151
|
Ghouleh IA, Khoo NK, Knaus UG, Griendling KK, Touyz RM, Thannickal VJ, Barchowsky A, Nauseef WM, Kelley EE, Bauer PM, Darley-Usmar V, Shiva S, Cifuentes-Pagano E, Freeman BA, Gladwin MT, Pagano PJ. Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med 2011; 51:1271-88. [PMID: 21722728 PMCID: PMC3205968 DOI: 10.1016/j.freeradbiomed.2011.06.011] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) are involved in numerous physiological and pathophysiological responses. Increasing evidence implicates ROS as signaling molecules involved in the propagation of cellular pathways. The NADPH oxidase (Nox) family of enzymes is a major source of ROS in the cell and has been related to the progression of many diseases and even environmental toxicity. The complexity of this family's effects on cellular processes stems from the fact that there are seven members, each with unique tissue distribution, cellular localization, and expression. Nox proteins also differ in activation mechanisms and the major ROS detected as their product. To add to this complexity, mounting evidence suggests that other cellular oxidases or their products may be involved in Nox regulation. The overall redox and metabolic status of the cell, specifically the mitochondria, also has implications on ROS signaling. Signaling of such molecules as electrophilic fatty acids has an impact on many redox-sensitive pathologies and thus, as anti-inflammatory molecules, contributes to the complexity of ROS regulation. This review is based on the proceedings of a recent international Oxidase Signaling Symposium at the University of Pittsburgh's Vascular Medicine Institute and Department of Pharmacology and Chemical Biology and encompasses further interaction and discussion among the presenters.
Collapse
|
152
|
Hahm ER, Moura MB, Kelley EE, Van Houten B, Shiva S, Singh SV. Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS One 2011; 6:e23354. [PMID: 21853114 PMCID: PMC3154436 DOI: 10.1371/journal.pone.0023354] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/12/2011] [Indexed: 12/15/2022] Open
Abstract
Withaferin A (WA), a promising anticancer constituent of Ayurvedic medicinal plant Withania somnifera, inhibits growth of MDA-MB-231 and MCF-7 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo in association with apoptosis induction, but the mechanism of cell death is not fully understood. We now demonstrate, for the first time, that WA-induced apoptosis is mediated by reactive oxygen species (ROS) production due to inhibition of mitochondrial respiration. WA treatment caused ROS production in MDA-MB-231 and MCF-7 cells, but not in a normal human mammary epithelial cell line (HMEC). The HMEC was also resistant to WA-induced apoptosis. WA-mediated ROS production as well as apoptotic histone-associated DNA fragment release into the cytosol was significantly attenuated by ectopic expression of Cu,Zn-superoxide dismutase in both MDA-MB-231 and MCF-7 cells. ROS production resulting from WA exposure was accompanied by inhibition of oxidative phosphorylation and inhibition of complex III activity. Mitochondrial DNA-deficient Rho-0 variants of MDA-MB-231 and MCF-7 cells were resistant to WA-induced ROS production, collapse of mitochondrial membrane potential, and apoptosis compared with respective wild-type cells. WA treatment resulted in activation of Bax and Bak in MDA-MB-231 and MCF-7 cells, and SV40 immortalized embryonic fibroblasts derived from Bax and Bak double knockout mouse were significantly more resistant to WA-induced apoptosis compared with fibroblasts derived from wild-type mouse. In conclusion, the present study provides novel insight into the molecular circuitry of WA-induced apoptosis involving ROS production and activation of Bax/Bak.
Collapse
|
153
|
Zhao XJ, Shiva S, Tejero J, Wang L, Wang J, Frizzell S, Gladwin M. P63. Mechanisms for cellular nitrite formation: Role of ceruloplasmin and oxygen. Nitric Oxide 2011. [DOI: 10.1016/j.niox.2011.03.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
154
|
Mo L, Wang Y, Geary L, Cunningham-Hill M, Zuckerbraun B, Shiva S. P44. Nitrite stimulates mitochondrial biogenesis in hypoxia. Nitric Oxide 2011. [DOI: 10.1016/j.niox.2011.03.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
155
|
Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T, Geary L, Shapiro C, Ho C, Shiva S, Kim‐Shapiro DB, Gladwin MT. HUMAN NEUROGLOBIN FUNCTIONS AS A REDOX REGULATED NITRITE REDUCTASE. FASEB J 2011. [DOI: 10.1096/fasebj.25.1_supplement.959.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
156
|
Alef MJ, Vallabhaneni R, Carchman E, Morris SM, Shiva S, Wang Y, Kelley EE, Tarpey MM, Gladwin MT, Tzeng E, Zuckerbraun BS. Nitrite-generated NO circumvents dysregulated arginine/NOS signaling to protect against intimal hyperplasia in Sprague-Dawley rats. J Clin Invest 2011; 121:1646-56. [PMID: 21436585 DOI: 10.1172/jci44079] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 01/26/2011] [Indexed: 12/30/2022] Open
Abstract
Vascular disease, a significant cause of morbidity and mortality in the developed world, results from vascular injury. Following vascular injury, damaged or dysfunctional endothelial cells and activated SMCs engage in vasoproliferative remodeling and the formation of flow-limiting intimal hyperplasia (IH). We hypothesized that vascular injury results in decreased bioavailability of NO secondary to dysregulated arginine-dependent NO generation. Furthermore, we postulated that nitrite-dependent NO generation is augmented as an adaptive response to limit vascular injury/proliferation and can be harnessed for its protective effects. Here we report that sodium nitrite (intraperitoneal, inhaled, or oral) limited the development of IH in a rat model of vascular injury. Additionally, nitrite led to the generation of NO in vessels and SMCs, as well as limited SMC proliferation via p21Waf1/Cip1 signaling. These data demonstrate that IH is associated with increased arginase-1 levels, which leads to decreased NO production and bioavailability. Vascular injury also was associated with increased levels of xanthine oxidoreductase (XOR), a known nitrite reductase. Chronic inhibition of XOR and a diet deficient in nitrate/nitrite each exacerbated vascular injury. Moreover, established IH was reversed by dietary supplementation of nitrite. The vasoprotective effects of nitrite were counteracted by inhibition of XOR. These data illustrate the importance of nitrite-generated NO as an endogenous adaptive response and as a pathway that can be harnessed for therapeutic benefit.
Collapse
|
157
|
Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T, Geary L, Shapiro C, Ho C, Shiva S, Kim-Shapiro DB, Gladwin MT. Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem 2011; 286:18277-89. [PMID: 21296891 DOI: 10.1074/jbc.m110.159541] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO). This reaction is regulated by redox-sensitive surface thiols, cysteine 55 and 46, which regulate the fraction of the five-coordinated heme, nitrite binding, and NO formation. Replacement of the distal histidine by leucine or glutamine leads to a stable five-coordinated geometry; these neuroglobin mutants reduce nitrite to NO ∼2000 times faster than the wild type, whereas mutation of either Cys-55 or Cys-46 to alanine stabilizes the six-coordinate structure and slows the reaction. Using lentivirus expression systems, we show that the nitrite reductase activity of neuroglobin inhibits cellular respiration via NO binding to cytochrome c oxidase and confirm that the six-to-five-coordinate status of neuroglobin regulates intracellular hypoxic NO-signaling pathways. These studies suggest that neuroglobin may function as a physiological oxidative stress sensor and a post-translationally redox-regulated nitrite reductase that generates NO under six-to-five-coordinate heme pocket control. We hypothesize that the six-coordinate heme globin superfamily may subserve a function as primordial hypoxic and redox-regulated NO-signaling proteins.
Collapse
|
158
|
Cauwels A, Vandendriessche B, Rogge E, Shiva S, Brouckaert P. Hypoxic NO-donor nitrite protects sGC-dependently against morbidity and mortality associated with sterile inflammatory shock in mice. Crit Care 2011. [PMCID: PMC3066931 DOI: 10.1186/cc9677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
159
|
Carchman E, Rao J, Shiva S, Loughran P, Zuckerbraun B. Autophagy Regulates Mitochondrial Homeostasis And Protects Against Organ Injury In Sepsis. J Surg Res 2011. [DOI: 10.1016/j.jss.2010.11.624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
160
|
Murillo D, Kamga C, Mo L, Shiva S. Nitrite as a mediator of ischemic preconditioning and cytoprotection. Nitric Oxide 2011; 25:70-80. [PMID: 21277988 DOI: 10.1016/j.niox.2011.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/04/2011] [Accepted: 01/13/2011] [Indexed: 10/24/2022]
Abstract
Ischemia/reperfusion (IR) injury is a central component in the pathogenesis of several diseases and is a leading cause of morbidity and mortality in the western world. Subcellularly, mitochondrial dysfunction, characterized by depletion of ATP, calcium-induced opening of the mitochondrial permeability transition pore, and exacerbated reactive oxygen species (ROS) formation, plays an integral role in the progression of IR injury. Nitric oxide (NO) and more recently nitrite (NO(2)(-)) are known to modulate mitochondrial function, mediate cytoprotection after IR and have been implicated in the signaling of the highly protective ischemic preconditioning (IPC) program. Here, we review what is known about the role of NO and nitrite in cytoprotection after IR and consider the putative role of nitrite in IPC. Focus is placed on the potential cytoprotective mechanisms involving NO and nitrite-dependent modulation of mitochondrial function.
Collapse
|
161
|
Cantu-Medellin N, Vitturi DA, Rodriguez C, Murphy S, Dorman S, Shiva S, Zhou Y, Jia Y, Palmer AF, Patel RP. Effects of T- and R-state stabilization on deoxyhemoglobin-nitrite reactions and stimulation of nitric oxide signaling. Nitric Oxide 2011; 25:59-69. [PMID: 21277987 DOI: 10.1016/j.niox.2011.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 12/20/2022]
Abstract
Recent data suggest that transitions between the relaxed (R) and tense (T) state of hemoglobin control the reduction of nitrite to nitric oxide (NO) by deoxyhemoglobin. This reaction may play a role in physiologic NO homeostasis and be a novel consideration for the development of the next generation of hemoglobin-based blood oxygen carriers (HBOCs, i.e. artificial blood substitutes). Herein we tested the effects of chemical stabilization of bovine hemoglobin in either the T- (THb) or R-state (RHb) on nitrite-reduction kinetics, NO-gas formation and ability to stimulate NO-dependent signaling. These studies were performed over a range of fractional saturations that is expected to mimic biological conditions. The initial rate for nitrite-reduction decreased in the following order RHb>bHb>THb, consistent with the hypothesis that the rate constant for nitrite reduction is faster with R-state Hb and slower with T-state Hb. Moreover, RHb produced more NO-gas and inhibited mitochondrial respiration more potently than both bHb and THb. Interestingly, at low oxygen fractional saturations, THb produced more NO and stimulated nitrite-dependent vasodilation more potently than bHb despite both derivatives having similar initial rates for nitrite reduction and a more negative reduction potential in THb versus bHb. These data suggest that cross-linking of bovine hemoglobin in the T-state conformation leads to a more effective coupling of nitrite reduction to NO-formation. Our results support the model of allosteric regulation of nitrite reduction by deoxyhemoglobin and show that cross-linking hemoglobins in distinct quaternary states can generate products with increased NO yields from nitrite reduction that could be harnessed to promote NO-signaling in vivo.
Collapse
|
162
|
Frazier EP, Isenberg JS, Shiva S, Zhao L, Schlesinger P, Dimitry J, Abu-Asab MS, Tsokos M, Roberts DD, Frazier WA. Age-dependent regulation of skeletal muscle mitochondria by the thrombospondin-1 receptor CD47. Matrix Biol 2011; 30:154-61. [PMID: 21256215 DOI: 10.1016/j.matbio.2010.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 02/08/2023]
Abstract
CD47, a receptor for thrombospondin-1, limits two important regulatory axes: nitric oxide-cGMP signaling and cAMP signaling, both of which can promote mitochondrial biogenesis. Electron microscopy revealed increased mitochondrial densities in skeletal muscle from both CD47 null and thrombospondin-1 null mice. We further assessed the mitochondria status of CD47-null vs WT mice. Quantitative RT-PCR of RNA extracted from tissues of 3 month old mice revealed dramatically elevated expression of mRNAs encoding mitochondrial proteins and PGC-1α in both fast and slow-twitch skeletal muscle from CD47-null mice, but modest to no elevation in other tissues. These observations were confirmed by Western blotting of mitochondrial proteins. Relative amounts of electron transport enzymes and ATP/O(2) ratios of isolated mitochondria were not different between mitochondria from CD47-null and WT cells. Young CD47-null mice displayed enhanced treadmill endurance relative to WTs and CD47-null gastrocnemius had undergone fiber type switching to a slow-twitch pattern of myoglobin and myosin heavy chain expression. In 12 month old mice, both skeletal muscle mitochondrial volume density and endurance had decreased to wild type levels. Expression of myosin heavy chain isoforms and myoglobin also reverted to a fast twitch pattern in gastrocnemius. Both CD47 and TSP1 null mice are leaner than WTs, use less oxygen and produce less heat than WT mice. CD47-null cells produce substantially less reactive oxygen species than WT cells. These data indicate that loss of signaling from the TSP1-CD47 system promotes accumulation of normally functioning mitochondria in a tissue-specific and age-dependent fashion leading to enhanced physical performance, lower reactive oxygen species production and more efficient metabolism.
Collapse
|
163
|
Shiva S, Rassaf T, Patel RP, Gladwin MT. The detection of the nitrite reductase and NO-generating properties of haemoglobin by mitochondrial inhibition. Cardiovasc Res 2010; 89:566-73. [PMID: 20952414 DOI: 10.1093/cvr/cvq327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Nitrite (NO₂⁻), now regarded as an endocrine reserve of nitric oxide (NO), is bioactivated by nitrite reductase enzymes to mediate physiological responses. In blood, haemoglobin (Hb) catalyses nitrite reduction through a reaction modulated by haem redox potential and oxygen saturation, resulting in maximal NO production around the Hb P₅₀. Although physiological studies demonstrate that Hb-catalysed nitrite reduction mediates cyclic guanosine monophosphate (cGMP)-dependent vasodilation, the NO-scavenging effects of Hb raise questions about how NO generated from this reaction escapes the Hb molecule to signal at distant targets. Here, we characterize the NO-generating properties of Hb using the cGMP-independent and NO-dependent inhibition of mitochondrial cytochrome c oxidase. METHODS AND RESULTS Using a novel technique to measure respiratory inhibition of isolated rat mitochondria, we provide evidence that the reduction of nitrite by intact red blood cells (RBCs) and Hb generates NO, which inhibits mitochondrial respiration. We show that allosteric modulators, which reduce the haem redox potential and stabilize the R state of Hb, regulate the ability of this reaction to inhibit respiration. Finally, we find that the rate of NO generation increases with the rate of Hb deoxygenation, explained by an increase in the proportion of partially deoxygenated R-state tetramers, which convert nitrite to NO more rapidly. CONCLUSION These data reveal redox and allosteric mechanisms that control Hb-mediated nitrite reduction and regulation of mitochondrial function, and support a role for Hb-catalysed nitrite reduction in hypoxic vasodilation.
Collapse
|
164
|
Shiva S. Mitochondria as metabolizers and targets of nitrite. Nitric Oxide 2010; 22:64-74. [PMID: 19788924 PMCID: PMC2819587 DOI: 10.1016/j.niox.2009.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 08/28/2009] [Accepted: 09/17/2009] [Indexed: 12/18/2022]
Abstract
Mitochondrial function is integral to maintaining cellular homeostasis through the production of ATP, the generation of reactive oxygen species (ROS) for signaling, and the regulation of the apoptotic cascade. A number of small molecules, including nitric oxide (NO), are well-characterized regulators of mitochondrial function. Nitrite, an NO metabolite, has recently been described as an endocrine reserve of NO that is reduced to bioavailable NO during hypoxia to mediate physiological responses. Accumulating data suggests that mitochondria may play a role in metabolizing nitrite and that nitrite is a regulator of mitochondrial function. Here, what is known about the interactions of nitrite with the mitochondria is reviewed, with a focus on the role of the mitochondrion as a metabolizer and target of nitrite.
Collapse
|
165
|
Basu S, Keszler A, Azarova NA, Nwanze N, Perlegas A, Shiva S, Broniowska KA, Hogg N, Kim-Shapiro DB. A novel role for cytochrome c: Efficient catalysis of S-nitrosothiol formation. Free Radic Biol Med 2010; 48:255-63. [PMID: 19879353 PMCID: PMC2818408 DOI: 10.1016/j.freeradbiomed.2009.10.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/15/2009] [Accepted: 10/23/2009] [Indexed: 11/30/2022]
Abstract
Although S-nitrosothiols are regarded as important elements of many NO-dependent signal transduction pathways, the physiological mechanism of their formation remains elusive. Here, we demonstrate a novel mechanism by which cytochrome c may represent an efficient catalyst of S-nitrosation in vivo. In this mechanism, initial binding of glutathione to ferric cytochrome c is followed by reaction of NO with this complex, yielding ferrous cytochrome c and S-nitrosoglutathione (GSNO). We show that when submitochondrial particles or cell lysates are exposed to NO in the presence of cytochrome c, there is a robust formation of protein S-nitrosothiols. In the case of submitochondrial particles protein S-nitrosation is paralleled by an inhibition of mitochondrial complex I. These observations raise the possibility that cytochrome c is a mediator of S-nitrosation in biological systems, particularly during hypoxia, and that release of cytochrome c into the cytosol during apoptosis potentially releases a GSNO synthase activity that could modulate apoptotic signaling.
Collapse
|
166
|
Zuckerbraun BS, Shiva S, Ifedigbo E, Mathier MA, Mollen KP, Rao J, Bauer PM, Choi JJW, Curtis E, Choi AMK, Gladwin MT. Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase-dependent nitric oxide generation. Circulation 2009; 121:98-109. [PMID: 20026772 DOI: 10.1161/circulationaha.109.891077] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension is a progressive proliferative vasculopathy of the small pulmonary arteries that is characterized by a primary failure of the endothelial nitric oxide and prostacyclin vasodilator pathways, coupled with dysregulated cellular proliferation. We have recently discovered that the endogenous anion salt nitrite is converted to nitric oxide in the setting of physiological and pathological hypoxia. Considering the fact that nitric oxide exhibits vasoprotective properties, we examined the effects of nitrite on experimental pulmonary arterial hypertension. METHODS AND RESULTS We exposed mice and rats with hypoxia or monocrotaline-induced pulmonary arterial hypertension to low doses of nebulized nitrite (1.5 mg/min) 1 or 3 times a week. This dose minimally increased plasma and lung nitrite levels yet completely prevented or reversed pulmonary arterial hypertension and pathological right ventricular hypertrophy and failure. In vitro and in vivo studies revealed that nitrite in the lung was metabolized directly to nitric oxide in a process significantly enhanced under hypoxia and found to be dependent on the enzymatic action of xanthine oxidoreductase. Additionally, physiological levels of nitrite inhibited hypoxia-induced proliferation of cultured pulmonary artery smooth muscle cells via the nitric oxide-dependent induction of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). The therapeutic effect of nitrite on hypoxia-induced pulmonary hypertension was significantly reduced in the p21-knockout mouse; however, nitrite still reduced pressures and right ventricular pathological remodeling, indicating the existence of p21-independent effects as well. CONCLUSIONS These studies reveal a potent effect of inhaled nitrite that limits pathological pulmonary arterial hypertrophy and cellular proliferation in the setting of experimental pulmonary arterial hypertension.
Collapse
|
167
|
Cauwels A, Buys ES, Thoonen R, Geary L, Delanghe J, Shiva S, Brouckaert P. Nitrite protects against morbidity and mortality associated with TNF- or LPS-induced shock in a soluble guanylate cyclase-dependent manner. ACTA ACUST UNITED AC 2009; 206:2915-24. [PMID: 19934018 PMCID: PMC2806477 DOI: 10.1084/jem.20091236] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nitrite (NO2−), previously viewed as a physiologically inert metabolite and biomarker of the endogenous vasodilator NO, was recently identified as an important biological NO reservoir in vasculature and tissues, where it contributes to hypoxic signaling, vasodilation, and cytoprotection after ischemia–reperfusion injury. Reduction of nitrite to NO may occur enzymatically at low pH and oxygen tension by deoxyhemoglobin, deoxymyoglobin, xanthine oxidase, mitochondrial complexes, or NO synthase (NOS). We show that nitrite treatment, in sharp contrast with the worsening effect of NOS inhibition, significantly attenuates hypothermia, mitochondrial damage, oxidative stress and dysfunction, tissue infarction, and mortality in a mouse shock model induced by a lethal tumor necrosis factor challenge. Mechanistically, nitrite-dependent protection was not associated with inhibition of mitochondrial complex I activity, as previously demonstrated for ischemia–reperfusion, but was largely abolished in mice deficient for the soluble guanylate cyclase (sGC) α1 subunit, one of the principal intracellular NO receptors and signal transducers in the cardiovasculature. Nitrite could also provide protection against toxicity induced by Gram-negative lipopolysaccharide, although higher doses were required. In conclusion, we show that nitrite can protect against toxicity in shock via sGC-dependent signaling, which may include hypoxic vasodilation necessary to maintain microcirculation and organ function, and cardioprotection.
Collapse
|
168
|
|
169
|
Raat NJ, Noguchi AC, Liu VB, Raghavachari N, Liu D, Xu X, Shiva S, Munson PJ, Gladwin MT. Dietary nitrate and nitrite modulate blood and organ nitrite and the cellular ischemic stress response. Free Radic Biol Med 2009; 47:510-7. [PMID: 19464364 PMCID: PMC2744499 DOI: 10.1016/j.freeradbiomed.2009.05.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/04/2009] [Accepted: 05/14/2009] [Indexed: 02/07/2023]
Abstract
Dietary nitrate, found in abundance in green vegetables, can be converted to the cytoprotective molecule nitrite by oral bacteria, suggesting that nitrate and nitrite may represent active cardioprotective constituents of the Mediterranean diet. We therefore tested the hypothesis that dietary nitrate and nitrite levels modulate tissue damage and ischemic gene expression in a mouse liver ischemia-reperfusion model. We found that stomach content, plasma, heart, and liver nitrite levels were significantly reduced after dietary nitrate and nitrite depletion and could be restored to normal levels with nitrite supplementation in water. Remarkably, we confirmed that basal nitrite levels significantly reduced liver injury after ischemia-reperfusion. Consistent with an effect of nitrite on the posttranslational modification of complex I of the mitochondrial electron transport chain, the severity of liver infarction was inversely proportional to complex I activity after nitrite repletion in the diet. The transcriptional response of dietary nitrite after ischemia was more robust than after normoxia, suggesting a hypoxic potentiation of nitrite-dependent transcriptional signaling. Our studies indicate that normal dietary nitrate and nitrite levels modulate ischemic stress responses and hypoxic gene expression programs, supporting the hypothesis that dietary nitrate and nitrite are cytoprotective components of the diet.
Collapse
|
170
|
van Faassen EE, Bahrami S, Feelisch M, Hogg N, Kelm M, Kim-Shapiro DB, Kozlov AV, Li H, Lundberg JO, Mason R, Nohl H, Rassaf T, Samouilov A, Slama-Schwok A, Shiva S, Vanin AF, Weitzberg E, Zweier J, Gladwin MT. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev 2009; 29:683-741. [PMID: 19219851 PMCID: PMC2725214 DOI: 10.1002/med.20151] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review we consider the effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable intermediate in the oxidation of nitric oxide radicals to the stable metabolite nitrate. This oxidation cascade was thought to be irreversible under physiological conditions. However, a growing body of experimental observations attests that the presence of endogenous nitrite regulates a number of signaling events along the physiological and pathophysiological oxygen gradient. Hypoxic signaling events include vasodilation, modulation of mitochondrial respiration, and cytoprotection following ischemic insult. These phenomena are attributed to the reduction of nitrite anions to nitric oxide if local oxygen levels in tissues decrease. Recent research identified a growing list of enzymatic and nonenzymatic pathways for this endogenous reduction of nitrite. Additional direct signaling events not involving free nitric oxide are proposed. We here discuss the mechanisms and properties of these various pathways and the role played by the local concentration of free oxygen in the affected tissue.
Collapse
|
171
|
Dezfulian C, Shiva S, Alekseyenko A, Pendyal A, Beiser DG, Munasinghe JP, Anderson SA, Chesley CF, Vanden Hoek TL, Gladwin MT. Nitrite therapy after cardiac arrest reduces reactive oxygen species generation, improves cardiac and neurological function, and enhances survival via reversible inhibition of mitochondrial complex I. Circulation 2009; 120:897-905. [PMID: 19704094 DOI: 10.1161/circulationaha.109.853267] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Three-fourths of cardiac arrest survivors die before hospital discharge or suffer significant neurological injury. Except for therapeutic hypothermia and revascularization, no novel therapies have been developed that improve survival or cardiac and neurological function after resuscitation. Nitrite (NO(2)(-)) increases cellular resilience to focal ischemia/reperfusion injury in multiple organs. We hypothesized that nitrite therapy may improve outcomes after the unique global ischemia/reperfusion insult of cardiopulmonary arrest. METHODS AND RESULTS We developed a mouse model of cardiac arrest characterized by 12 minutes of normothermic asystole and a high cardiopulmonary resuscitation rate. In this model, global ischemia and cardiopulmonary resuscitation were associated with blood and organ nitrite depletion, reversible myocardial dysfunction, impaired alveolar gas exchange, neurological injury, and an approximately 50% mortality. A single low dose of intravenous nitrite (50 nmol=1.85 micromol/kg=0.13 mg/kg) compared with blinded saline placebo given at cardiopulmonary resuscitation initiation with epinephrine improved cardiac function, survival, and neurological outcomes. From a mechanistic standpoint, nitrite treatment restored intracardiac nitrite and increased S-nitrosothiol levels, decreased pathological cardiac mitochondrial oxygen consumption resulting from reactive oxygen species formation, and prevented oxidative enzymatic injury via reversible specific inhibition of respiratory chain complex I. CONCLUSIONS Nitrite therapy after resuscitation from 12 minutes of asystole rapidly and reversibly modulated mitochondrial reactive oxygen species generation during early reperfusion, limiting acute cardiac dysfunction, death, and neurological impairment in survivors.
Collapse
|
172
|
Gladwin MT, Shiva S. The ligand binding battle at cytochrome c oxidase: how NO regulates oxygen gradients in tissue. Circ Res 2009; 104:1136-8. [PMID: 19461104 DOI: 10.1161/circresaha.109.198911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
173
|
Isenberg JS, Shiva S, Gladwin M. Thrombospondin-1-CD47 blockade and exogenous nitrite enhance ischemic tissue survival, blood flow and angiogenesis via coupled NO-cGMP pathway activation. Nitric Oxide 2009; 21:52-62. [PMID: 19481167 DOI: 10.1016/j.niox.2009.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 04/16/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
Tissue ischemia and ischemia-reperfusion (I/R) remain sources of cell and tissue death. Inability to restore blood flow and limit reperfusion injury represents a challenge in surgical tissue repair and transplantation. Nitric oxide (NO) is a central regulator of blood flow, reperfusion signaling and angiogenesis. De novo NO synthesis requires oxygen and is limited in ischemic vascular territories. Nitrite (NO(2-)) has been discovered to convert to NO via heme-based reduction during hypoxia, providing a NO synthase independent and oxygen-independent NO source. Furthermore, blockade of the matrix protein thrombospondin-1 (TSP1) or its receptor CD47 has been shown to promote downstream NO signaling via soluble guanylate cyclase (sGC) and cGMP-dependant kinase. We hypothesized that nitrite would provide an ischemic NO source that could be potentiated by TSP1-CD47 blockade enhancing ischemic tissue survival, blood flow and angiogenesis. Both low dose nitrite and direct blockade of TSP1-CD47 interaction using antibodies or gene silencing increased acute blood flow and late tissue survival in ischemic full thickness flaps. Nitrite and TSP1 blockade both enhanced in vitro and in vivo angiogenic responses. The nitrite effect could be abolished by inhibition of sGC and cGMP signaling. Potential therapeutic synergy was tested in a more severe ischemic flap model. We found that combined therapy with nitrite and TSP1-CD47 blockade enhanced flap perfusion, survival and angiogenesis to a greater extent than either agent alone, providing approximately 100% flap survival. These data provide a new therapeutic paradigm for hypoxic NO signaling through enhanced cGMP mediated by TSP1-CD47 blockade and nitrite delivery.
Collapse
|
174
|
Pellegrino D, Shiva S, Angelone T, Gladwin MT, Tota B. Nitrite exerts potent negative inotropy in the isolated heart via eNOS-independent nitric oxide generation and cGMP-PKG pathway activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:818-27. [PMID: 19248761 DOI: 10.1016/j.bbabio.2009.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 12/13/2022]
Abstract
The ubiquitous anion nitrite (NO(2)(-)) has recently emerged as an endocrine storage form of nitric oxide (NO) and a signalling molecule that mediates a number of biological responses. Although the role of NO in regulating cardiac function has been investigated in depth, the physiological signalling effects of nitrite on cardiac function have only recently been explored. We now show that remarkably low concentrations of nitrite (1 nM) significantly modulate cardiac contractility in isolated and perfused Langendorff rat heart. In particular, nitrite exhibits potent negative inotropic and lusitropic activities as evidenced by a decrease in left ventricular pressure and relaxation, respectively. Furthermore, we demonstrate that the nitrite-dependent effects are mediated by NO formation but independent of NO synthase (NOS) activity. Specifically, nitrite infusion in the Langendorff system produces NO and cGMP/PKG-dependent negative inotropism, as evidenced by the formation of cellular iron-nitrosyl complexes and inhibition of biological effect by NO scavengers and by PKG inhibitors. These data are consistent with the hypothesis that nitrite represents an eNOS-independent source of NO in the heart which modulates cardiac contractility through the NO-cGMP/PKG pathway. The observed high potency of nitrite supports a physiological function of nitrite as a source of cardiomyocyte NO and a fundamental signalling molecule in the heart.
Collapse
|
175
|
Basu S, Azarova NA, Font MD, King SB, Hogg N, Gladwin MT, Shiva S, Kim-Shapiro DB. Nitrite reductase activity of cytochrome c. J Biol Chem 2008; 283:32590-7. [PMID: 18820338 PMCID: PMC2583304 DOI: 10.1074/jbc.m806934200] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Indexed: 01/16/2023] Open
Abstract
Small increases in physiological nitrite concentrations have now been shown to mediate a number of biological responses, including hypoxic vasodilation, cytoprotection after ischemia/reperfusion, and regulation of gene and protein expression. Thus, while nitrite was until recently believed to be biologically inert, it is now recognized as a potentially important hypoxic signaling molecule and therapeutic agent. Nitrite mediates signaling through its reduction to nitric oxide, via reactions with several heme-containing proteins. In this report, we show for the first time that the mitochondrial electron carrier cytochrome c can also effectively reduce nitrite to NO. This nitrite reductase activity is highly regulated as it is dependent on pentacoordination of the heme iron in the protein and occurs under anoxic and acidic conditions. Further, we demonstrate that in the presence of nitrite, pentacoordinate cytochrome c generates bioavailable NO that is able to inhibit mitochondrial respiration. These data suggest an additional role for cytochrome c as a nitrite reductase that may play an important role in regulating mitochondrial function and contributing to hypoxic, redox, and apoptotic signaling within the cell.
Collapse
|