126
|
Jammallo L, Eidell K, Davis PH, Dufort FJ, Cronin C, Thirugnanam S, Chiles TC, Roos DS, Gubbels MJ. An insertional trap for conditional gene expression in Toxoplasma gondii: identification of TAF250 as an essential gene. Mol Biochem Parasitol 2010; 175:133-43. [PMID: 21035508 DOI: 10.1016/j.molbiopara.2010.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022]
Abstract
Toxoplasmosis is characterized by fast lytic replication cycles leading to severe tissue lesions. Successful host cell invasion is essential for pathogenesis. The division cycle of Toxoplasma gondii is characterized by an unusual cell cycle progression and a distinct internal budding mechanism. To identify essential genes involved in the lytic cycle we devised an insertional gene trapping strategy using the Tet-transactivator system. In essence, a random, active promoter is displaced with a tetracycline regulatable promoter, which if in an essential gene, will result in a conditionally lethal phenotype upon tetracycline addition. We isolated eight mutants with growth defects, two of which displayed modest invasion defects, one of which had an additional cell cycle defect. The trapped loci were identified using expression microarrays, exploiting the tetracycline dependent expression of the trapped genes. In mutant 3.3H6 we identified TCP-1, a component of the chaperonin protein folding machinery under the control of the Tet promoter. However, this gene was not critical for growth of mutant 3.3H6. Subsequently, we identified a suppressor gene encoding a protein with a hypothetical function by guided cosmid complementation. In mutant 4.3B13, we identified TAF250, an RNA polymerase II complex component, as the trapped, essential gene. Furthermore, by mapping the plasmid insertion boundaries we identified multiple genomic rearrangements, which hint at a potential replication dependent DNA repair mechanism. Furthermore, these rearrangements provide an explanation for inconsistent locus rescue results observed by molecular biological approaches. Taken together, we have added an approach to identify and study essential genes in Toxoplasma.
Collapse
|
127
|
Holmes M, Crater AK, Dhudshia B, Thadani AN, Ananvoranich S. Toxoplasma gondii: inhibitory activity and encystation effect of securinine and pyrrolidine derivatives on Toxoplasma growth. Exp Parasitol 2010; 127:370-5. [PMID: 20833168 DOI: 10.1016/j.exppara.2010.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 11/15/2022]
Abstract
Securinine, an alkaloid originally isolated from Securinega suffruticosa, exhibits a wide range of biological activities, including anti-malarial activity. Along with securinine, 10 pyrrolidine derivatives, generated via the retrosynthesis of (-)-securinine, were selected and tested for their inhibitory activity against Toxoplasma gondii growth in vitro. Anti-Toxoplasma activity correlated to hydrophobicity of the tested compounds. Three pyrrolidine derivatives along with securinine inhibit Toxoplasma proliferation at the micromolar range. These compounds act on parasite proliferation in different capacities, either by slowing the growth rate or inhibiting invasion of host cells. Securinine induces bradyzoite differentiation at comparable levels to treatment with alkali media in vitro.
Collapse
|
128
|
Behnke MS, Wootton JC, Lehmann MM, Radke JB, Lucas O, Nawas J, Sibley LD, White MW. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLoS One 2010; 5:e12354. [PMID: 20865045 PMCID: PMC2928733 DOI: 10.1371/journal.pone.0012354] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 06/12/2010] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Apicomplexan parasites replicate by varied and unusual processes where the typically eukaryotic expansion of cellular components and chromosome cycle are coordinated with the biosynthesis of parasite-specific structures essential for transmission. METHODOLOGY/PRINCIPAL FINDINGS Here we describe the global cell cycle transcriptome of the tachyzoite stage of Toxoplasma gondii. In dividing tachyzoites, more than a third of the mRNAs exhibit significant cyclical profiles whose timing correlates with biosynthetic events that unfold during daughter parasite formation. These 2,833 mRNAs have a bimodal organization with peak expression occurring in one of two transcriptional waves that are bounded by the transition into S phase and cell cycle exit following cytokinesis. The G1-subtranscriptome is enriched for genes required for basal biosynthetic and metabolic functions, similar to most eukaryotes, while the S/M-subtranscriptome is characterized by the uniquely apicomplexan requirements of parasite maturation, development of specialized organelles, and egress of infectious daughter cells. Two dozen AP2 transcription factors form a series through the tachyzoite cycle with successive sharp peaks of protein expression in the same timeframes as their mRNA patterns, indicating that the mechanisms responsible for the timing of protein delivery might be mediated by AP2 domains with different promoter recognition specificities. CONCLUSION/SIGNIFICANCE Underlying each of the major events in apicomplexan cell cycles, and many more subordinate actions, are dynamic changes in parasite gene expression. The mechanisms responsible for cyclical gene expression timing are likely crucial to the efficiency of parasite replication and may provide new avenues for interfering with parasite growth.
Collapse
|
129
|
Li DN, Liang YS, Zhou YH, Zhang HX, Sheng HY, Luo W, Gong W, Zhuge HX. [In vitro co-cultivation of Toxoplasma gondii tachyzoites with rat brain astrocytes]. ZHONGGUO JI SHENG CHONG XUE YU JI SHENG CHONG BING ZA ZHI = CHINESE JOURNAL OF PARASITOLOGY & PARASITIC DISEASES 2010; 28:318-320. [PMID: 21137324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Purified astrocytes were cultured in plates. When astrocytes grew over 80% of the plate, tachyzoites of Toxoplasma gondii RH strain were added for co-culture. In the period of 0-72 h, change of the astrocytes and tachyzoites was observed after Giemsa staining. In 0-48 h, monodansylcadaverine (MDC) was used to study the action of autophagy in the process of tachyzoites invading astrocytes. At 1 h co-culture, tachyzoites had entered in astrocytes and the autophagosomes appeared. At 4 h, the autophagosomes increased pronouncedly. However, after 12 h, number of autophagosomes considerably decreased and damage of the cells occurred. 48 h later, autophagosomes disappeared and more astrocytes were destroyed. At 72 h most cells destroyed and tachyzoites were released. The result showed that autophagy is inhibited when the astrocytes were in vitro infected by tachyzoites.
Collapse
|
130
|
Gopalakrishnan AM, López-Estraño C. Comparative analysis of stage specific gene regulation of apicomplexan parasites: Plasmodium falciparum and Toxoplasma gondii. Infect Disord Drug Targets 2010; 10:303-311. [PMID: 20429866 DOI: 10.2174/187152610791591593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 02/15/2010] [Indexed: 05/29/2023]
Abstract
Apicomplexans comprise some of the most life threatening parasites infecting human and livestock and includes Plasmodium and Toxoplasma, the causative agents of malaria and toxoplasmosis respectively, in humans as well as Neospora caninum (abortion in livestock, neosporosis in dogs), Cryptosporidium (Diarrheal cryptosporidiosis and opportunistic infections in AIDS patients) and Eimeria (poultry coccidiosis). These parasites are characterized by a complex life cycle usually alternating between sexual and asexual cycles in different hosts. The need to adapt to different host environments demands a tight regulation of gene expression during parasite development. Therefore, the understanding of parasite biology will facilitate the control of the infection and the disease. In this review we emphasize the progress made so far in gene regulation in two medically important parasites, namely Plasmodium falciparum and Toxoplasma gondii, as well as other less known apicomplexan. The genome of both Plasmodium and Toxoplasma has been sequenced and since then there has been a significant progress in understanding the molecular mechanisms that control stage specific gene expression in the two parasites. In addition, the information gained in each of the parasite can be used in studying mechanisms that are still elusive in the other apicomplexans that are not readily available. Additionally, they can serve as model system for other disease causing Apicomplexan parasites.
Collapse
|
131
|
López-Estraño C. Comparative analysis of stage specific gene regulation of apicomplexan parasites: Plasmodium falciparum and Toxoplasma gondii. Infect Disord Drug Targets 2010; 10:240-241. [PMID: 20687894 DOI: 10.2174/187152610791591584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/16/2010] [Indexed: 05/29/2023]
|
132
|
Ding JQ, Wu K, Tan F, Chen XG. [Establishment of an in vitro tachyzoite-bradyzoite interconversion system for Toxoplasma gondii]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2010; 30:668-671. [PMID: 20423822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVE To establish an tachyzoite-brachyzoite interconversion system for Toxoplasma gondii RH strain in vitro. METHODS COS-7 cells were inoculated with purified tachyzoites of T.gondii RH strain and cultured in vitro. The morphology of the cultured cells and parasites was observed and the total cellular RNA extracted on days 1 to 6 following the inoculation for detecting the expression of tachyzoite-specific protein (SAG1) and bradyzoite-specific proteins (BAG1 and SAG2C) using RT-PCR. RESULTS With the passage of time, the number of parasites in COS-7 cells increased but the proliferation rate was lowered gradually. The intracellular tachyzoites proliferated by means of budding and binary fission, which led to the changes in the alignment of the parasites in the cells from curved pairs, rosette or clustered, and semi-circular patterns to spherical encapsulation-like structures. These changes indicated the gradual transformation of the tachyzoites into bradyzoites. The expressions of the tachyzoite-specific SAG1 gene were detected throughout the 6 days of in vitro culture. The expression of the bradyzoite-specific BAG1 gene had been detected since the second day after the inoculation and SAG2C gene since the fifth day. Alteration of the culture condition resulted in gradual transformation of the bradyzoites into tachyzoites. CONCLUSION An in vitro tachzoites-bradyzoite interconversion system for T.gondii has been successfully established, which provides the basis for further study of the mechanism of interconversion.
Collapse
|
133
|
Bojar I, Szymańska J. Environmental exposure of pregnant women to infection with Toxoplasma gondii--state of the art. ANNALS OF AGRICULTURAL AND ENVIRONMENTAL MEDICINE : AAEM 2010; 17:209-214. [PMID: 21186761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Infection with T. gondii is particularly dangerous for pregnant women as it may lead to the transplacental passage of the parasite. Currently, congenital toxoplasmosis is the second most frequent intrauterine infection. The risk of transmission of T. gondii to the foetus varies throughout the world and ranges from 0.6-1.7/1,000 of pregnant women. The consequences of congenital toxoplasmosis are multifarious. On the basis of current literature review, the authors discuss the epidemiological and clinical aspects of toxoplasmosis in pregnant women, the influence of climatic and environmental factors that may lead to an increase in T. gondii infections in humans, particularly in pregnant women, and the principles of prophylactics against T. gondii infections in those women.
Collapse
|
134
|
Hutchison WM, Work K. Observations on the faecal transmission of Toxoplasma gondii. ACTA PATHOLOGICA ET MICROBIOLOGICA SCANDINAVICA 2009; 77:275-82. [PMID: 5377776 DOI: 10.1111/j.1699-0463.1969.tb04232.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
135
|
Elsheikha HM, Morsy TA. Role of immune response in Toxoplasma gondii tachyzoite-bradyzote stage interconversion: a janus in determining disease outcome. JOURNAL OF THE EGYPTIAN SOCIETY OF PARASITOLOGY 2009; 39:595-598. [PMID: 19795765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
No doubt, Toxoplasma gondii and toxoplasmosis superimposed many zoonotic diseases from geographical and zoological distribution world wide.
Collapse
|
136
|
Grigg ME, Sundar N. Sexual recombination punctuated by outbreaks and clonal expansions predicts Toxoplasma gondii population genetics. Int J Parasitol 2009; 39:925-33. [PMID: 19217909 PMCID: PMC2713429 DOI: 10.1016/j.ijpara.2009.02.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 01/31/2009] [Accepted: 02/01/2009] [Indexed: 10/21/2022]
Abstract
The cosmopolitan parasitic pathogen Toxoplasma gondii is capable of infecting essentially any warm-blooded vertebrate worldwide, including most birds and mammals, and establishes chronic infections in one-third of the globe's human population. The success of this highly prevalent zoonosis is largely the result of its ability to propagate both sexually and clonally. Frequent genetic exchanges via sexual recombination among extant parasite lineages that mix in the definitive felid host produces new lines that emerge to expand the parasite's host range and cause outbreaks. Highly successful lines spread clonally via carnivorism and in some cases sweep to pandemic levels. The extent to which sexual reproduction versus clonal expansion shapes Toxoplasma's current, global population genetic structure is the central question this review will attempt to answer.
Collapse
|
137
|
Wu L, Zhang QX, Li TT, Chen SX, Cao JP. [In vitro culture of Toxoplasma gondii tachyzoites in HFF and HeLa cells]. ZHONGGUO JI SHENG CHONG XUE YU JI SHENG CHONG BING ZA ZHI = CHINESE JOURNAL OF PARASITOLOGY & PARASITIC DISEASES 2009; 27:229-231. [PMID: 19852365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To study the proliferation of Toxoplasma gondii RH strain tachyzoites in human foreskin fibroblast (HFF) cells and HeLa cells. METHODS HFF cells and HeLa cells were cultured in 35 mm cell culture dishes with glass cover slip. Confluent cells were co-cultured with tachyzoites which purified by 3 microm filter membrane. At 0.5, 1, 2, 4, 8, 12, 24, 36, 48, 72, and 96 h after co-culture, the invasion of tachyzoites into the cells and proliferation in cells were observed with Giemsa staining. RESULTS In 4 h after co-culture, there were dozens of T. gondii tachyzoites in the HFF cells. At 24 h many pseudocysts emerged. At 72 h most of the cells were destroyed by tachyzoites. While cultured in HeLa cells for 8 h, there were only 3-5 tachyzoites in one cell, and pseudocysts emerged at 48 h. At 96 h after co-culture, most cells were destroyed. CONCLUSION Toxoplasma gondii tachyzoites can be cultured in HFF cells and HeLa cells. The proliferation of tachyzoites in HFF cells was quicker than that in HeLa cells.
Collapse
|
138
|
Gaskell EA, Smith JE, Pinney JW, Westhead DR, McConkey GA. A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS One 2009; 4:e4801. [PMID: 19277211 PMCID: PMC2653193 DOI: 10.1371/journal.pone.0004801] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/31/2008] [Indexed: 02/08/2023] Open
Abstract
The genome of the protozoan parasite Toxoplasma gondii was found to contain two genes encoding tyrosine hydroxylase; that produces l-DOPA. The encoded enzymes metabolize phenylalanine as well as tyrosine with substrate preference for tyrosine. Thus the enzymes catabolize phenylalanine to tyrosine and tyrosine to l-DOPA. The catalytic domain descriptive of this class of enzymes is conserved with the parasite enzyme and exhibits similar kinetic properties to metazoan tyrosine hydroxylases, but contains a unique N-terminal extension with a signal sequence motif. One of the genes, TgAaaH1, is constitutively expressed while the other gene, TgAaaH2, is induced during formation of the bradyzoites of the cyst stages of the life cycle. This is the first description of an aromatic amino acid hydroxylase in an apicomplexan parasite. Extensive searching of apicomplexan genome sequences revealed an ortholog in Neospora caninum but not in Eimeria, Cryptosporidium, Theileria, or Plasmodium. Possible role(s) of these bi-functional enzymes during host infection are discussed.
Collapse
|
139
|
Carrera NJR, Carmona MC, Guerrero OM, Castillo AC. [The immunosuppressant effect of T. lewisi (Kinetoplastidae) infection on the multiplication of Toxoplasma gondii (Sarcocystidae) on alveolar and peritoneal macrophages of the white rat]. REV BIOL TROP 2009; 57:13-22. [PMID: 19637684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
The immunosuppressant effect of T. lewisi infection on the multiplication of T. gondii was compared in peritoneal (MP) and alveolar macrophages (MA) of white rat. Two animal groups were infected with T. lewisi and sacrificed after four days and seven days post infection. A group without infection was maintained as a control. The number of intracellular parasites (tachyzoites) (IT) was counted by light microscopy, calculating the rate infection rate per 100 total cells (TC) and per infected cells (IC) for each group of phagocyte cells. The relation quotient IT, TC or IC multiplied percent, provided a statistical ratio (RE) of the relative number of parasites in both cellular types for each time interval. MA as well as MP obtained after 4 days showed a significant increase in the multiplication of T. gondii with respect to the control. Unlike the MP (which had an increase in the multiplication of T. gondii the fourth day of infection with T. lewisi diminishing towards the seventh day), the MA had an increase in the multiplication of the parasite from the fourth to the seventh day. This difference can be related to the route of infection used for the experiments, that affect the MP directly with a greater effect in comparison with the MA of the lungs. Lung compartment will be affected later, when the infection becomes systemic between the fourth and sixth day of infection. The immunity against T. gondii is similar between both phagocytes, but the time of infection and the compartment where the cells are located, makes the difference in the response time against T. gondii. Supernatants from macrophage cultures or T. lewisi by rat did not induced any immunosuppression.
Collapse
|
140
|
Sibley LD. Development of forward genetics in Toxoplasma gondii. Int J Parasitol 2009; 39:915-24. [PMID: 19254720 DOI: 10.1016/j.ijpara.2009.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 02/11/2009] [Accepted: 02/11/2009] [Indexed: 11/17/2022]
Abstract
The development of forward genetics as a functional system in Toxoplasma gondii spanned more than three decades from the mid-1970s until now. The initial demonstration of experimental genetics relied on chemically induced drug-resistant mutants that were crossed by co-infecting cats, collecting oocysts, sporulating and hatching progeny in vitro. To capitalise on this, genetic markers were employed to develop linkage maps by tracking inheritance through experimental crosses. In all, three generations of genetic maps were developed to define the chromosomes, estimate recombination rates and provide a system for linkage analysis. Ultimately this genetic map would become the foundation for the assembly of the T. gondii genome, which was derived from whole genome shotgun sequencing, into a chromosome-centric view. Finally, application of forward genetics to multigenic biological traits showed the potential to map and identify specific genes that control complex phenotypes including virulence.
Collapse
|
141
|
Dubremetz JF, Ferguson DJP. The role played by electron microscopy in advancing our understanding of Toxoplasma gondii and other apicomplexans. Int J Parasitol 2009; 39:883-93. [PMID: 19249305 DOI: 10.1016/j.ijpara.2009.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/15/2009] [Accepted: 02/16/2009] [Indexed: 11/17/2022]
Abstract
In many ways the history of the discovery of the life cycle of Toxoplasma gondii and the development of biological electron microscopy progressed in parallel through the 1950s and 1960s. Although Toxoplasma was discovered in 1908, it was only in the 1950s that the extent of the infection in humans and domestic animals was realised and work was undertaken to elucidate its life cycle (reviewed elsewhere in this edition). The development of ultrastructural techniques and their application to biological systems including Toxoplasma developed over the same period. This resulted in a synergistic effect with the re-classification of previously unrelated parasites within a single phylum, the Apicomplexa, which was based on the ultrastructural appearances of the infectious stages. This review will describe the central role played by electron microscopy and Toxoplasma in the developments associated with this progress.
Collapse
|
142
|
Agop-Nersesian C, Naissant B, Rached FB, Rauch M, Kretzschmar A, Thiberge S, Menard R, Ferguson DJP, Meissner M, Langsley G. Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog 2009; 5:e1000270. [PMID: 19165333 PMCID: PMC2622761 DOI: 10.1371/journal.ppat.1000270] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 12/15/2008] [Indexed: 12/22/2022] Open
Abstract
The final step during cell division is the separation of daughter cells, a process that requires the coordinated delivery and assembly of new membrane to the cleavage furrow. While most eukaryotic cells replicate by binary fission, replication of apicomplexan parasites involves the assembly of daughters (merozoites/tachyzoites) within the mother cell, using the so-called Inner Membrane Complex (IMC) as a scaffold. After de novo synthesis of the IMC and biogenesis or segregation of new organelles, daughters bud out of the mother cell to invade new host cells. Here, we demonstrate that the final step in parasite cell division involves delivery of new plasma membrane to the daughter cells, in a process requiring functional Rab11A. Importantly, Rab11A can be found in association with Myosin-Tail-Interacting-Protein (MTIP), also known as Myosin Light Chain 1 (MLC1), a member of a 4-protein motor complex called the glideosome that is known to be crucial for parasite invasion of host cells. Ablation of Rab11A function results in daughter parasites having an incompletely formed IMC that leads to a block at a late stage of cell division. A similar defect is observed upon inducible expression of a myosin A tail-only mutant. We propose a model where Rab11A-mediated vesicular traffic driven by an MTIP-Myosin motor is necessary for IMC maturation and to deliver new plasma membrane to daughter cells in order to complete cell division. Apicomplexan parasites are unusual in that they replicate by assembling daughter parasites within the mother cell. This involves the ordered assembly of an Inner Membrane Complex (IMC), a scaffold consisting of flattened membrane cisternae and a subpellicular network made up of microtubules and scaffold proteins. The IMC begins to form at the onset of replication, but its maturation occurs at the final stage of cytokinesis (the last step during cell division) upon the addition of motor (glideosome) components such as GAP45 (Glideosome Associated Protein), Myosin A (MyoA), and Myosin-Tail-Interacting-Protein (MTIP, also known as Myosin Light Chain 1) that are necessary to drive the gliding motility required for parasite invasion. We demonstrate that Rab11A regulates not only delivery of new plasmamembrane to daughter cells, but, importantly, also correct IMC formation. We show that Rab11A physically interacts with MTIP/MLC1, implicating unconventional myosin(s) in both cytokinesis and IMC maturation, and, consistently, overexpression of a MyoA tail-only mutant generates a default similar to that which we observe upon Rab11A ablation. We propose a model where Rab11A-mediated vesicular traffic is required for the delivery of new plasma membrane to daughter cells and for the maturation of the IMC in order to complete cell division.
Collapse
|
143
|
Henriquez SA, Brett R, Alexander J, Pratt J, Roberts CW. Neuropsychiatric disease and Toxoplasma gondii infection. Neuroimmunomodulation 2009; 16:122-33. [PMID: 19212132 DOI: 10.1159/000180267] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii infects approximately 30% of the world's population, but causes overt clinical symptoms in only a small proportion of people. In recent years, the ability of the parasite to manipulate the behaviour of infected mice and rats and alter personality attributes of humans has been reported. Furthermore, a number of studies have now suggested T. gondii infection as a risk factor for the development of schizophrenia and depression in humans. As T. gondii forms cysts that are located in various anatomical sites including the brain during a chronic infection, it is well placed anatomically to mediate these effects directly. The T. gondii genome is known to contain 2 aromatic amino acid hydroxylases that potentially could directly affect dopamine and/or serotonin biosynthesis. However, stimulation of the immune response has also recently been associated with mood and behavioural alterations in humans, and compounds designed to alter mood, such as fluoxetine, have been demonstrated to alter aspects of immune function. Herein, the evidence for T.-gondii-induced behavioural changes relevant to schizophrenia and depression is reviewed. Potential mechanisms responsible for these changes in behaviour including the role of tryptophan metabolism and the hypothalamic-pituitary-adrenal axis are discussed.
Collapse
|
144
|
Al-Zanbagi NA, Zelai NT. Two methods for attenuating Toxoplasma gondii tachyzoites RH strain by using ethanol extract of Curcuma longa. JOURNAL OF THE EGYPTIAN SOCIETY OF PARASITOLOGY 2008; 38:965-976. [PMID: 19209778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ethanol extract of Curcuma longa proved to be an attenuated agent against Toxoplasma gondii (RH strain) tachyzoites in the mice peritoneal fluid by two incubation methods. Groups of female mice were injected by attenuated tachyzoites as 200 tachyzoites / ml, which treated with the ethanol extract of Curcuma longa was previously treated. The result was observed after one week, as no tachyzoites were found in the peritoneal fluid of the experimental infected mice.
Collapse
|
145
|
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can infect virtually any nucleated cell. During invasion Toxoplasma creates the parasitophorous vacuole, a subcellular compartment that acts as an interface between the parasite and host, and serves as a platform for modulation of host cell functions that support parasite replication and infection. Spatial reorganization of host organelles and cytoskeleton around the parasitophorous vacuole are observed following entry, and recent evidence suggests this interior redecorating promotes parasite nutrient acquisition. New findings also reveal that Toxoplasma manipulates host signaling pathways by deploying parasite kinases and a phosphatase, including at least two that infiltrate the host nucleus. Toxoplasma infection additionally controls several cellular pathways to establish an anti-apoptotic environment, and subverts immune cells as a conduit for dissemination. In this review we discuss these recent developments in understanding how Toxoplasma achieves widespread success as a human and animal parasite by manipulating its host.
Collapse
|
146
|
|
147
|
Lemgruber L, De Souza W, Vommaro RC. Freeze-fracture study of the dynamics of Toxoplasma gondii parasitophorous vacuole development. Micron 2008; 39:177-83. [PMID: 17317194 DOI: 10.1016/j.micron.2007.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii resides in a nonfusogenic parasitophorous vacuole (PV), which provides a safe environment for parasite survival and replication. In this work, we used the freeze-fracture technique to analyze the PV during different times of T. gondii infection in an epithelial cell line. After a short time of interaction with host cell, T. gondii PV membrane already showed a significant quantity of intramembranous particles (IMPs)-293IMPs/microm(2). The IMP density evaluated did not vary until 6h of interaction. As the PV area enlarged with the progression of infection, the density of these particles increased, reaching a stable quantity in the order of 1100particles/microm(2). The IMPs were heterogeneous in size and were found distributed without any special pattern throughout the time of infection studied. The membrane lining the PV presented circular figures, which resembled vesicle fusion areas or attachments of the membranous tubular network, regions free from particles and small depressions, demonstrating to be a dynamic structure. IMPs were found in tubulo-vesicular structures present in the intravacuolar matrix, although rarely observed in elements of the intravacuolar network.
Collapse
|
148
|
Eggleston TL, Fitzpatrick E, Hager KM. Parasitology as a teaching tool: isolation of apicomplexan cysts from store-bought meat. CBE LIFE SCIENCES EDUCATION 2008; 7:184-192. [PMID: 18519609 PMCID: PMC2424304 DOI: 10.1187/cbe.07-08-0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 03/03/2008] [Accepted: 03/12/2008] [Indexed: 05/26/2023]
|
149
|
Hu K. Organizational changes of the daughter basal complex during the parasite replication of Toxoplasma gondii. PLoS Pathog 2008; 4:e10. [PMID: 18208326 PMCID: PMC2211554 DOI: 10.1371/journal.ppat.0040010] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 12/10/2007] [Indexed: 11/18/2022] Open
Abstract
The apicomplexans are a large group of parasitic protozoa, many of which are important human and animal pathogens, including Plasmodium falciparum and Toxoplasma gondii. These parasites cause disease only when they replicate, and their replication is critically dependent on the proper assembly of the parasite cytoskeletons during cell division. In addition to their importance in pathogenesis, the apicomplexan parasite cytoskeletons are spectacular structures. Therefore, understanding the cytoskeletal biogenesis of these parasites is important not only for parasitology but also of general interest to broader cell biology. Previously, we found that the basal end of T. gondii contains a novel cytoskeletal assembly, the basal complex, a cytoskeletal compartment constructed in concert with the daughter cortical cytoskeleton during cell division. This study focuses on key events during the biogenesis of the basal complex using high resolution light microscopy, and reveals that daughter basal complexes are established around the duplicated centrioles independently of the structural integrity of the daughter cortical cytoskeleton, and that they are dynamic "caps" at the growing ends of the daughters. Compartmentation and polarization of the basal complex is first revealed at a late stage of cell division upon the recruitment of an EF-hand containing calcium binding protein, TgCentrin2. This correlates with the constriction of the basal complex, a process that can be artificially induced by increasing cellular calcium concentration. The basal complex is therefore likely to be a new kind of centrin-based contractile apparatus.
Collapse
|
150
|
Diab MR, El-Bahy MM. Toxoplasma gondii: Virulence of tachyzoites in serum free media at different temperatures. Exp Parasitol 2008; 118:75-9. [PMID: 17904554 DOI: 10.1016/j.exppara.2007.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 06/20/2007] [Accepted: 06/25/2007] [Indexed: 11/22/2022]
Abstract
Highly virulent Toxoplasma gondii tachyzoite multiplication was recorded on the 4th and 5th days post cultivation (dpc) in seven selected cell lines either with or without fetal calf serum (FCS) in the maintenance media. The multiplication rate was slightly lower in the absence of FCS. The cell line mono-layers collapsed dying by the 6th day of infection both in presence or absence of FCS at 37 degrees C. Carcinoma of human larynx (Hep2) and Madian Darby Bovine Kidney (MDBK) cell lines were the most suitable for in vitro multiplication, followed by that of African green monkey kidney cells (VERO), pooled kidney from 1-day-old hamster (BHK), rabbit kidney cells (RK13) and human rhabdomyosarcoma (RDA), while Chicken embryo cells (CER) were the least suitable. In absence of FCS, CER, BHK, Hep2, RDA and MDBK were able to maintain virulent tachyzoites at +4 degrees C for 14 days. The infectivity of the tachyzoites was however lower, killing 40% of the inoculated mice. Tachyzoites survived at room temperature, in the dark, for 14 days in Hep2, RDA and MDBK. However, Hep2 was the only one able to keep virulent tachyzoites until 21 dpc at room temperature and at +4 degrees C. Hep2 propagated tachyzoites were still alive but with low infectivity up to 28 dpc. The cell-lines failed to support the development of tachyzoites after 7 dpc at 37 degrees C and after the 35 dpc at lower temperatures.
Collapse
|