of migraine prevalence in a US population of 40,892 men, women, and children who participated in the 2003 National Health Interview Survey. Gaussian mixture models characterised the relationship between migraine, age, and sex. Migraine prevalence was 8.6% (males), 17.5% (females), and 13.2% (overall) and showed a bimodal distribution in both sexes (peaking in the late teens and 20s and around 50 years of age). Rate of change in migraine prevalence for both sexes increased the fastest from age 3 years to the mid-20s. Beyond the age of 10 years, females had a higher prevalence of migraine than males. The prevalence ratio for females versus males was highest during the female reproductive/child-bearing years, consistent with a relationship between menstruation and migraine. After age 42 years, the prevalence ratio was approximately 2-fold higher in women.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
325 |
12
|
Zhou H, Pisitkun T, Aponte A, Yuen PST, Hoffert JD, Yasuda H, Hu X, Chawla L, Shen RF, Knepper MA, Star RA. Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 2006; 70:1847-57. [PMID: 17021608 PMCID: PMC2277342 DOI: 10.1038/sj.ki.5001874] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Urinary exosomes containing apical membrane and intracellular fluid are normally secreted into the urine from all nephron segments, and may carry protein markers of renal dysfunction and structural injury. We aimed to discover biomarkers in urinary exosomes to detect acute kidney injury (AKI), which has a high mortality and morbidity. Animals were injected with cisplatin. Urinary exosomes were isolated by differential centrifugation. Protein changes were evaluated by two-dimensional difference in gel electrophoresis and changed proteins were identified by mass spectrometry. The identified candidate biomarkers were validated by Western blotting in individual urine samples from rats subjected to cisplatin injection; bilateral ischemia and reperfusion (I/R); volume depletion; and intensive care unit (ICU) patients with and without AKI. We identified 18 proteins that were increased and nine proteins that were decreased 8 h after cisplatin injection. Most of the candidates could not be validated by Western blotting. However, exosomal Fetuin-A increased 52.5-fold at day 2 (1 day before serum creatinine increase and tubule damage) and remained elevated 51.5-fold at day 5 (peak renal injury) after cisplatin injection. By immunoelectron microscopy and elution studies, Fetuin-A was located inside urinary exosomes. Urinary Fetuin-A was increased 31.6-fold in the early phase (2-8 h) of I/R, but not in prerenal azotemia. Urinary exosomal Fetuin-A also increased in three ICU patients with AKI compared to the patients without AKI. We conclude that (1) proteomic analysis of urinary exosomes can provide biomarker candidates for the diagnosis of AKI and (2) urinary Fetuin-A might be a predictive biomarker of structural renal injury.
Collapse
|
Research Support, N.I.H., Intramural |
19 |
322 |
13
|
Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM, Miyaji T, McLeroy P, Nibhanupudy B, Li S, Star RA. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int 2001; 60:2118-28. [PMID: 11737586 DOI: 10.1046/j.1523-1755.2001.00043.x] [Citation(s) in RCA: 310] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Acute renal failure (ARF) is caused by ischemic and nephrotoxic insults acting alone or in combination. Anti-inflammatory agents have been shown to decrease renal ischemia-reperfusion and cisplatin-induced injury and leukocyte infiltration. Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine that inhibits inflammatory and cytotoxic pathways implicated in acute renal injury. Therefore, we sought to determine if IL-10 inhibits acute renal injury. METHODS The effects of IL-10 were studied in mice following cisplatin administration and bilateral renal ischemia-reperfusion, in a rat model of renal transplantation, and in cultured mouse cortical tubule cells. RESULTS IL-10 significantly decreased renal injury following cisplatin administration and following renal ischemia/reperfusion. Delay of IL-10 treatment for one hour after cisplatin also significantly inhibited renal damage. IL-10 and alpha-melanocyte stimulating hormone (alpha-MSH) increased recovery following transplantation of a kidney subjected to warm ischemia. To explore the mechanism of action of IL-10, its effects were measured on mediators of leukocyte trafficking and inducible nitric oxide synthase (NOS-II). IL-10 inhibited cisplatin and ischemia-induced increases in mRNA for tumor necrosis factor-alpha (TNF-alpha), intercellular adhesion molecule-1 (ICAM-1), and NOS-II. IL-10 also inhibited staining for markers of apoptosis and cell cycle activity following cisplatin administration, and nitric oxide production in cultured mouse cortical tubules. CONCLUSIONS IL-10 protects against renal ischemic and cisplatin-induced injury. IL-10 may act, in part, by inhibiting the maladaptive activation of genes that cause leukocyte activation and adhesion, and induction of iNOS.
Collapse
|
|
24 |
310 |
14
|
Menon RS, Ogawa S, Hu X, Strupp JP, Anderson P, Uğurbil K. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med 1995; 33:453-9. [PMID: 7760717 DOI: 10.1002/mrm.1910330323] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We show that the EPI time course in functional MR imaging at 4 Tesla displays a multiphasic response in response to photic stimulation. Focal areas of gray matter display an initial negative change in signal intensity that reaches a maximum of 1% about 2 s after the onset of photic stimulation. This component then changes sign, reaching a positive maximum about 5 s after the onset of the stimulus. Other areas, including those where draining veins are visible, show only a positive signal change, reaching a maximum of about 6% after the onset of the visual stimulus. These time constants are in very good agreement with published data obtained with intrinsic optical mapping techniques, where a deoxygenation phase has been shown to occur in functionally specific cortical columns, followed by an increase in blood volume which is more distributed in nature. Thus, we believe there is strong evidence that a sensitivity to capillary oxygenation state is present in high S/N functional MR images obtained with EPI at 4 T.
Collapse
|
|
30 |
277 |
15
|
Hu X, Damjanović A, Ritz T, Schulten K. Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci U S A 1998; 95:5935-41. [PMID: 9600895 PMCID: PMC34498 DOI: 10.1073/pnas.95.11.5935] [Citation(s) in RCA: 268] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Photosynthetic organisms fuel their metabolism with light energy and have developed for this purpose an efficient apparatus for harvesting sunlight. The atomic structure of the apparatus, as it evolved in purple bacteria, has been constructed through a combination of x-ray crystallography, electron microscopy, and modeling. The detailed structure and overall architecture reveals a hierarchical aggregate of pigments that utilizes, as shown through femtosecond spectroscopy and quantum physics, elegant and efficient mechanisms for primary light absorption and transfer of electronic excitation toward the photosynthetic reaction center.
Collapse
|
research-article |
27 |
268 |
16
|
Le TH, Pardo JV, Hu X. 4 T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. J Neurophysiol 1998; 79:1535-48. [PMID: 9497430 DOI: 10.1152/jn.1998.79.3.1535] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regional blood oxygenation in the cerebellum and posterior cerebral cortices was monitored with functional magnetic resonance imaging (fMRI) at four Tesla while 16 normal subjects performed three tasks with identical visual stimulation: fixation; attention focused upon either stimulus shape or color and sustained during blocks of trials (sustained attention); and rapid, serial shifts in attention between stimulus shape or color within blocks of trials (shifting attention). The stimuli were displayed centrally for 100 ms followed by a central fixation mark for 900 ms. Each stimulus was either a circle or a square displayed in either red or green. Attention shifting required switching between color and shape information after each target detection and occurred on average once every three seconds. Subjects pressed a response key upon detecting the target; reaction time and response accuracy were recorded. Two protocols for T2*-weighted echo-planar imaging were optimized, one with a surface coil for the cerebellum alone and the other with a volume coil for imaging both cerebellum and posterior brain structures (parietal, occipital, and part of temporal cortices). Because fMRI of the cerebellum is particularly susceptible to cardiac and respiratory fluctuations, novel techniques were applied to isolate brain activation signals from physiological noise. Functional activation maps were generated for contrasts of 1) sustained attention to color minus fixation; 2) sustained attention to shape minus fixation; and 3) shifting attention minus sustained attention (to color and shape; i.e., summed across blocks of trials). Consistent with the ease of these tasks, subjects performed with >80% accuracy during both sustained attention and shifting attention. Analysis of variance did not show significant differences in false alarms or true hits across either attentional condition. A subgroup of subjects whose performance data were recorded during ten minutes of continuous practice did not show significant changes over time. Both contrasts between the conditions of sustained attention to color or to shape as compared with the fixation condition showed significant bilateral activation in occipital and inferior temporal regions (Brodmann areas 18, 19, and 37). The anterior medial cerebellum was also significantly activated ipsilateral to the finger used for responding. The principal comparison of interest, the contrast between the condition of shifting attention and the condition of sustained attention produced significant and reproducible activation: lateral cerebellar hemisphere (ansiform lobule: Crus I Anterior and Crus I Posterior; left Crus I Posterior); cerebellar folium; posterior superior parietal lobule (R and L); and cuneus and precuneus (R and L).
Collapse
|
|
27 |
260 |
17
|
Nitin N, LaConte LEW, Zurkiya O, Hu X, Bao G. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J Biol Inorg Chem 2004; 9:706-12. [PMID: 15232722 DOI: 10.1007/s00775-004-0560-1] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 05/13/2004] [Indexed: 11/26/2022]
Abstract
We report the development of functionalized superparamagnetic iron oxide nanoparticles with a PEG-modified, phospholipid micelle coating, and their delivery into living cells. The size of the coated particles, as determined by dynamic light scattering and electron microscopy, was found to be between 12 and 14 nm. The PEG-phospholipid coating resulted in high water solubility and stability, and the functional groups of modified PEG allowed for bioconjugation of various moieties, including a fluorescent dye and the Tat peptide. Efficient delivery of the functionalized nanoparticles into living cells was confirmed by fluorescence microscopy, relaxation time measurements, and magnetic resonance imaging (MRI). This demonstrates the feasibility of using functionalized magnetic nanoparticles with uniform (approximately 10 nm) sizes as an MRI contrast agent for intracellular molecular imaging in deep tissue. These micelle-coated iron oxide nanoparticles offer a versatile platform for conjugation of a variety of moieties, and their small size confers advantages for intracellular molecular imaging with minimal perturbation.
Collapse
|
|
21 |
248 |
18
|
Abstract
Repression by nuclear receptors plays important roles in acute promyelocytic leukemia and other diseases. Nuclear receptor corepressor (N-CoR) and SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) are corepressor proteins whose modular structure facilitates receptor interaction as well as transduction of repression signals involving histone deacetylation, alterations in chromatin structure and direct interactions with the basal transcription machinery. Interactions between nuclear receptors and corepressor complexes have multiple determinants. This allows regulation, and potentially therapeutic manipulation, of receptor, corepressor, cell-type and target-gene specificity.
Collapse
|
Review |
25 |
234 |
19
|
Jing J, Reed J, Huang J, Hu X, Clarke V, Edington J, Housman D, Anantharaman TS, Huff EJ, Mishra B, Porter B, Shenker A, Wolfson E, Hiort C, Kantor R, Aston C, Schwartz DC. Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. Proc Natl Acad Sci U S A 1998; 95:8046-51. [PMID: 9653137 PMCID: PMC20926 DOI: 10.1073/pnas.95.14.8046] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/1998] [Accepted: 04/23/1998] [Indexed: 02/08/2023] Open
Abstract
New mapping approaches construct ordered restriction maps from fluorescence microscope images of individual, endonuclease-digested DNA molecules. In optical mapping, molecules are elongated and fixed onto derivatized glass surfaces, preserving biochemical accessibility and fragment order after enzymatic digestion. Measurements of relative fluorescence intensity and apparent length determine the sizes of restriction fragments, enabling ordered map construction without electrophoretic analysis. The optical mapping system reported here is based on our physical characterization of an effect using fluid flows developed within tiny, evaporating droplets to elongate and fix DNA molecules onto derivatized surfaces. Such evaporation-driven molecular fixation produces well elongated molecules accessible to restriction endonucleases, and notably, DNA polymerase I. We then developed the robotic means to grid DNA spots in well defined arrays that are digested and analyzed in parallel. To effectively harness this effect for high-throughput genome mapping, we developed: (i) machine vision and automatic image acquisition techniques to work with fixed, digested molecules within gridded samples, and (ii) Bayesian inference approaches that are used to analyze machine vision data, automatically producing high-resolution restriction maps from images of individual DNA molecules. The aggregate significance of this work is the development of an integrated system for mapping small insert clones allowing biochemical data obtained from engineered ensembles of individual molecules to be automatically accumulated and analyzed for map construction. These approaches are sufficiently general for varied biochemical analyses of individual molecules using statistically meaningful population sizes.
Collapse
|
research-article |
27 |
229 |
20
|
Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S, Di Croce L, Giavara S, Matteucci C, Gobbi A, Bianchini A, Colombo E, Schiavoni I, Badaracco G, Hu X, Lazar MA, Landsberger N, Nervi C, Pelicci PG. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell 2000; 5:811-20. [PMID: 10882117 DOI: 10.1016/s1097-2765(00)80321-4] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
RAR and AML1 transcription factors are found in leukemias as fusion proteins with PML and ETO, respectively. Association of PML-RAR and AML1-ETO with the nuclear corepressor (N-CoR)/histone deacetylase (HDAC) complex is required to block hematopoietic differentiation. We show that PML-RAR and AML1-ETO exist in vivo within high molecular weight (HMW) nuclear complexes, reflecting their oligomeric state. Oligomerization requires PML or ETO coiled-coil regions and is responsible for abnormal recruitment of N-CoR, transcriptional repression, and impaired differentiation of primary hematopoietic precursors. Fusion of RAR to a heterologous oligomerization domain recapitulated the properties of PML-RAR, indicating that oligomerization per se is sufficient to achieve transforming potential. These results show that oligomerization of a transcription factor, imposing an altered interaction with transcriptional coregulators, represents a novel mechanism of oncogenic activation.
Collapse
MESH Headings
- Cell Transformation, Neoplastic
- Core Binding Factor Alpha 2 Subunit
- Histone Deacetylases/metabolism
- Humans
- Leukemia/etiology
- Leukemia/genetics
- Leukemia, Myeloid/etiology
- Leukemia, Myeloid/genetics
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/metabolism
- Nuclear Receptor Co-Repressor 1
- Oncogene Proteins, Fusion/metabolism
- Peptide Fragments/metabolism
- Protein Binding
- Protein Structure, Quaternary
- RUNX1 Translocation Partner 1 Protein
- Repressor Proteins/metabolism
- Response Elements
- Transcription Factors/metabolism
- Transcription, Genetic
- Tretinoin
Collapse
|
|
25 |
225 |
21
|
Hu X, Le TH, Uğurbil K. Evaluation of the early response in fMRI in individual subjects using short stimulus duration. Magn Reson Med 1997; 37:877-84. [PMID: 9178239 DOI: 10.1002/mrm.1910370612] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Optical imaging studies have provided evidence of an initial increase in deoxyhemoglobin following the onset of neuronal stimulation/activation and demonstrated that this initial increase could be spatially more specific to the site of neuronal activity. These studies also raised the possibility of improving the specificity of fMRI by selective mapping of this early response. Previous MR studies reported the observation of this early response but were limited in scope and not in full agreement. This paper presents a more extensive study that (a) demonstrates the initial signal decrease in individual subjects and (b) examines its dependence on stimulus duration and subject. Binocular visual stimulation experiments were performed on 14 subjects using echo-planar imaging (EPI) with high temporal resolution. An initial signal decrease was consistently observed in regions that were more localized than those displaying the delayed positive response. In agreement with previous fMRI and optical imaging findings, the maximum signal decrease was 1-2% and occurred at approximately 2 s after the onset of the stimulus, depending on the subject. For stimulus longer then 3.0 s, the temporal dynamics and the amount of signal change of the early response was essentially independent of the stimulus duration, while the delayed response and the post-stimulus undershoot increased both in terms of magnitude and rise time as the duration of the stimulus increased; this observation is concordant with the recent optical imaging study.
Collapse
|
|
28 |
223 |
22
|
Xiong W, Phillips MR, Hu X, Wang R, Dai Q, Kleinman J, Kleinman A. Family-based intervention for schizophrenic patients in China. A randomised controlled trial. Br J Psychiatry 1994; 165:239-47. [PMID: 7953039 DOI: 10.1192/bjp.165.2.239] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND We developed and evaluated a comprehensive, ongoing intervention for families of schizophrenic patients appropriate for China's complex family relationships and unique social environment. METHOD Sixty-three DSM-III-R schizophrenic patients living with family members were enrolled when admitted to hospital and randomly assigned to receive standard care or a family-based intervention that included monthly 45-minute counselling sessions focused on the management of social and occupational problems, medication management, family education, family group meetings, and crisis intervention. RESULTS At 6, 12, and 18-month follow-ups by blind evaluators, the proportion of subjects rehospitalised was lower, the duration of rehospitalisation was shorter, and the duration of employment was longer in the experimental group than in the control group; these differences were statistically significant at the 12 and 18-month follow-ups and were not explained by differences in drug compliance. Family intervention was associated with significantly lower levels of family burden. CONCLUSIONS This intervention is less costly than standard treatment, is suitable for urban families of schizophrenic patients in China and feasible given the constraints of the Chinese mental health system.
Collapse
|
Clinical Trial |
31 |
215 |
23
|
Lin T, Ponn A, Hu X, Law BK, Lu J. Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 2010; 29:4896-904. [PMID: 20562920 DOI: 10.1038/onc.2010.234] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has pivotal roles during embryonic development and carcinoma progression. Members of the Snai1 family of zinc finger transcription factors are central mediators of EMT and induce EMT in part by directly repressing epithelial markers such as E-cadherin, a gatekeeper of the epithelial phenotype and a suppressor of tumor invasion. However, the molecular mechanism underlying Snai1-mediated transcriptional repression remains incompletely understood. Here we show that Snai1 physically interacts with and recruits the histone demethylase LSD1 (KDM1A) to epithelial gene promoters. LSD1 removes dimethylation of lysine 4 on histone H3 (H3K4m2), a covalent histone modification associated with active chromatin. Importantly, LSD1 is essential for Snai1-mediated transcriptional repression and for maintenance of the silenced state of Snai1 target genes in invasive cancer cells. In the absence of LSD1, Snai1 fails to repress E-cadherin. In cancer cells in which E-cadherin is silenced, depletion of LSD1 results in partial de-repression of epithelial genes and elevated H3K4m2 levels at the E-cadherin promoter. These results underline the critical role of LSD1 in Snai1-dependent transcriptional repression of epithelial markers and suggest that the LSD1 complex could be a potential therapeutic target for prevention of EMT-associated tumor invasion.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
212 |
24
|
Hinke RM, Hu X, Stillman AE, Kim SG, Merkle H, Salmi R, Ugurbil K. Functional magnetic resonance imaging of Broca's area during internal speech. Neuroreport 1993; 4:675-8. [PMID: 8347806 DOI: 10.1097/00001756-199306000-00018] [Citation(s) in RCA: 206] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Conventional gradient-echo magnetic resonance imaging (MRI) at 4 Tesla was used successfully to study the activity of Broca's area during internal speech word generation in healthy right-handed volunteers. Activity was demonstrated in the internal gray matter surrounding the ascending ramus of the lateral sulcus, deep to the cortical surface representation of Broca's area, in all the subjects. These studies demonstrate the capability of functional MRI to non-invasively map language related cognitive functions. Such functional mapping has value for both the study of basic neuroscience and neurosurgical planning.
Collapse
|
|
32 |
206 |
25
|
Corder G, Doolen S, Donahue RR, Winter MK, Jutras BL, He Y, Hu X, Wieskopf JS, Mogil JS, Storm DR, Wang ZJ, McCarson KE, Taylor BK. Constitutive μ-opioid receptor activity leads to long-term endogenous analgesia and dependence. Science 2013; 341:1394-9. [PMID: 24052307 DOI: 10.1126/science.1239403] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Opioid receptor antagonists increase hyperalgesia in humans and animals, which indicates that endogenous activation of opioid receptors provides relief from acute pain; however, the mechanisms of long-term opioid inhibition of pathological pain have remained elusive. We found that tissue injury produced μ-opioid receptor (MOR) constitutive activity (MOR(CA)) that repressed spinal nociceptive signaling for months. Pharmacological blockade during the posthyperalgesia state with MOR inverse agonists reinstated central pain sensitization and precipitated hallmarks of opioid withdrawal (including adenosine 3',5'-monophosphate overshoot and hyperalgesia) that required N-methyl-D-aspartate receptor activation of adenylyl cyclase type 1. Thus, MOR(CA) initiates both analgesic signaling and a compensatory opponent process that generates endogenous opioid dependence. Tonic MOR(CA) suppression of withdrawal hyperalgesia may prevent the transition from acute to chronic pain.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
184 |