126
|
Cataletti G, Santagata F, Pastorelli L, Battezzati PM. Severe azathioprine-induced liver injury 22 months after initiation of treatment. Drug Ther Bull 2024; 62:60-63. [PMID: 38302287 DOI: 10.1136/dtb.2024.253505rep] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
|
|
1 |
|
127
|
Oliveira R, Almeida M, Lavado P, Baptista A. Pantoprazole-Induced Liver Injury in the Setting of Diabetic Ketoacidosis. ACTA MEDICA PORT 2024; 37:308-309. [PMID: 38631049 DOI: 10.20344/amp.20928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
|
Letter |
1 |
|
128
|
Morin CE, Kolbe AB, Alazraki A, Chavhan GB, Gill A, Infante J, Khanna G, Nguyen HN, O'Neill AF, Rees MA, Sharma A, Squires JE, Squires JH, Syed AB, Tang ER, Towbin AJ, Schooler GR. Cancer Therapy-related Hepatic Injury in Children: Imaging Review from the Pediatric LI-RADS Working Group. Radiographics 2023; 43:e230007. [PMID: 37616168 DOI: 10.1148/rg.230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The liver is the primary organ for the metabolism of many chemotherapeutic agents. Treatment-induced liver injury is common in children undergoing cancer therapy. Hepatic injury occurs due to various mechanisms, including biochemical cytotoxicity, hepatic vascular injury, radiation-induced cytotoxicity, and direct hepatic injury through minimally invasive and invasive surgical treatments. Treatment-induced liver injury can be seen contemporaneous with therapy and months to years after therapy is complete. Patients can develop a combination of hepatic injuries manifesting during and after treatment. Acute toxic effects of cancer therapy in children include hepatitis, steatosis, steatohepatitis, cholestasis, hemosiderosis, and vascular injury. Longer-term effects of cancer therapy include hepatic fibrosis, chronic liver failure, and development of focal liver lesions. Quantitative imaging techniques can provide useful metrics for disease diagnosis and monitoring, especially in treatment-related diffuse liver injury such as hepatic steatosis and steatohepatitis, hepatic iron deposition, and hepatic fibrosis. Focal liver lesions, including those developing as a result of treatment-related vascular injury such as focal nodular hyperplasia-like lesions and hepatic perfusion anomalies, as well as hepatic infections occurring as a consequence of immune suppression, can be anxiety provoking and confused with recurrent malignancy or hepatic metastases, although there often are imaging features that help elucidate the correct diagnosis. Radiologic evaluation, in conjunction with clinical and biochemical screening, is integral to diagnosing and monitoring hepatic complications of cancer therapy in pediatric patients during therapy and after therapy completion for long-term surveillance. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material See the invited commentary by Ferraciolli and Gee in this issue.
Collapse
|
|
2 |
|
129
|
Assis MHD, Alves BC, Luft VC, Dall'alba V. LIVER INJURY INDUCED BY HERBAL AND DIETARY SUPPLEMENTS: A POOLED ANALYSIS OF CASE REPORTS. ARQUIVOS DE GASTROENTEROLOGIA 2022; 59:522-530. [PMID: 36515339 DOI: 10.1590/s0004-2803.202204000-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The intake of dietary supplements and medicinal plants is very popular worldwide. However, these products are not innocuous, and their intake can cause severe damage to health, especially liver injury. OBJECTIVE This study aims to describe the clinical cases of dietary supplements-induced liver injury (DSILI) and herb-induced liver injury (HILI), identifying the main products involved and the clinical outcomes related to them. METHOD A literature search was performed in PubMed, EMBASE, Google Scholar, and LILACS databases, using the search terms: "Chemical and Drug-Induced Liver Injury", "Dietary Supplements" and "Herbal" and their synonyms. RESULTS 189 articles were included in the study, totaling 428 clinical cases of drug-induced liver injury. The most frequent agents of liver injury were Herbalife® products, associated with 50 cases, Polygonum multiflorum, with 25 cases, Hydroxycut® products, and green tea, both associated in 19 cases, and Oxyelite Pro® and kava tea, both associated with 16 cases. Most individuals required hospitalization (82.6%) and an important number of cases evolved to death (3.6%), liver transplantation (8.9%), or chronic liver disease (1.9%). CONCLUSION The indiscriminate use of dietary supplements and herbal products was associated with an alarming number of cases of liver injury. The mechanisms through which each of the products causes liver damage still need to be better understood, but this review is a warning about the risk associated with the use of products considered harmless by a large part of the population.
Collapse
|
Case Reports |
3 |
|
130
|
Yuan X, Chen P, Luan X, Yu C, Miao L, Zuo Y, Liu A, Sun T, Di G. NLRP3 deficiency protects against acetaminophen‑induced liver injury by inhibiting hepatocyte pyroptosis. Mol Med Rep 2024; 29:61. [PMID: 38391117 PMCID: PMC10902631 DOI: 10.3892/mmr.2024.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Acetaminophen (APAP) overdose is the primary cause of drug‑induced acute liver failure in numerous Western countries. NLR family pyrin domain containing 3 (NLRP3) inflammasome activation serves a pivotal role in the pathogenesis of various forms of acute liver injury. However, the cellular source for NLRP3 induction and its involvement during APAP‑induced hepatotoxicity have not been thoroughly investigated. In the present study, hematoxylin and eosin staining was performed to assess histopathological changes of liver tissue. Immunohistochemistry staining(NLRP3, Caspase‑1, IL‑1β, GSDMD and Caspase‑3), western blotting (NLRP3, Caspase‑1, IL‑1β, GSDMD and Caspase‑3) and RT‑qPCR (NLRP3, Caspase‑1 and IL‑1β) were performed to assess the expression of NLRP3/GSDMD signaling pathway. TUNEL staining was performed to assess apoptosis of liver tissue. The serum expression levels of inflammatory factors (IL‑6, IL‑18, IL‑1β and TNF‑α) were assessed using ELISA and inflammation of liver tissue was assessed using immunohistochemistry (Ly6G and CD68) and RT‑qPCR (TNF‑α, Il‑6, Mcp‑1, Cxcl‑1, Cxcl‑2). A Cell Counting Kit‑8 was performed to assess cell viability and apoptosis. Protein and gene expression were analyzed by western blotting (PCNA, CCND1) and RT‑qPCR (CyclinA2, CyclinD1 and CyclinE1). Through investigation of an APAP‑induced acute liver injury model (AILI), the present study demonstrated that APAP overdose induced activation of NLRP3 and cleavage of gasdermin D (GSDMD) in hepatocytes, both in vivo and in vitro. Additionally, mice with hepatocyte‑specific knockout of Nlrp3 exhibited reduced liver injury and lower mortality following APAP intervention, accompanied by decreased infiltration of inflammatory cells and attenuated inflammatory response. Furthermore, pharmacological blockade of NLRP3/GSDMD signaling using MCC950 or disulfiram significantly ameliorated liver injury and reduced hepatocyte death. Notably, hepatocyte Nlrp3 deficiency promoted liver recovery by enhancing hepatocyte proliferation. Collectively, the present study demonstrated that inhibition of the NLRP3 inflammasome protects against APAP‑induced acute liver injury by reducing hepatocyte pyroptosis and suggests that targeting NLRP3 may hold therapeutic potential for treating AILI.
Collapse
|
research-article |
1 |
|
131
|
Pradeep RJ, Victor G, Iby N, Kurpad SS, Galgali RB, Srinivasan K. Venlafaxine induced hepatitis. THE JOURNAL OF THE ASSOCIATION OF PHYSICIANS OF INDIA 2004; 52:340. [PMID: 15636348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
Case Reports |
21 |
|
132
|
Jin LP, Ding YL, Han CH. [Lessons from a case exposed to dimethylformamide of severe chronic toxic liver disease]. ZHONGHUA LAO DONG WEI SHENG ZHI YE BING ZA ZHI = ZHONGHUA LAODONG WEISHENG ZHIYEBING ZAZHI = CHINESE JOURNAL OF INDUSTRIAL HYGIENE AND OCCUPATIONAL DISEASES 2012; 30:70-71. [PMID: 22730695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
Case Reports |
13 |
|
133
|
Emery P, Gough A, Griffiths B. Minocycline related lupus. J Rheumatol Suppl 1997; 24:1850; author reply 1851-2. [PMID: 9292819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
Letter |
28 |
|
134
|
Kolts BE, Langfitt M. Drugs and the liver. COMPREHENSIVE THERAPY 1984; 10:55-70. [PMID: 6097399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
Case Reports |
41 |
|
135
|
Feng L, Chen J, Yan W, Ye Z, Yu J, Yao G, Wu Y, Zhang J, Yang D. Preparation of Active Peptides from Camellia vietnamensis and Their Metabolic Effects in Alcohol-Induced Liver Injury Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061790. [PMID: 35335153 PMCID: PMC8951368 DOI: 10.3390/molecules27061790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
Liver damage seriously affects human health. Over 35% of cases of acute liver damage are caused by alcohol damage. Thus, finding drugs that can inhibit and effectively treat this disease is necessary. This article mainly focuses on the effect of the metabolome physical activity of active peptides in Camellia vietnamensis active peptide (CMAP) and improving liver protection. DEAE Sepharose FF ion-exchange column chromatography was used in separating and purifying crude peptides from Camellia vietnamensis Two components, A1 and A2, were obtained, and the most active A1 was selected. Sephadex G-100 gel column chromatography was used in A1 separation and purification. Three components, Al-1, Al-2, and Al-3, were obtained. Through antioxidant activity in vitro as an index of inspection, the relatively active component A1-2 was removed. Reverse-phase high-performance liquid chromatography showed that the purity of component A1-2 was 93.45%. The extracted CMAPs acted on alcoholic liver injury cells. Metabolomics studies revealed that the up-regulated metabolites were ribothymidine and xanthine; the down-regulated metabolites were hydroxyphenyllactic acid, creatinine, stearoylcarnitine, and inosine. This study provides an effective theoretical support for subsequent research.
Collapse
|
|
3 |
|
136
|
Wu K, Qin J, Liu M, Yan X, Guo C. Bioinformatics approach and experimental validation reveal the hepatoprotective effect of pachyman against acetaminophen-associated liver injury. Aging (Albany NY) 2023; 15:8800-8811. [PMID: 37679038 PMCID: PMC10522380 DOI: 10.18632/aging.205000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023]
Abstract
Pachyman, known as Poria cocos polysaccharides, refers to the bioactive compounds isolated from Poria cocos. Pachyman is thought to exert cytoprotective action. However, the detailed mechanisms of pachyman action for hepatoprotection remain unknown. In this study, we aimed to assess the therapeutic actions, molecular mechanisms, and key target proteins of pachyman in the treatment of liver injury through network pharmacology and molecular docking assays. Furthermore, these bioinformatic findings were validated by an acetaminophen (APAP)-induced liver injury in vivo. Primarily using bioinformatic analysis, we screened and characterized 12 genes that act as potential therapeutic targets of pachyman against APAP-induced liver injury, in which all core targets were obtained. By using enrichment analysis, these core target genes of pachyman were characterized to reveal the pharmacological functions and molecular mechanisms of anti-liver injury induced by APAP. A molecular docking simulation was further performed to certain anti-liver injury target proteins of pachyman, including cytochrome P450 3A4 enzyme (CYP3A4) and inducible nitric oxide synthase (NOS2). In animal experiments, pachyman exerted potent hepatoprotective activities in prenatal APAP-exposed offspring livers, characterized by activated hepatocellular CYP3A4 and NOS2 expressions. These current findings have thus indicated that pachyman exerts hepatoprotective effects and may be the promising nutraceuticals for the treatment of APAP-induced liver injury.
Collapse
|
research-article |
2 |
|
137
|
Cui Y, Guo P, Ning M, Yue Y, Yuan Y, Yue T. Kluyveromyces marxianus supplementation ameliorates alcohol-induced liver injury associated with the modulation of gut microbiota in mice. Food Funct 2023; 14:9920-9935. [PMID: 37853829 DOI: 10.1039/d3fo01796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The aim of this study was to evaluate the intervention effect of the potential probiotic Kluyveromyces marxianus YG-4 isolated from Tibetan kefir grains on alcoholic liver disease (ALD). Eight-week-old male C57BL/6J mice were fed with a Lieber-DeCarli (LDC) diet containing ethanol with a progressively increasing concentration from 1% to 4% (vol/vol) to establish an ALD mouse model. Our results suggested that K. marxianus treatment improved ALD, as demonstrated by the reduction of serum ALT and AST levels and the suppression of TLR4/NF-κB-mediated inflammatory response in the liver. K. marxianus administration significantly elevated antioxidant activities of SOD, CAT and GSH-Px, and reduced the MDA level in mice. K. marxianus supplementation repaired the gut barrier by increasing tight junction proteins and the number of goblet cells in the colon of ALD mice. In addition, treatment with K. marxianus restored alcohol-induced gut dysbiosis. Specifically, K. marxianus administration depleted the abundance of Lactobacillus, Coriobacteriaceae_UCG-002 and Candida, while increased that of Allobaculum, Dubosiella and Epicoccum in mice. Our findings open new possibilities for K. marxianus application in ALD treatment.
Collapse
|
|
2 |
|
138
|
Jin X, Li Z, Zhang Y, Zhu Y, Su L, Song J, Hao J, Wang D. Protection of Inonotus hispidus (Bull.) P. Karst. against Chronic Alcohol-Induced Liver Injury in Mice via Its Relieving Inflammation Response. Nutrients 2023; 15:3530. [PMID: 37630721 PMCID: PMC10458315 DOI: 10.3390/nu15163530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Alcoholic liver disease (ALD) can be induced by excessive alcohol consumption, and has a worldwide age-standardized incidence rate (ASIR) of approximately 5.243%. Inonotus hispidus (Bull.) P. Karst. (IH) is a mushroom with pharmacological effects. In ALD mice, the hepatoprotective effects of IH were investigated. IH strongly ameliorated alcohol-induced pathological changes in the liver, including liver structures and its function-related indices. Intestinal microbiota and serum metabolomics analysis showed that IH altered the associated anti-inflammatory microbiota and metabolites. According to results obtained from Western blot, immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA), IH downregulated the levels of pro-inflammation factors interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α), enhanced the expressions of peroxisome proliferator-activated receptor alpha (PPARα) and 15-hydroxprostaglandin dehydrogenase (15-PGDH), and inhibited the phosphorylated activation of Janus kinase (JAK) 1 and signal transducer and activator of transcription (STAT) 3, confirming the hepatoprotection of IH against alcohol damage via anti-inflammation. This study provides the experimental evidence for the hepatoprotective effects of IH in chronic ALD.
Collapse
|
research-article |
2 |
|
139
|
Rahmani AH, Almatroudi A, Allemailem KS, Alharbi HOA, Babiker AY, Althwab SA, Alsuhaymi N, Alsugoor MH, Khan AA, Al-Megrin WAI. Oleuropein, a phenolic component of Olea europaea L. ameliorates CCl4-induced liver injury in rats through the regulation of oxidative stress and inflammation. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2024; 28:1259-1271. [PMID: 38436159 DOI: 10.26355/eurrev_202402_35447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
OBJECTIVE This study aimed to assess the hepatoprotective role of oleuropein (Olp), a phenolic compound found in olive, against carbon tetrachloride (CCl4)-induced liver damage in rats. MATERIALS AND METHODS The research involved male albino rats, which received intraperitoneal injections of 100 mg/kg b.w. of oleuropein for 8 consecutive weeks before being subjected to carbon tetrachloride (CCl4) at a dosage of 1.0 ml/kg b.w. Changes induced by CCl4 in antioxidant and inflammatory marker levels were assessed using ELISA assay kits. Moreover, CCl4-induced liver tissue architecture alteration, fibrosis, and expression pattern of protein were evaluated by performing H&E, Sirius red, Masson trichrome, and immunohistochemistry staining. RESULTS Increased serum transaminases and massive hepatic damage were observed by this liver toxicant. The hepatic injury was further evidenced by a significant decrease in antioxidant enzyme activity [superoxide dismutase (SOD), glutathione peroxidase (GPx), Glutathione (GSH) and Total Antioxidant Capacity (T-AOC)]. The administration of CCl4 resulted in an increased inflammatory response, which was measured by C-reactive protein, interleukin-6, as well as tumor necrosis factor-alpha. Olp as a curative regimen led to significant attenuation in the inflammatory response and oxidative/nitrosative stress. This polyphenol treatment improved the hepatic tissue architecture and decreased fibrosis. In the CCl4 treatment group, the expression pattern of IL-6 protein was high, whereas expression was decreased after Olp, as evidenced by immunohistochemistry staining. CONCLUSIONS The study suggests that oleuropein treatment has the potential to reduce liver damage caused by CCl4 induction by inhibiting oxidative stress and inflammation and maintaining liver tissue architecture. This could make it a promising treatment option for liver pathogenesis.
Collapse
|
|
1 |
|
140
|
Clegg DO, Furst DE, Tolman KG, Pogue R. Acute, reversible hepatic failure associated with methotrexate treatment of rheumatoid arthritis. J Rheumatol Suppl 1989; 16:1123-6. [PMID: 2585411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe 2 patients who developed reversible decompensated liver disease while taking pulse dosed methotrexate (MTX) for rheumatoid arthritis. One of the patients was available for biopsy and had chronic active hepatitis--a lesion not previously described with MTX. This appears to be a unique and unusual manifestation of MTX hepatotoxicity.
Collapse
|
Case Reports |
36 |
|
141
|
Feld JJ, Ocama P, Ronald A. The liver in HIV in Africa. Antivir Ther 2005; 10:953-65. [PMID: 16430201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As access to antiretroviral therapy improves across the African continent, liver disease is emerging as an important cause of morbidity and mortality among HIV-infected individuals. Although coinfection with hepatitis B virus (HBV) and hepatitis C virus (HCV), along with highly active antiretroviral therapy (HAART)-induced hepatotoxicity appear to be the major causes of liver disease in this population, other diseases endemic to Africa with hepatic manifestations are influenced by HIV infection as well. In this review we present the available data on liver disease in HIV-infected populations in Africa and discuss relevant data from the rest of the world. In addition, we highlight important areas for further study.
Collapse
|
Review |
20 |
|
142
|
Burgert SJ, Burke JP, Box TD. Reversible nitrofurantoin-induced chronic active hepatitis and hepatic cirrhosis in a patient awaiting liver transplantation. Transplantation 1995; 59:448-9. [PMID: 7871583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
Case Reports |
30 |
|
143
|
Fuchs HA, Avant GR. Nitrofurantoin-induced liver disease. A case report. JOURNAL OF THE TENNESSEE MEDICAL ASSOCIATION 1984; 77:584-5. [PMID: 6503278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
Case Reports |
41 |
|
144
|
Liu XM, Cao NB, Deng Y, Hou YB, Liu XC, Ma HN, Yu WX. [Role of brain and muscle ARNT-like protein 1 in the rat periodontitis-induced liver injury model]. ZHONGHUA KOU QIANG YI XUE ZA ZHI = ZHONGHUA KOUQIANG YIXUE ZAZHI = CHINESE JOURNAL OF STOMATOLOGY 2022; 57:1048-1056. [PMID: 36266079 DOI: 10.3760/cma.j.cn112144-20220323-00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Objective: Brain and muscle ARNT-like protein 1 (BMAL1) is a core component of hepatocyte molecular clock and plays an important role in the regulation of other related rhythmic genes in the body through a transcriptional-translational feedback loop in molecular circadian oscillations. Therefore, the aim of this study was to investigate the role of BMAL1 in the rat periodontitis-induced liver injury. Methods: Twelve male Wistar rats were divided into the control group and the periodontitis group according to the random number table method. The rats in the control group were untreated. The periodontitis models were established by ligating the necks of the bilateral maxillary first molars in the periodontitis group rats. After 8 weeks, periodontal clinical indexes of rats in both groups were examined and executed. Micro-CT scans of the maxilla were performed and levels of the alveolar bone resorption were analyzed. Pathological changes in periodontal and liver tissue of rats in two groups were detected by HE and oil red O staining. Biochemical kits were used to detect glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), total cholesterol (TC) and triglycerides (TG) in serum. The gene and protein expression levels of BMAL1, nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α) in liver tissue were measured by real time fluorescent quantitative-PCR (qRT-PCR), immunohistochemistry (IHC) and Western blotting (WB) assays. Apoptosis was detected in liver tissues by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) kit staining. Results: The results of HE staining of maxillary first molars and micro-CT results of maxillary bones showed that alveolar bone resorption was significant in the periodontitis group of rats. The liver histopathology results showed infiltrated inflammatory cells in the liver tissue, disorganized liver cords and a large number of lipid droplets formed in the hepatocytes of the periodontitis group compared with the control group. The results of serum biochemical assay showed that the levels of GOT [(62.77±2.59) U/L], GPT [(47.54±1.04) U/L], TC [(3.19±0.23) mmol/L] and TG [(1.11±0.09) mmol/L] in the serum of rats with periodontitis were significantly higher than that in the control group respectively [GOT: (38.66±2.47) U/L, GPT: (31.48±1.57) U/L, TC: (1.60±0.05) mmol/L and TG: (0.61±0.09) mmol/L](P=0.003, P=0.001, P=0.002, P=0.038). qRT-PCR results showed that the mRNA expression level of BMAL1 was significantly decreased in liver tissue of the periodontitis group [(0.60±0.04)%] compared to the control group [(1.01±0.07)%] (t=4.80, P=0.009), while the mRNA expression levels of NF-κB and TNF-α [(1.62±0.12)%, (2.69±0.16)%] were significantly increased compared to the control group [(1.00±0.03)%, (1.03±0.16)%] (P=0.008, P=0.002); IHC results showed that the protein expression level of BMAL1 in liver tissue of the periodontitis group (averaged optical density, AOD) (11.58±2.15) was down-regulated compared to the control group (AOD) (22.66±1.67) (P=0.015), while NF-κB and TNF-α (AOD) (31.77±2.69, 24.31±2.32) were up-regulated compared to the control group (AOD) (19.40±1.82, 11.92±0.94) (P=0.019, P=0.008). WB results showed that the protein expression level of BMAL1 in liver tissue was down-regulated in the periodontitis group [(0.63±0.10)%] compared to the control group [(1.00±0.06)%] (t=3.19, P=0.033), while NF-κB and TNF-α [(1.61±0.12)%, (2.82±0.23)%] were up-regulated compared to the control group [(1.00±0.12)%, (1.00±0.11)%] (P=0.022, P=0.002). TUNEL staining showed increased apoptotic cells in the liver tissue of the periodontitis group of rats compared to the control group. Conclusions: Periodontitis may induce liver injury by down-regulating the BMAL1 expression levels in liver tissue, which in turn activates NF-κB signaling molecules, leading to the elevated levels of inflammation and apoptosis in rat liver.
Collapse
|
English Abstract |
3 |
|
145
|
Black SM, Zhang Z, Han Y, Zeng C, Ma J. Reply to: "Protection against acetaminophen-induced liver injury with MG53: Muscle-liver axis and necroptosis". J Hepatol 2022; 77:562-563. [PMID: 35526783 DOI: 10.1016/j.jhep.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022]
|
Letter |
3 |
|
146
|
Li Y, Xi FY, Zhang WH, Gao Y. [Functional analysis of virus-specific CD4(+)T cells and CD8(+)T cells in patients with liver injury caused by Epstein-Barr virus infection]. ZHONGHUA GAN ZANG BING ZA ZHI = ZHONGHUA GANZANGBING ZAZHI = CHINESE JOURNAL OF HEPATOLOGY 2024; 32:64-71. [PMID: 38320793 DOI: 10.3760/cma.j.cn501113-20231122-00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Objective: To analyze the functional differences between virus-specific CD4(+)T cells and CD8(+)T cells in patients infected with Epstein-Barr virus (EBV) who develop liver injury and those who do not. Methods: 45 cases of EBV infections were enrolled, including 28 cases developing liver injuries and 17 that did not. Mononuclear cells from peripheral blood were isolated. CD4(+)T cells and CD8(+)T cells were purified and cultured using recombinant EBV core antigen 2 (EBNA2) for 96 h with stimulation. The CCK-8 method was used to detect cell proliferation. Flow cytometry was used to detect the proportion of CD4(+)T cells and CD8(+)T cells. An enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of CD4(+)T cells secreting cytokines and CD8(+)T cells secreting molecular toxicity. Real-time quantitative PCR was used to detect the mRNA levels of transcription factors and molecular toxicity in CD4(+)T cell subsets. Flow cytometry was used to detect the immune checkpoints at molecular levels in CD8(+)T cells. The inter-group comparison was performed using a t-test or Mann-Whitney test. Results: There was no statistically significant difference (P > 0.05) in the proliferation proportion of peripheral blood mononuclear cells, CD4(+)T cells, and CD8(+)T cells after stimulation with recombinant EBNA2 between the EBV-infected non-liver injury group and the infected liver injury group (P > 0.05). There was no statistically significant difference in the proportion of CD4(+)T cells secreting related cytokines and the mRNA levels of transcription factors after stimulation with recombinant EBNA2 between the EBV-infected non-liver injury group and the infected liver injury group (P > 0.05).The levels of perforin secreted by CD8(+)T cells and granzyme B after stimulation with recombinant EBNA2 were higher in the EBV infection-induced liver injury group than those in the non-liver injury group [(75.51±23.33) pg/ml vs. (58.99±18.39) pg/ml, P = 0.017] [(117.8±44.55) pg/ml vs. (90.22±34.21) pg/ml, P = 0.034]. The mRNA levels of Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand in CD8(+)T cells in the liver injury group caused by EBV infection were approximately 1.5 and 1.2 times higher than those in the non-liver injury group, respectively, and the difference was statistically significant (P < 0.001), but there was no statistically significant difference in the proportional expression of programmed cell death-1 and cytotoxic T lymphocyte-associated antigen-4 in CD8(+)T cells between the EBV-infected non-liver injury group and infected liver injury group (P > 0.05) Conclusion: Patients with liver injury caused by EBV infection have strong virus-specific CD8(+) T cell toxic effects, which may mediate EBV-induced liver injury.
Collapse
|
English Abstract |
1 |
|
147
|
Liu Y, Sheng M, Jia L, Zhu M, Yu W. Protective effects of cordycepin pretreatment against liver ischemia/reperfusion injury in mice. Immun Inflamm Dis 2023; 11:e792. [PMID: 36988254 PMCID: PMC10013135 DOI: 10.1002/iid3.792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION Cordycepin has been reported to exhibit hepatic protective and anti-inflammatory properties. Here, we investigated the role of cordycepin in ischemia/reperfusion (IR)-induced liver injury in a mouse model. METHODS Mice were pretreated with cordycepin by gavage for 3 weeks, followed by the establishment of the IR modeling. Liver injury, Suzuki's histological grading, hepatic apoptosis, and inflammatory responses were evaluated by biochemical and pathological analysis. RESULTS It was found that Cordycepin pretreatment at 50 mg/kg for 3 weeks attenuated IR-induced liver injury, as reflected by the significant decrease of the levels of aspartate aminotransferase, alanine transaminase, lactate dehydrogenase, and low-density lipoprotein. Cordycepin pretreatment also reduced histopathological changes, attenuated hepatocyte apoptosis, inflammatory responses in the livers of IR mice. Mechanically, toll-like receptor 4/nuclear factor kappa-B signaling in liver tissues was inhibited by Cordycepin pretreatment. CONCLUSIONS In conclusion, Cordycepin pretreatment protects IR-induced liver injury, which demonstrates its potential for the treatment of IR in the liver.
Collapse
|
research-article |
2 |
|
148
|
Pan B, Yang Y, Jiang Y, Xiao Q, Chen W, Wang J, Chen F, Yan S, Liu Y. Potential roles of HSYA in attenuating sepsis-induced liver injury through multi-omics analysis. J Pharm Biomed Anal 2024; 238:115801. [PMID: 37924577 DOI: 10.1016/j.jpba.2023.115801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 11/06/2023]
Abstract
Liver injury is a strong independent predictor of mortality in patients with sepsis, in which gut dysbiosis plays a crucial role. Hydroxyl safflower yellow A (HSYA), an important component of safflower, has been used to treat liver injury in animal models. However, its role in sepsis-induced liver dysfunction and the specific molecular mechanisms remain unclear. In the current study, we first discussed the discrepancy in the gut microbiota between the cecal ligation puncture (CLP) and HSYA groups using 16 S RNA sequencing. Our data demonstrated that HSYA supplementation significantly decreased the relative abundance of Proteobacteria, Firmicutes, and Campylobacterota, and further decreased the abundance of Bacteroidota, suggesting that the protective effects of HSYA against sepsis-induced liver injury may be partially attributed to the alteration of these bacteria. In addition, the metabolomic data identified 823 differentially expressed metabolites associated with sepsis-induced liver injury. After HSYA supplementation, the levels of 56 metabolites were restored to sham-like levels. Transcriptomic analysis revealed 4990 differentially expressed genes (DEGs) between the sham and CLP groups, and after HSYA injection, 1613 genes were modulated. Comprehensive analysis demonstrated that the enrichment pathways of the 903 DEGs mainly focused on inflammatory responses, amino acid metabolism, and Lipid reactions. In conclusion, our study revealed the potential mechanism of action of HSYA in sepsis-induced liver injury through a comprehensive analysis of 16 S RNA sequencing, metabolomics, and transcriptomics, thus providing a theoretical basis for further clinical applications of HSYA.
Collapse
|
|
1 |
|
149
|
Zhao S, Feng Y, Zhang J, Zhang Q, Wang J, Cui S. Comparative analysis of gene expression between mice and humans in acetaminophen-induced liver injury by integrating bioinformatics analysis. BMC Med Genomics 2024; 17:80. [PMID: 38549107 PMCID: PMC10976682 DOI: 10.1186/s12920-024-01848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE Mice are routinely utilized as animal models of drug-induced liver injury (DILI), however, there are significant differences in the pathogenesis between mice and humans. This study aimed to compare gene expression between humans and mice in acetaminophen (APAP)-induced liver injury (AILI), and investigate the similarities and differences in biological processes between the two species. METHODS A pair of public datasets (GSE218879 and GSE120652) obtained from GEO were analyzed using "Limma" package in R language, and differentially expressed genes (DEGs) were identified, including co-expressed DEGs (co-DEGs) and specific-expressed DEGS (specific-DEGs). Analysis of Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed analyses for specific-DEGs and co-DEGs. The co-DEGs were also used to construct transcription factor (TF)-gene network, gene-miRNA interactions network and protein-protein interaction (PPI) network for analyzing hub genes. RESULTS Mouse samples contained 1052 up-regulated genes and 1064 down-regulated genes, while human samples contained 1156 up-regulated genes and 1557 down-regulated genes. After taking the intersection between the DEGs, only 154 co-down-regulated and 89 co-up-regulated DEGs were identified, with a proportion of less than 10%. It was suggested that significant differences in gene expression between mice and humans in drug-induced liver injury. Mouse-specific-DEGs predominantly engaged in processes related to apoptosis and endoplasmic reticulum stress, while human-specific-DEGs were concentrated around catabolic process. Analysis of co-regulated genes reveals showed that they were mainly enriched in biosynthetic and metabolism-related processes. Then a PPI network which contains 189 nodes and 380 edges was constructed from the co-DEGs and two modules were obtained by Mcode. We screened out 10 hub genes by three algorithms of Degree, MCC and MNC, including CYP7A1, LSS, SREBF1, FASN, CD44, SPP1, ITGAV, ANXA5, LGALS3 and PDGFRA. Besides, TFs such as FOXC1, HINFP, NFKB1, miRNAs like mir-744-5p, mir-335-5p, mir-149-3p, mir-218-5p, mir-10a-5p may be the key regulatory factors of hub genes. CONCLUSIONS The DEGs of AILI mice models and those of patients were compared, and common biological processes were identified. The signaling pathways and hub genes in co-expression were identified between mice and humans through a series of bioinformatics analyses, which may be more valuable to reveal molecular mechanisms of AILI.
Collapse
|
research-article |
1 |
|
150
|
Cui Q, Liu HC, Liu WM, Ma F, Lv Y, Ma JC, Wu RQ, Ren YF. Milk fat globule epidermal growth factor 8 alleviates liver injury in severe acute pancreatitis by restoring autophagy flux and inhibiting ferroptosis in hepatocytes. World J Gastroenterol 2024; 30:728-741. [PMID: 38515944 PMCID: PMC10950629 DOI: 10.3748/wjg.v30.i7.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Liver injury is common in severe acute pancreatitis (SAP). Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes, which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis. Our previous study found that milk fat globule epidermal growth factor 8 (MFG-E8) alleviates acinar cell damage during SAP via binding to αvβ3/5 integrins. MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy. AIM To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux. METHODS SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50 μg/kg cerulein plus lipopolysaccharide. mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAP-induced liver injury. Cilengitide, a specific αvβ3/5 integrin inhibitor, was used to investigate the possible mechanism of MFG-E8. RESULTS The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice, enhanced autophagy flux in hepatocyte, and worsened the degree of ferroptosis. Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner. Mechanistically, MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells. Cilengitide abolished MFG-E8's beneficial effects in SAP-induced liver injury. CONCLUSION MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury. MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrin αVβ3/5.
Collapse
|
Basic Study |
1 |
|