1551
|
Duhaut SD, Dimmock NJ. Defective influenza A virus generated entirely from plasmids: its RNA is expressed in infected mouse lung and modulates disease. J Virol Methods 2003; 108:75-82. [PMID: 12565156 DOI: 10.1016/s0166-0934(02)00260-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Naturally produced defective influenza virus has antiviral activity and, in sufficient amount, can protect mice from lethal influenza, irrespective of the virus subtype causing the disease. However, such defective virus preparations contain many undefined defective RNA sequences, and it is thus not possible to establish dose-response relationships. To address this situation, we have transfected DNA encoding a cloned defective RNA into Vero cells along with the 17 A/WSN (H1N1) plasmids required for infectious helper virus, and produced molecularly cloned defective virus. Here we used POLI-220 that expresses a 445 nt defective RNA isolated from a mouse-protective defective equine H3N8 virus, and POLI-317 that expresses a 585 nt defective RNA from an avian H7N7 virus. Both originate from genomic segment 1. Virus preparations were UV-irradiated selectively to destroy virus infectivity but not the activity of the defective RNAs, and adult mice were inoculated intranasally with defective virus and WSN (H1N1) challenge virus (10 LD(50)). Defective POLI-220 and POLI-317 RNAs were detected readily in infected lung tissue by RT-PCR, but these Vero cell preparations did not modulate disease. However, after a single passage in embryonated eggs, defective POLI-220 and POLI-317 viruses significantly delayed the onset of disease and death in WSN-infected mice, although did not affect final mortality. Direct PCR sequencing confirmed the identity of mouse-passaged defective RNAs and showed that none had undergone any sequence changes. With this advance it will now be possible to study the interference phenomenon in vivo with defective viruses carrying a defined defective RNA.
Collapse
|
1552
|
Drolet R, Larochelle R, Morin M, Delisle B, Magar R. Detection rates of porcine reproductive and respiratory syndrome virus, porcine circovirus type 2, and swine influenza virus in porcine proliferative and necrotizing pneumonia. Vet Pathol 2003; 40:143-8. [PMID: 12637753 DOI: 10.1354/vp.40-2-143] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A retrospective study on pig lung tissues from 60 cases of proliferative and necrotizing pneumonia (PNP) was performed to determine the presence of porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and porcine circovirus type 2 (PCV2) in these lesions. Cases selected included 30 cases diagnosed between 1988 and 1992 and 30 cases diagnosed between 1997 and 2001. In each group of 30 cases, 10 were from suckling piglets, whereas the other 20 were from postweaned animals representing either nursery or grower-finisher pigs. Immunohistochemistry using a monoclonal antibody to influenza virus type A was used to determine the presence of SIV, and in situ hybridization was used for the detection of PRRSV and PCV2 nucleic acids. PRRSV was detected in 55 of the 60 cases examined (92%), PCV2 in 25 cases (42%), and SIV in only 1 case (2%). In 30 cases (50%), PRRSV was the only virus detected, whereas in 25 other cases (42%), a combination of PRRSV and PCV2 could be detected in the lungs with PNP lesions. PCV2 could not be detected in the lungs of suckling pigs with PNP. All PCV2-positive cases were found in postweaned pigs and were always in combination with PRRSV. In this latter age group, PCV2 was detected in 63% of the cases (25/40). Data from our study indicate that SIV is rarely identified in PNP and that PCV2 infection is not essential for the development of PNP lesions. The results of the present study demonstrate that PRRSV is consistently and predominantly associated with PNP and should be considered the key etiologic agent for the condition.
Collapse
|
1553
|
Snow M, Ritchie R, Arnaud O, Villoing S, Aspehaug V, Cunningham CO. Isolation and characterisation of segment 1 of the infectious salmon anaemia virus genome. Virus Res 2003; 92:99-105. [PMID: 12606081 DOI: 10.1016/s0168-1702(02)00322-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The isolation and characterisation of the largest genomic segment of infectious salmon anaemia virus (ISAV) is reported. Following identification of ISAV-specific clones from a cDNA library, a rapid amplification of cDNA ends-PCR strategy was designed to obtain the sequence of the full length mRNA transcript. The full length open reading frame (ORF) of this gene was shown to be 2169 nucleotides in length, encoding a putative protein of 722 aa. This sequence was demonstrated by RT-PCR to be specific to ISAV-infected cell cultures. The start codon of this ORF was preceded by the ISAV consensus sequence 5' GCTAAGA 3' indicating the full 5' end of the gene to have been obtained. Based on protein size and amino acid composition, this protein was shown to be similar to the PB2 protein of other orthomyxoviruses. Furthermore, a bipartite nuclear localisation signal was identified in the C-terminus of the protein as is found on all of the influenza virus P proteins. Expression of the putative PB2 as a green fluorescent marker protein-fusion protein confirmed that this protein exhibited nuclear localisation in a fish cell line. Sequences of the ISAV segment 1 gene were obtained from Scottish, Norwegian and Canadian ISAV isolates. Analyses confirmed the close genetic relationship between Norwegian and Scottish ISAV and indicated that this segment was among the most conserved of the ISAV genes identified to date. Thus, this evidence strongly suggests that the genomic segment 1 of ISAV encodes a polymerase protein which is thought to be analagous in function to the PB2 protein of influenza viruses.
Collapse
|
1554
|
Loeffen WLA, Nodelijk G, Heinen PP, van Leengoed LAMG, Hunneman WA, Verheijden JHM. Estimating the incidence of influenza-virus infections in Dutch weaned piglets using blood samples from a cross-sectional study. Vet Microbiol 2003; 91:295-308. [PMID: 12477644 DOI: 10.1016/s0378-1135(02)00306-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A cross-sectional study was carried out on 32 Dutch breeding herds to estimate the incidence of influenza-virus infections in piglets before the start of the finishing period, at the age of approximately 10 weeks. Longitudinal studies on two herds (8 and 10 litters, respectively) were done to obtain an average decay function for maternal antibodies.Each participating farm in the cross-sectional study was visited twice within 5 months; each time, blood samples were taken randomly from one compartment (a separate room with separate air flow) of 4-5-week-old piglets and one compartment of 8-9-week-old piglets. These blood samples (a total of 2598; 16-23 per compartment, depending on its size) were tested in a haemagglutination inhibition test for antibodies against influenza-virus subtypes H1 and H3. Samples from 8-9-week-old piglets from the first sampling period (n=660) were also tested in an IgM ELISA. For each individual herd and each influenza-virus subtype separately, the decay function derived from the longitudinal studies was used to calculate an expected seroprevalence in 8-9-week-old piglets, which was then compared to the observed seroprevalence. Depending on subtype and sampling period, between 10 and 15 of the 32 herds were suspected of virus circulation during the weaning period because the observed seroprevalence was significantly higher than the expected seroprevalence (P<0.05). In the first sampling period the IgM ELISA confirmed six of these outbreaks. However, due to the small window of detection of the IgM ELISA (compared to the length of the weaning period), it will always underestimate the number of infections. Infections in the first half of the weaning period will no longer be detectable because IgM antibodies have already disappeared. In individual pigs, an incidence of 16-17% was estimated for each subtype over a 4-week period between the age of 4-5 and 8-9 weeks. For each influenza subtype, 80% of the piglets will enter the finishing facilities without antibodies or with decaying maternal antibodies. These piglets may be susceptible to an infection with influenza virus.
Collapse
|
1555
|
Ely KH, Cauley LS, Roberts AD, Brennan JW, Cookenham T, Woodland DL. Nonspecific recruitment of memory CD8+ T cells to the lung airways during respiratory virus infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1423-9. [PMID: 12538703 DOI: 10.4049/jimmunol.170.3.1423] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that heterologous viral infections have a significant impact on pre-existing memory T cell populations in secondary lymphoid organs through a combination of cross-reactive and bystander effects. However, the impact of heterologous viral infections on effector/memory T cells in peripheral sites is not well understood. In this study, we have analyzed the impact of a heterologous influenza virus infection on Sendai virus-specific CD8(+) effector/memory cells present in the lung airways. The data show a transient increase in the numbers of Sendai virus nucleoprotein 324-332/K(b)-specific CD8(+) memory T cells in the airways of the influenza-infected mice peaking around day 4 postinfection. Intratracheal transfer studies and 5-bromo-2'-deoxyuridine incorporation demonstrate that this increase is due to the recruitment of resting memory cells into the airways. In addition, the data show that these immigrating memory cells are phenotypically distinct from the resident memory T cells of the lung airways. A similar influx of nonproliferating Sendai virus nucleoprotein 324-332/K(b)-specific CD8(+) memory T cells is also induced by a secondary (homologous) infection with Sendai virus. Together, these data suggest that inflammation can accelerate memory T cell migration to nonlymphoid tissues and is a part of the normal recall response during respiratory infections.
Collapse
|
1556
|
Marsh GA, Watson JM, White WE, Tannock GA. An evaluation of the genetic stability and pathogenicity of the Russian cold-adapted influenza A donor strains A/Leningrad/134/17/57 and A/Leningrad/134/47/57 in ferrets. J Virol Methods 2003; 107:63-9. [PMID: 12445939 DOI: 10.1016/s0166-0934(02)00191-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The influenza A components of live attenuated vaccines used in Russia have been prepared as reassortants of the cold-adapted (ca) H2N2 viruses, A/Leningrad/134/17/57-ca (Len/17) and A/Leningrad/134/47/57-ca (Len/47), and virulent epidemic strains. The lesions responsible for attenuation within the six internal genes of each donor strain have been sequenced and described, but relatively little is known as to their stability before and after passage in susceptible hosts. In the work reported in this paper, RT-PCR restriction analysis and limited sequencing of individual genes were used to evaluate the stability of lesions in stocks of the both donor strains after passage in ferrets, which have been used widely as susceptible hosts for assessment of the virulence of influenza strains. Len/47 was shown to possess expected lesions by RT-PCR and restriction analysis. Substitution at position 1066 of the NP gene, which has been previously reported to be unique to Len/47 [Klimov et al., Virology 186 (1992) 795], was also shown to be present in all clones of Len/17. This change was confirmed by limited sequence analysis and was shown to be retained in progeny viruses isolated from the lungs and turbinates of inoculated ferrets. Two other changes in the PB2 and PB1 genes that were present in Len/47 were detected by limited sequence analysis alone. Further previously unreported minor changes were shown to be present for Len/17 and Len/47, but not both, and their significance is unknown. Limited replication of each donor strain occurred in ferrets and minimal clinical signs and histopathology were present. By contrast, the parental strain Len/57 and the recent epidemic strain A/Sydney/6/97 induced clinical signs and histopathology that were typical of influenza disease.
Collapse
|
1557
|
Li H, Ding J, Chen YH. Recombinant protein comprising multi-neutralizing epitopes induced high titer of antibodies against Influenza A virus. Immunobiology 2003; 207:305-13. [PMID: 14575146 PMCID: PMC8673591 DOI: 10.1078/0171-2985-00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In previous studies, we suggested that epitope-vaccine might be a new strategy against virus infection. Based on this hypothesis, we designed and expressed a recombinant immunogen (multi-epitope-peptide) comprising repeats of three neutralizing-epitopes (neutralizing epitopes: aa92-105, 127-133 and 183-195) of hemagglutininin (HA) of influenza virus (H3N2) in E. coli. After vaccination, the recombinant multi-epitope protein could induce a high level of antibodies with predefined multi-epitope-specificity in mice and rabbits. The epitope-specific antibodies in sera were tested using three different epitope-peptides (synthetic peptides) in ELISA assay, and the serum dilutions from 1 : 6400 to 1 : 25600 were confirmed. In western blot analysis, both the antiserum and the antibodies purified by synthetic epitope-peptide coupled sepharose columns could recognize natural HA from influenza virus particles (strain A/Wuhan/359/95 H3N2). In hemagglutination inhibition (HI) tests, these three antisera at the dilutions from 1 : 20 to 1 : 80 showed inhibitory activity. Interestingly, antisera and purified antibodies induced by the epitope-vaccine could partially inhibit plaque-formation of influenza virus (strain A/Wuhan/359/95) on MDCK cell monolayers. These results suggest that the recombinant multi-epitope vaccine can simultaneously induce multi-antiviral activities against influenza virus, which may provide a new way to develop effective vaccines against influenza virus.
Collapse
|
1558
|
Aronsson F, Robertson B, Ljunggren HG, Kristensson K. Invasion and persistence of the neuroadapted influenza virus A/WSN/33 in the mouse olfactory system. Viral Immunol 2003; 16:415-23. [PMID: 14583155 DOI: 10.1089/088282403322396208] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Invasion and persistence of the neuroadapted influenza virus A/WSN/33 in the mouse olfactory system was studied. WSN/33 instilled intranasally infected neurons in the olfactory epithelium and was transported in axons to the olfactory bulbs in wild type mice that survived the infection. In adult mice lacking the recombination activating gene 1 (RAG-1-/-), infected neurons occurred in the olfactory bulbs for 22-65 days after which the mice developed a rapidly progressive lethal infection affecting neurons in olfactory projection pathways, i.e. primary olfactory cortex, raphe in upper brainstem and hypothalamus. Adult mice without genes for interferon (IFN)-alpha/beta receptor, IFN-gamma receptor, inducible nitric oxide synthase (iNOS), IgH, the transporter associated with antigen processing 1 (TAP1), and natural killer cell-depleted mice, all survived the infection. Viral RNA was found in the olfactory bulbs in more than 80 per cent of the surviving iNOS-/-, IFN-gamma receptor-/-, and TAP1-/- mice. Taken together, this study shows that influenza A virus can invade the brain through the olfactory pathways and that the cellular immune responses prevent establishment of persistent infections in the olfactory bulbs. Furthermore, innate responses in olfactory bulbs may for a period of time keep the infection under control.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/immunology
- Adaptation, Physiological
- Animals
- Base Sequence
- DNA, Complementary/genetics
- DNA, Viral/genetics
- Genes, RAG-1
- Immunity, Cellular
- Influenza A virus/genetics
- Influenza A virus/pathogenicity
- Influenza A virus/physiology
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase/deficiency
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- Olfactory Bulb/immunology
- Olfactory Bulb/virology
- Orthomyxoviridae Infections/genetics
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Receptor, Interferon alpha-beta
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Interferon gamma Receptor
Collapse
|
1559
|
Song DS, Lee JY, Oh JS, Lyoo KS, Yoon KJ, Park YH, Park BK. Isolation of H3N2 swine influenza virus in South Korea. J Vet Diagn Invest 2003; 15:30-4. [PMID: 12580292 DOI: 10.1177/104063870301500107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Swine influenza is a significant respiratory disease causing occasional reproductive problems in naïve swine herds. Although different subtypes of swine influenza virus (SIV) have been implicated in clinical outbreaks of swine influenza in Asian countries, no virus isolation has been made to identify SIV of subtypes other than the H1N1 subtype in the Korean swine population. In December 1998, an outbreak of acute respiratory disease was identified in a commercial swine farm located in the Kyunggi province of South Korea. A causative agent, which agglutinated rooster red blood cells, was detected from the lungs of 3 piglets from the index herd and was determined to be type A influenza virus using a commercial influenza virus typing kit. Hemagglutination activity (HA) of the isolates was completely inhibited by a swine antiserum against a recent US H3N2 SIV isolate (A/Sw/IA/41305/1998) but not by H1N1 swine antiserum (A/Sw/IA/1979). Reverse transcription-polymerase chain reaction (RT-PCR) revealed all 3 isolates were H3 SIV subtypes. Sequence analysis of hemagglutinin gene PCR products supported the belief that the Korean H3 SIV isolates were genetically similar to the known mammalian H3 influenza viruses. This is the first report on a clinical outbreak of swine influenza caused by the H3N2 virus in Korea.
Collapse
|
1560
|
Mjaaland S, Hungnes O, Teig A, Dannevig BH, Thorud K, Rimstad E. Polymorphism in the infectious salmon anemia virus hemagglutinin gene: importance and possible implications for evolution and ecology of infectious salmon anemia disease. Virology 2002; 304:379-91. [PMID: 12504577 DOI: 10.1006/viro.2002.1658] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infectious salmon anemia (ISA) is an emerging disease in farmed Atlantic salmon with important commercial consequences. The pathogenicity of the ISA virus (ISAV; an orthomyxovirus) varies, observed as differences in disease development and clinical signs. A small polymorphic region (PR) in the ISAV genomic segment encoding the hemagglutinin (HA) has been described. An analysis of 33 HA gene sequences from historical and recent ISA outbreaks was performed, added to a selection of previously published HA sequences. A differential deletion model explaining the generation of HA polymorphism is proposed. The European ISAV sequences could be grouped according to deletion patterns in PR. Cell-culture replication and cytopathic effect varied between viruses from different PR groups. A rather complex epidemiology is suggested, as (a) HA sequences representing several PR variants were detected in three samples; (b) identical mutations occurred in different genetic lineages; and (c) large genetic differences were present in closely related viruses.
Collapse
|
1561
|
Sedger LM, Hou S, Osvath SR, Glaccum MB, Peschon JJ, van Rooijen N, Hyland L. Bone marrow B cell apoptosis during in vivo influenza virus infection requires TNF-alpha and lymphotoxin-alpha. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6193-201. [PMID: 12444124 DOI: 10.4049/jimmunol.169.11.6193] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Suppression of bone marrow myeloid and erythroid progenitor cells occurs after infection with a variety of different viruses. In this study, we characterize the alterations in bone marrow (BM) lymphocytes after influenza virus infection in mice. We found a severe loss of BM B cells, particularly CD43(low/-)B220(+) pre-B and immature B cells, in influenza virus-infected mice. Depletion of BM B lineage cells resulted primarily from cell cycle arrest and most likely apoptosis within the BM environment, rather than from increased trafficking of BM emigrants to peripheral lymphoid tissues. Use of gene-knockout mice indicates that depletion of BM B cells is dependent on TNF-alpha, lymphotoxin-alpha, and both TNF receptors, TNFR1-p55 and TNFR2-p75. Thus, TNF-alpha and lymphotoxin-alpha are required for loss of BM B lineage cells during respiratory infection with influenza virus.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Base Sequence
- Bone Marrow Cells/immunology
- Bone Marrow Cells/pathology
- Cell Cycle
- Cell Differentiation
- Killer Cells, Natural/immunology
- Kinetics
- Lymphotoxin-alpha/deficiency
- Lymphotoxin-alpha/genetics
- Lymphotoxin-alpha/metabolism
- Macrophages, Alveolar/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Orthomyxoviridae/pathogenicity
- Orthomyxoviridae/physiology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/virology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- T-Lymphocyte Subsets/immunology
- Tumor Necrosis Factor-alpha/deficiency
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Virus Replication
Collapse
|
1562
|
Mori I, Liu B, Hossain MJ, Takakuwa H, Daikoku T, Nishiyama Y, Naiki H, Matsumoto K, Yokochi T, Kimura Y. Successful protection by amantadine hydrochloride against lethal encephalitis caused by a highly neurovirulent recombinant influenza A virus in mice. Virology 2002; 303:287-96. [PMID: 12490390 DOI: 10.1006/viro.2002.1601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mouse model system for a lethal encephalitis due to influenza has been established by stereotaxic microinjection with the recombinant R404BP strain of influenza A virus into the olfactory bulb of C57BL/6 mice. The virus infection spread selectively to neurons in nuclei of the broad areas of the brain parenchyma that have anatomical connections to the olfactory bulb, leading to apoptotic neurodegeneration. The inflammatory reaction at the extended stage of viral infection involved the vascular structures affected by induction of inducible nitric oxide synthase and protein nitration; those were related to the etiology of fatal brain edema. The intraperitoneal administration of amantadine inhibited the viral growth in the brain and saved mice from the lethal encephalitis. The severity of neuronal loss paralleled the time lag between the virus challenge and the start of amantadine treatment. Thus, early pharmacological intervention is essential to minimize neurological deficits due to influenza virus-induced neurodegeneration.
Collapse
|
1563
|
Zhilinskaya IN, Maklakova AS, Ashmarin IP. M-protein as a possible inducer of depressive state in influenza. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2002; 387:556-8. [PMID: 12577638 DOI: 10.1023/a:1021749810319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
1564
|
Abstract
The action of interferons (IFNs) on virus-infected cells and surrounding tissues elicits an antiviral state that is characterized by the expression and antiviral activity of IFN-stimulated genes. In turn, viruses encode mechanisms to counteract the host response and support efficient viral replication, thereby minimizing the therapeutic antiviral power of IFNs. In this review, we discuss the interplay between the IFN system and four medically important and challenging viruses -- influenza, hepatitis C, herpes simplex and vaccinia -- to highlight the diversity of viral strategies. Understanding the complex network of cellular antiviral processes and virus-host interactions should aid in identifying new and common targets for the therapeutic intervention of virus infection. This effort must take advantage of the recent developments in functional genomics, bioinformatics and other emerging technologies.
Collapse
|
1565
|
Luebke RW, Copeland CB, Bishop LR, Daniels MJ, Gilmour MI. Mortality in dioxin-exposed mice infected with influenza: mitochondrial toxicity (reye's-like syndrome) versus enhanced inflammation as the mode of action. Toxicol Sci 2002; 69:109-16. [PMID: 12215664 DOI: 10.1093/toxsci/69.1.109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Increased mortality following influenza A infection was reported in B6C3F1 mice exposed to a low (0.01 micro g/kg) dose of dioxin. However, mortality was not associated with increased viral load and antibody titers to the virus were not decreased at doses of TCDD < or = 10 micro g/kg, suggesting that viral overgrowth, secondary to immunosuppression, was not the proximate cause of death. We tested the hypothesis that mitochondrial toxicity and dysfunction, similar to Reye's syndrome (RS) in humans, is responsible for increased mortality in dioxin-exposed, infected B6C3F1 female mice, based on similarities in the biochemical and immunological events that occur in RS and in TCDD-exposed animals. Endpoints were also included to test the hypothesis that increased pulmonary inflammation following dioxin exposure, in the absence of mitochondrial toxicity, was associated with increased mortality. Dose-related effects of TCDD alone, infection with influenza A alone, and combined TCDD exposure/influenza infection were evaluated. Mice were given a single ip injection of 0, 0.001, 0.01, 0.1, or 1.0 micro g TCDD/kg, 7 days before infection by intranasal instillation of an estimated LD(10-20) of influenza A Hong Kong/8/68 (H3N2) and were terminated 1, 7, and 10 days after infection. Serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for various measurements, including clinical chemistries, cell counts, cytokine analysis, and viral titers. Exposure to < or = 1.0 micro g TCDD/kg did not increase mortality; virus titers were similar at all doses of TCDD and there was no dioxin-related effect on serum NH(3) or glucose concentrations, two prominent indicators of the altered mitochondrial oxidative metabolism typically observed in RS. A study was therefore conducted over a wider range of TCDD doses. A single injection of 0, 0.025, 0.5, or 10 micro g TCDD/kg preceded infection by 7 days; subgroups of noninfected control and highest dose group (10 micro g TCDD/kg) mice were also evaluated for biochemical and immunological endpoints on the equivalent of infection day 4 to provide baseline data. Five days after infection the same endpoints described above were evaluated. The 10 micro g TCDD/kg dose increased mortality, but once again did not increase virus titer; as in previous experiments, serum biochemistry endpoints did not support mitochondrial dysfunction. These results suggest that RS is an unlikely explanation for increased influenza mortality in TCDD-exposed mice. Rather, constituents in BALF implicate increased pulmonary inflammation as the mode of TCDD action.
Collapse
|
1566
|
Gregory A. Detection of infectious salmon anaemia virus (ISAV) by in situ hybridisation. DISEASES OF AQUATIC ORGANISMS 2002; 50:105-110. [PMID: 12180700 DOI: 10.3354/dao050105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An in situ hybridisation method was developed to detect infectious salmon anaemia virus (ISAV) in fixed tissues from Atlantic salmon Salmo salar L. Three DNA probes detected ISAV in heart, liver, kidney, spleen, caeca, and mid-gut from infected farmed Atlantic salmon obtained from a natural outbreak of ISA. The strongest signals were obtained using Probe S8, from Segment 8 of ISAV. Hybridisation was most prominent in the endothelial cells of heart tissue. The probes reacted specifically with ISAV; no hybridisation was evident in uninfected tissues from Atlantic salmon. Importantly, the probes did not cross react with the pathogens IHNV (haematopoietic necrosis virus), IPNV (infectious pancreatic necrosis virus), SPDV (salmon pancreas disease virus) and VHSV (viral haemorrhagic septicemia virus).
Collapse
|
1567
|
Sergeev AN, Zhukov VA, Poryvaev VD, P'ankov OV, Shishkina LN, Petrishchenko VA, P'ankova OG, Bulychev LE, Safatov AS. [The simple method of direct estimation of infectious process in mice and rats aerogenically infected with influenza virus]. Vopr Virusol 2002; 47:44-6. [PMID: 12271727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Multiplication of influenza virus in laboratory animals (mice and rats) after aerogenic inoculation was recorded directly (by the agent accumulation in the lungs and trachea) and indirectly (by interferon concentration in the lungs of mice). Thermal inactivation of influenza virus in chick embryo allantoic fluid was observed (by 4.5-6 Ig within 48 h at 37 degrees C). The authors claim that influenza (strain A/Aichi/2/68) infection in the respiratory tract of mice and rats can be experimentally validated by inoculation of chick embryos with 10 and 20% mouse or rat lung homogenate (undiluted or diluted 10-fold) or with 1 and 5% mouse and rat trachea homogenate, respectively, 48 h after aerogenic inoculation of animals, and the virus AID50 be thus determined.
Collapse
|
1568
|
Stevenson PG, Austyn JM, Hawke S. Uncoupling of virus-induced inflammation and anti-viral immunity in the brain parenchyma. J Gen Virol 2002; 83:1735-1743. [PMID: 12075093 DOI: 10.1099/0022-1317-83-7-1735] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Non-neuroadapted influenza virus confined to the brain parenchyma does not induce antigen-specific immunity. Nevertheless, infection in this site upregulated major histocompatibility complex (MHC) class I and MHC class II expression and recruited lymphocytes to a perivascular compartment. T cells recovered from the brain had an activated/memory phenotype but did not respond to viral antigens. In contrast, T cells recovered from the brain after infection in a lateral cerebral ventricle, which is immunogenic, showed virus-specific responses. As with infectious virus, influenza virus-infected dendritic cells elicited virus-specific immunity when inoculated into the cerebrospinal fluid but not when inoculated into the brain parenchyma. Thus, inflammation and dendritic cell function were both uncoupled from immune priming in the microenvironment of the brain parenchyma and neither was sufficient to overcome immunological privilege.
Collapse
|
1569
|
Park CH, Ishinaka M, Takada A, Kida H, Kimura T, Ochiai K, Umemura T. The invasion routes of neurovirulent A/Hong Kong/483/97 (H5N1) influenza virus into the central nervous system after respiratory infection in mice. Arch Virol 2002; 147:1425-36. [PMID: 12111416 DOI: 10.1007/s00705-001-0750-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A/Hong Kong/483/97 (H5N1) influenza virus (HK483) isolated from the third patient during the outbreak of chicken and human influenza in Hong Kong in 1997 was shown to be neurovirulent in mice. HK483 was inoculated intranasally to mice, and the invasion routes of the virus in the central nervous system (CNS) were investigated by immunohistochemical and in situ hybridization. The pathological changes consisted of bronchopneumonia, ganglionitis, and nonpurulent encephalomyelitis of the brain stem and the anterior part of the thoracic cord. Viral antigens and viral nucleic acids (RNA and mRNA) were demonstrated in the pterygopalatine, trigeminal and superior ganglions prior to or simultaneously with their detection in the CNS. The antigens and nucleic acids were also observed in the olfactory bulb from an early stage of the infection. In the spinal cord, virus-infected cells were first demonstrated in the grey matter of the thoracic cord. The virus, which primarily replicated in the lungs, was considered to invade the thoracic cord via cardiopulmonary splanchnic nerves and sympathetic nerves. These findings indicate that the virus reached the CNS through afferent fibers of the olfactory, vagal, trigeminal, and sympathetic nerves following replication in the respiratory mucosa.
Collapse
|
1570
|
Snow M, Raynard R, Bruno DW, van Nieuwstadt AP, Olesen NJ, Løvold T, Wallace C. Investigation into the susceptibility of saithe Pollachius virens to infectious salmon anaemia virus (ISAV) and their potential role as a vector for viral transmission. DISEASES OF AQUATIC ORGANISMS 2002; 50:13-18. [PMID: 12152900 DOI: 10.3354/dao050013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wild-caught saithe Pollachius virens were experimentally exposed to an isolate of infectious salmon anaemia virus (ISAV) of Norwegian origin. Mortality attributable to ISAV did not occur following exposure by intra-peritoneal (i.p.) injection of virus or by cohabitation with ISAV-infected Atlantic salmon Salmo salar. Despite the individual testing of 120 ISAV-exposed saithe, ISAV was not detectable using RT-PCR, the most sensitive ISAV diagnostic tool demonstrated to date. Furthermore, saithe exposed to ISAV-infected salmon were not capable of transmitting virus when transferred to tanks containing naïve salmon. Thus saithe appear to be resistant to this Norwegian isolate of ISAV and incapable of supporting its replication. Saithe which co-exist with salmon in and around aqua-culture facilities are considered unlikely to have a significant impact on the epizootiology of ISAV.
Collapse
|
1571
|
Abstract
Equine influenza is one of the most economically important contagious respiratory diseases of horses. In this paper the current state of knowledge of equine influenza virus and the most important aspects of these virus infections, e.g. epidemiology, clinical aspects, pathogenesis and pathology, immunity, diagnosis, treatment, management and vaccination, are reviewed with an emphasis on epidemiology, diagnosis and vaccinology. Many questions have remained and with the advent of improved technology new questions have arisen. Consequently, research priorities should be set in an attempt to answer them. Therefore, this review ends with some personal recommendations for important priorities for future research.
Collapse
|
1572
|
Choi YK, Goyal SM, Joo HS. Prevalence of swine influenza virus subtypes on swine farms in the United States. Arch Virol 2002; 147:1209-20. [PMID: 12111430 DOI: 10.1007/s00705-002-0788-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Serologic and virologic prevalence of infection with different swine influenza virus (SIV) subtypes was investigated using swine sera, nasal swabs and lung samples that had been submitted for a diagnosis to the Minnesota Veterinary Diagnostic Laboratory. A total of 111,418 pig sera were tested for SIV antibody between 1998 and 2000, and 25,348 sera (22.8%) were found to be positive by the hemagglutination inhibition (HI) test. Of the positive samples, 16,807 (66.7%) and 8,541 (33.7%) had antibody to H1 and H3 subtypes, respectively. Between January 1998 and May of 2001, a total of 3,561 nasal swabs or lung samples were examined for the presence of SIV, and SIV was isolated from 1,124 samples (31.7%). Of these isolates, 869 (77.3%) and 255 (22.7%) were subtyped as H1 and H3, respectively, by the HI method. For further characterization, 120 SIV isolates each from 1998 to 2001 were randomly selected from a culture collection and their hemagglutinin (HA) and neuraminidase genes examined by reverse transcription-PCR and sequencing. Of the 480 isolates, 322 (67.1%), 22 (4.6%) and 129 (26.9%) were subtyped as H1N1, H1N2 and H3N2, respectively. The remaining 7 samples (1.5%) were found to contain both H1N1 and H3N2 viruses. The SIV H1N2 subtype was isolated from 1, 8, and 13 samples in 1999, 2000, and 2001, respectively. The 22 H1N2 isolates originated from 9 different states of the United States. Genetic screening of the HA genes of 12 selected H1N2 isolates showed that 8 of them had a close phylogenetic relationship with the Indiana isolate of H1N2 (A/Swine/Indiana/9K035/99), while 4 isolates were closely related to classical SIV H1N1.
Collapse
|
1573
|
|
1574
|
Abstract
The protective role of neutrophils on intranasal infection of influenza virus was investigated in 3 strains of tumor-bearing mice with neutrophilic leukocytosis. In vitro multiplication of influenza virus was inhibited by neutrophils from both normal and tumor-bearing mice, and the inhibitory effect of neutrophils was augmented by an addition of fMLP to the culture. Pulmonary virus infectivities in the early phase after infection decreased in such ICR and BALB/c mice, and virus elimination in the late phase was accelerated in the ICR mice. However, no decrease in pulmonary virus infectivity was observed in tumor-bearing C57BL/6 mice. Intranasal administration of fMLP into normal and tumor-bearing C57BL/6 mice after infection significantly inhibited the virus propagation in the lungs. The decrease in neutrophil infiltration into the lung in tumor-bearing C57BL/6 mice was confirmed from histological observations of the lung and lung lavage after infection and from analysis of the neutrophil chemotactic activity induced by fMLP. This might be responsible for the high level of pulmonary virus titer in tumor-bearing C57BL/6 mice. Phagocytic activities of alveolar macrophages and productions of neutralizing antibody were suppressed in the 3 strains of tumor-bearing mice. These observations indicated that neutrophils could be significant effector cells as a host defense mechanism against influenza virus infection in vivo, and infiltration and functional activation of neutrophils could play a significant role in virus elimination from the infected site. Furthermore, the inhibition of virus propagation by neutrophils in vitro was almost completely abrogated by an addition of ZnSO4, suggesting that calprotectin could inhibit influenza virus multiplication.
Collapse
|
1575
|
Abstract
Since 1997, novel viruses of three different subtypes and five different genotypes have emerged as agents of influenza among pigs in North America. The appearance of these viruses is remarkable because there were no substantial changes in the overall epidemiology of swine influenza in the United States and Canada for over 60 years prior to this time. Viruses of the classical H1N1 lineage were virtually the exclusive cause of swine influenza from the time of their initial isolation in 1930 through 1998. Antigenic drift variants of these H1N1 viruses were isolated in 1991-1998, but a much more dramatic antigenic shift occurred with the emergence of H3N2 viruses in 1997-1998. In particular, H3N2 viruses with genes derived from human, swine and avian viruses have become a major cause of swine influenza in North America. In addition, H1N2 viruses that resulted from reassortment between the triple reassortant H3N2 viruses and classical H1N1 swine viruses have been isolated subsequently from pigs in at least six states. Finally, avian H4N6 viruses crossed the species barrier to infect pigs in Canada in 1999. Fortunately, these H4N6 viruses have not been isolated beyond their initial farm of origin. If these viruses spread more widely, they will represent another antigenic shift for our swine population, and could pose a threat to the world's human population. Research on these novel viruses may offer important clues to the genetic basis for interspecies transmission of influenza viruses.
Collapse
|