151
|
Pai EF. Variations on a theme: the family of FAD-dependent NAD(P)H-(disulphide)-oxidoreductases. Curr Opin Struct Biol 1991. [DOI: 10.1016/0959-440x(91)90181-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
152
|
Abstract
X-ray crystallography has revealed the molecular architecture of the cellular and oncogenic forms of p21Ha-ras, the protein encoded by the human Ha-ras gene, in both its active (GTP-bound) and in its inactive (GDP-bound) forms. From comparison of these two structures, a mechanism is suggested for the GTPase hydrolysis reaction that triggers the conformational change necessary for signal transduction. The structures have also allowed identification of the structural consequences of point mutations and the way in which they interfere with the intrinsic GTPase activity of p21ras. The p21ras structure is similar to that of the G-domain of elongation factor Tu (EF-Tu) from Escherichia coli, suggesting that p21ras can serve as a good model for other guanine nucleotide binding proteins.
Collapse
|
153
|
Schiering N, Kabsch W, Moore MJ, Distefano MD, Walsh CT, Pai EF. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature 1991; 352:168-72. [PMID: 2067577 DOI: 10.1038/352168a0] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several hundred million tons of toxic mercurials are dispersed in the biosphere. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase and mercuric ion reductase (MerA). The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases, catalyses the reaction NADPH + Hg(II)----NADP+ + H+ + Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), p1258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn501 and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon. These domains can be proteolytically cleaved off without changing the catalytic efficiency. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.
Collapse
|
154
|
Valencia A, Kjeldgaard M, Pai EF, Sander C. GTPase domains of ras p21 oncogene protein and elongation factor Tu: analysis of three-dimensional structures, sequence families, and functional sites. Proc Natl Acad Sci U S A 1991; 88:5443-7. [PMID: 2052624 PMCID: PMC51889 DOI: 10.1073/pnas.88.12.5443] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
GTPase domains are functional and structural units employed as molecular switches in a variety of important cellular functions, such as growth control, protein biosynthesis, and membrane traffic. Amino acid sequences of more than 100 members of different subfamilies are known, but crystal structures of only mammalian ras p21 and bacterial elongation factor Tu have been determined. After optimal superposition of these remarkably similar structures, careful multiple sequence alignment, and calculation of residue-residue interactions, we analyzed the two subfamilies in terms of structural conservation, sequence conservation, and residue contact strength. There are three main results. (i) A structure-based alignment of p21 and elongation factor Tu. (ii) The definition of a common conserved structural core that may be useful as the basis of model building by homology of the three-dimensional structure of any GTPase domain. (iii) Identification of sequence regions, other than the effector loop and the nucleotide binding site, that may be involved in the functional cycle: they are loop L4, known to change conformation after GTP hydrolysis; helix alpha 2, especially Arg-73 and Met-67 in ras p21; loops L8 and L10, including ras p21 Arg-123, Lys-147, and Leu-120; and residues located spatially near the N and C termini. These regions are candidate sites for interaction either with the GTP/GDP exchange factor, with a GTPase-affected function, or with a molecule delivered to a destination site with the aid of the GTPase domain.
Collapse
|
155
|
Wittinghofer F, Krengel U, John J, Kabsch W, Pai EF. Three-dimensional structure of p21 in the active conformation and analysis of an oncogenic mutant. ENVIRONMENTAL HEALTH PERSPECTIVES 1991; 93:11-5. [PMID: 1773783 PMCID: PMC1568068 DOI: 10.1289/ehp.919311] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The three-dimensional structure of the active guanosine triphosphate (GTP)-analogue-containing complex of the H-ras-encoded p21 has been determined. It was necessary to correct the topology of p21 as published earlier. The structure analysis shows all of the interactions between protein and GTP and how the important cofactor Mg2+ is bound. From the oncogenic mutants of p21 crystallized, a Gly12 to Arg mutation has been analyzed in detail. It shows that the overall structure of the mutant is not perturbed and that the side chain of Arg12 is coming close to the gamma-phosphate for an interaction.
Collapse
|
156
|
Krengel U, Schlichting I, Scherer A, Schumann R, Frech M, John J, Kabsch W, Pai EF, Wittinghofer A. Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell 1990; 62:539-48. [PMID: 2199064 DOI: 10.1016/0092-8674(90)90018-a] [Citation(s) in RCA: 321] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The X-ray structures of the guanine nucleotide binding domains (amino acids 1-166) of five mutants of the H-ras oncogene product p21 were determined. The mutations described are Gly-12----Arg, Gly-12----Val, Gln-61----His, Gln-61----Leu, which are all oncogenic, and the effector region mutant Asp-38----Glu. The resolutions of the crystal structures range from 2.0 to 2.6 A. Cellular and mutant p21 proteins are almost identical, and the only significant differences are seen in loop L4 and in the vicinity of the gamma-phosphate. For the Gly-12 mutants the larger side chains interfere with GTP binding and/or hydrolysis. Gln-61 in cellular p21 adopts a conformation where it is able to catalyze GTP hydrolysis. This conformation has not been found for the mutants of Gln-61. Furthermore, Leu-61 cannot activate the nucleophilic water because of the chemical nature of its side chain. The D38E mutation preserves its ability to bind GAP.
Collapse
|
157
|
Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J 1990; 9:2351-9. [PMID: 2196171 PMCID: PMC552258 DOI: 10.1002/j.1460-2075.1990.tb07409.x] [Citation(s) in RCA: 834] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The crystal structure of the H-ras oncogene protein p21 complexed to the slowly hydrolysing GTP analogue GppNp has been determined at 1.35 A resolution. 211 water molecules have been built into the electron density. The structure has been refined to a final R-factor of 19.8% for all data between 6 A and 1.35 A. The binding sites of the nucleotide and the magnesium ion are revealed in high detail. For the stretch of amino acid residues 61-65, the temperature factors of backbone atoms are four times the average value of 16.1 A2 due to the multiple conformations. In one of these conformations, the side chain of Gln61 makes contact with a water molecule, which is perfectly placed to be the nucleophile attacking the gamma-phosphate of GTP. Based on this observation, we propose a mechanism for GTP hydrolysis involving mainly Gln61 and Glu63 as activating species for in-line attack of water. Nucleophilic displacement is facilitated by hydrogen bonds from residues Thr35, Gly60 and Lys16. A mechanism for rate enhancement by GAP is also proposed.
Collapse
|
158
|
Schlichting I, Almo SC, Rapp G, Wilson K, Petratos K, Lentfer A, Wittinghofer A, Kabsch W, Pai EF, Petsko GA. Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 1990; 345:309-15. [PMID: 2111463 DOI: 10.1038/345309a0] [Citation(s) in RCA: 366] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Crystals of Ha-Ras p21 with caged GTP at the active site have been used to investigate the conformational changes of p21 on GTP hydrolysis. The structure of the short-lived p21.GTP complex was determined by Laue diffraction methods. After GTP hydrolysis, substantial structural changes occur in the parts of the molecule implicated in the interaction with GTPase-activating protein. The trigger for this process seems to be a change in coordination of the active-site Mg2+ ion as a result of loss of the gamma-phosphate of GTP.
Collapse
|
159
|
Schiering N, Stoll VS, Blanchard JS, Pai EF. Crystallization and preliminary x-ray diffraction study of the flavoprotein NADH peroxidase from Streptococcus faecalis 10C1. J Biol Chem 1989; 264:21144-5. [PMID: 2512289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
NADH peroxidase from Streptococcus faecalis 10C1 has been crystallized from ammonium sulfate solutions using the hanging drop vapor diffusion method. Depending on pH, the crystals grew in the orthorhombic space group I222 or one of its subgroups P222 or P2(1)2(1)2 (or one of its two permutations). In both cases the unit cell axes are a = 76.6 A, b = 132.9 A, and c = 145.7 A. There are two monomers/asymmetric unit in the body-centered crystal form and four in the primitive one. The enzyme is catalytically active in the crystalline state. The crystals diffract to at least 2.5 A resolution; they are stable in the x-ray beam and hence suitable for detailed three-dimensional structure determination.
Collapse
|
160
|
Schiering N, Stoll VS, Blanchard JS, Pai EF. Crystallization and preliminary X-ray diffraction study of the flavoprotein NADH peroxidase from Streptococcus faecalis 10C1. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)30058-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
161
|
Schlichting I, Rapp G, John J, Wittinghofer A, Pai EF, Goody RS. Biochemical and crystallographic characterization of a complex of c-Ha-ras p21 and caged GTP with flash photolysis. Proc Natl Acad Sci U S A 1989; 86:7687-90. [PMID: 2682619 PMCID: PMC298135 DOI: 10.1073/pnas.86.20.7687] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The GTP binding domain of the c-Ha-ras protooncogene product (p21'c) and the corresponding region from an oncogenic mutant form of the protein in which glycine at position 12 has been replaced by valine [p21'(G12V)] have been crystallized with P3-1-(2-nitro)phenylethylguanosine 5'-O-triphosphate (caged GTP) at their active sites. The crystals give x-ray diffraction patterns to a resolution of better than 0.3 nm. Photolysis can be achieved in the crystal, after which GTP hydrolysis takes place at the rate expected from solution studies. Complete x-ray data sets have been obtained for the starting caged-GTP state and the final GDP state after photolysis and hydrolysis, demonstrating the feasibility of time-resolved structural investigations of the process of GTP hydrolysis.
Collapse
|
162
|
Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 1989; 341:209-14. [PMID: 2476675 DOI: 10.1038/341209a0] [Citation(s) in RCA: 681] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The crystal structure of the guanine-nucleotide-binding domain of p21 (amino acids 1-166) complexed to the guanosine triphosphate analogue guanosine-5'-(beta, gamma-imido)triphosphate (GppNp) has been determined at a resolution of 2.6 A. The topological order of secondary structure elements is the same as that of the guanine-nucleotide-binding domain of bacterial elongation factor EF-Tu. Many interactions between nucleotide and protein have been identified. The effects of point mutations and the conservation of amino-acid sequence in the guanine-nucleotide-binding proteins are discussed.
Collapse
|
163
|
Moore MJ, Distefano MD, Walsh CT, Schiering N, Pai EF. Purification, crystallization, and preliminary x-ray diffraction studies of the flavoenzyme mercuric ion reductase from Bacillus sp. strain RC607. J Biol Chem 1989; 264:14386-8. [PMID: 2668287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The flavoenzyme mercuric ion reductase from Bacillus sp. strain RC607 was purified by dye-ligand affinity chromatography. The protein was crystallized from solutions of high ionic strength, and one of the two crystal forms obtained has proven suitable for x-ray diffraction studies. Preliminary analysis showed that these crystals belong to the tetragonal space group 1422. The unit cell dimensions are a = b = 180.7 A; c = 127.9 A. The diffraction pattern extends to better than 3 A resolution. Crystal density measurements are consistent with one enzyme dimer of 2 x 69,000 Da comprising the asymmetric unit. Trypsin treatment of the native enzyme resulted in the removal of 157 amino acids at the N terminus. After purification, the remaining fragment (amino acids 158-631), which is still fully active in vitro, could be crystallized under the same conditions as native enzyme. Twinning problems, however, did not allow complete analysis of these crystals.
Collapse
|
164
|
Moore MJ, Distefano MD, Walsh CT, Schiering N, Pai EF. Purification, Crystallization, and Preliminary X-ray Diffraction Studies of the Flavoenzyme Mercuric Ion Reductase from Bacillus sp. Strain RC607. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71690-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
165
|
Haase GH, Brune M, Reinstein J, Pai EF, Pingoud A, Wittinghofer A. Adenylate kinases from thermosensitive Escherichia coli strains. J Mol Biol 1989; 207:151-62. [PMID: 2544733 DOI: 10.1016/0022-2836(89)90446-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The adk genes from several thermosensitive (ts) mutants of Escherichia coli were cloned and sequenced. The mutations responsible for the thermolability of the gene product, the enzyme adenylate kinase, were established. From five independently isolated strains analysed, two contain a CCG to TCG transition changing proline 87 to serine (P87S), another two have a TCT to TTT transition that mutates serine 129 to phenylalanine (S129F), and the last one was found not to contain a mutation in the adk gene. Overproducing strains were constructed that contain ts genes in the genome as well as in the plasmids. These strains grow at high temperature, although much slower than wild-type. Most probably, the high rate of synthesis of adenylate kinase compensates for the destruction of the thermolabile protein by the elevated temperature. Mutated proteins were purified. The P87S but not the S129F mutation was found to cause thermosensitivity of the adenylate kinase reaction. Revertants of thermosensitivity were isolated and the nature of the mutation was determined by the RNase digestion method of RNA-DNA hybrids and by DNA sequencing. The revertants of the P87S mutation regained the wild-type sequence, whereas the revertants of the S129F strain retained the original mutation in the adenylate kinase gene. These results are discussed in the light of the three-dimensional structure of the enzyme and the possible role of adenylate kinase in phospholipid synthesis.
Collapse
|
166
|
Scherer A, John J, Linke R, Goody RS, Wittinghofer A, Pai EF, Homes KC. Crystallization and preliminary X-ray analysis of the human c-H-ras-oncogene product p21 complexed with GTP analogues. J Mol Biol 1989; 206:257-9. [PMID: 2649686 DOI: 10.1016/0022-2836(89)90540-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The catalytic domain (amino acid residues 1 to 166) of the human ras-oncogene product p21 complexed with the GTP analogues beta,gamma-imido-GTP (GMPPNP), beta,gamma-methylene-GTP (GMPPCP), and guanosine-5'-(gamma-thiotriphosphate) (GTP gamma S) have been been crystallized. Crystals of the GMPPNP and GMPPCP complexes are well suited for high resolution X-ray crystallography. They belong to space group P3(1)21 (or its enantiomorph P3(2)21) with unit cell axes a=b=40.3 A and c = 162.2 A.
Collapse
|
167
|
Karplus PA, Pai EF, Schulz GE. A crystallographic study of the glutathione binding site of glutathione reductase at 0.3-nm resolution. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 178:693-703. [PMID: 2912729 DOI: 10.1111/j.1432-1033.1989.tb14500.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The binding of glutathione, some related molecules and two redox compounds to crystals of glutathione reductase has been investigated by X-ray crystallography at 0.3-nm resolution. Models for several bound ligands have been built and subjected to crystallographic refinement. The results clearly show the residues involved in glutathione binding as well as the geometry of the disulfide exchange. Glutathione-I is bound in a V-shaped conformation, while glutathione-II is extended. The zwitterionic glutamyl end of glutathione-II appears to be the most tightly bound part of the substrate. All glutathione conjugates and derivatives studied show binding dominated by the interactions at this site. In the reduced enzyme, glutathione-I forms a mixed disulfide intermediate with Cys58. Other structural changes are observed on reduction of the enzyme, and it is demonstrated that the carboxamidomethylated enzyme is a good model for the reduced species. Lipoate, a weak substrate of the enzyme, assumes a defined binding site where its disulfide is available for being attacked by Cys58-S gamma. A second region with affinity for a number of compounds has been found in a large cavity at the dimer interface of the enzyme. No functional role of this site is known.
Collapse
|
168
|
Pai EF, Karplus PA, Schulz GE. Crystallographic analysis of the binding of NADPH, NADPH fragments, and NADPH analogues to glutathione reductase. Biochemistry 1988; 27:4465-74. [PMID: 2844232 DOI: 10.1021/bi00412a038] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The binding of the substrate NADPH as well as a number of fragments and derivatives of NADPH to glutathione reductase from human erythrocytes has been investigated by using X-ray crystallography. Crystals of the enzyme were soaked with the compounds of interest, and then the diffraction intensities were collected out to a resolution of 3 A. By use of phase information from the refined structure of the native enzyme in its oxidized state, electron density maps could be calculated. Difference Fourier electron density maps with coefficients Fsoak - Fnative showed that the ligands tested bound either at the functional NADPH binding site or not at all. Electron density maps with coefficients 2Fsoak - Fnative were used to estimate occupancies for various parts of the bound ligands. This revealed that all ligands except NADPH and NADH, which were fully bound, showed differential binding between the adenine end and the nicotinamide end of the molecule: The adenine end always bound with a higher occupancy than the nicotinamide end. Models were built for the protein-ligand complexes and subjected to restrained refinement at 3-A resolution. The mode of binding of NADPH, including the conformational changes of the protein, is described. NADH binding is clearly shown to involve a trapped inorganic phosphate at the position normally occupied by the 2'-phosphate of NADPH. A comparison of the binding of NADPH with the binding of the fragments and analogues provides a structural explanation for their relative binding affinities. In this respect, proper charge and hydrogen-bonding characteristics of buried parts of the ligand seem to be particularly important.
Collapse
|
169
|
Manstein DJ, Massey V, Ghisla S, Pai EF. Stereochemistry and accessibility of prosthetic groups in flavoproteins. Biochemistry 1988; 27:2300-5. [PMID: 2898258 DOI: 10.1021/bi00407a009] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using 8-demethyl-8-hydroxy-5-deaza-5-carba analogues of the appropriate flavin nucleotides, we determined the stereochemistry of interaction between coenzyme and substrate for several flavoproteins. The enzymes were D-amino acid oxidase, L-lactate oxidase, and D-lactate dehydrogenase, all three of which interact with pyruvate, as well as cyclohexanone monooxygenase and 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase, which were both probed with nicotinamide nucleotides. L-Lactate oxidase and D-lactate dehydrogenase used the si face of the modified flavin ring while the other three enzymes showed re-side specificity. This selection of flavoenzymes includes FAD- and FMN-dependent enzymes, enzymes that follow a carbanion mechanism, and others that have hydride transfer as an integral part of their reaction pathway.
Collapse
|
170
|
Manstein DJ, Pai EF. Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes. J Biol Chem 1986; 261:16169-73. [PMID: 3023344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The bifunctional enzyme FAD synthetase from Brevibacterium ammoniagenes was purified by a method involving ATP-affinity chromatography. The final preparation was more than 95% pure. The apparent molecular weight of the enzyme was determined as 38,000 and the isoelectric point as 4.6. Although previous attempts to separate the enzymatic activities had failed, ATP:riboflavin 5'-phosphotransferase and ATP:FMN-adenylyltransferase activities in B. ammoniagenes were believed to be located on two separate proteins with similar properties, possibly joined in a complex. The following evidence, however, suggests the presence of both activities on a single polypeptide chain. The two activities copurify in the same ratio through the purification scheme as presented. Only a single band could be detected when aliquots from the final purification step were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, nondenaturing gel electrophoresis, and isoelectric focusing. Edman degradation of the protein yielded a single N-terminal sequence.
Collapse
|
171
|
Manstein DJ, Pai EF, Schopfer LM, Massey V. Absolute stereochemistry of flavins in enzyme-catalyzed reactions. Biochemistry 1986; 25:6807-16. [PMID: 3801393 DOI: 10.1021/bi00370a012] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The 8-demethyl-8-hydroxy-5-deaza-5-carba analogues of FMN and FAD have been synthesized. Several apoproteins of flavoenzymes were successfully reconstituted with these analogues. This and further tests established that these analogues could serve as general probes for flavin stereospecificity in enzyme-catalyzed reactions. The method used by us involved stereoselective introduction of label on one enzyme combined with transfer to and analysis on a second enzyme. Using as a reference glutathione reductase from human erythrocytes for which the absolute stereochemistry of catalysis is known from X-ray studies [Pai, E. F., & Schulz, G. E. (1983) J. Biol. Chem. 258, 1752-1758], we were able to determine the absolute stereospecificities of other flavoenzymes. We found that glutathione reductase (NADPH), general acyl-CoA dehydrogenase (acyl-CoA), mercuric reductase (NADPH), thioredoxin reductase (NADPH), p-hydroxybenzoate hydroxylase (NADPH), melilotate hydroxylase (NADH), anthranilate hydroxylase (NADPH), and glucose oxidase (glucose) all use the re face of the flavin ring when interacting with the substrates given in parentheses.
Collapse
|
172
|
Pai EF. Preliminary X-ray studies on an unspecific NAD(P)H dehydrogenase from human erythrocytes. J Mol Biol 1984; 174:727-8. [PMID: 6726800 DOI: 10.1016/0022-2836(84)90093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Crystals of a relatively unspecific NAD(P)H dehydrogenase from human erythrocytes suitable for X-ray analysis have been grown. They belong to space group P4(1)2(1)2 or its enantiomorph P4(3)2(1)2 with unit cell dimensions: a = b = 79.3 A and c = 38.1 A. The asymmetric unit contains one molecule of Mr 18,000.
Collapse
|
173
|
Pai EF, Schulz GE, Tomasselli AG, Noda LH. Preliminary X-ray studies on the GTP: AMP phosphotransferase from beef heart mitochondria. J Mol Biol 1983; 164:347-50. [PMID: 6302274 DOI: 10.1016/0022-2836(83)90081-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Crystals of GTP: AMP phosphotransferase from beef heart mitochondria suitable for X-ray analysis have been grown. They belong to space group I4 with unit cell dimensions: a = b = 88.2 A, c = 147.8 A. The asymmetric unit contains two molecules each of Mr = 26,000. So far, two heavy-atom derivatives have been obtained.
Collapse
|
174
|
Pai EF, Schulz GE. The catalytic mechanism of glutathione reductase as derived from x-ray diffraction analyses of reaction intermediates. J Biol Chem 1983; 258:1752-7. [PMID: 6822532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mode of binding of NADPH and oxidized glutathione to the flavoenzyme glutathione reductase has been determined by x-ray crystallography. Furthermore, two intermediates of the reaction have been produced in the crystal and have been structurally elucidated. All these analyses were done at 0.3 nm resolution. The results allow the stereochemical description of the mechanism of the enzyme. The dinucleotide NADPH is bound in an extended conformation with the nicotinamide ring stacking onto the re-face of the flavin part of FAD, and adenine located at the protein surface. The binding of NADPH results in the 2-electron reduced form of the enzyme, EH2. This form has also been analyzed without any ligand bound. In EH2 the redoxactive disulfide bridge of the protein, which lies at the si-face of the flavin ring, is opened and the sulfur of Cys-58 moves by about 0.1 nm into a position where it can attack one of the sulfurs of the substrate oxidized glutathione. This interchange leads to a mixed glutathione-protein disulfide, which can be stabilized in crystals and has been analyzed. By selectively reacting Cys-58 with iodoacetamide the crystalline enzyme can be blocked in its EH2 state. The imidazole of His-467' is near to all sulfurs taking part in the disulfide bridge exchange and is therefore certainly crucial for catalysis. The crystallographic results establish that electrons flow from NADPH to the substrate GSSG via flavin and the redoxactive protein disulfide bridge. This is consistent with the scheme that has been postulated from biochemical, spectroscopic, and model studies.
Collapse
|
175
|
|